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Results for 1-D cubic NLS with rough data

The 1-D cubic NLS
iut + uxx ± |u|2u = 0

is well-posed in Hs , s ≥ 0 (Ginibre-Velo 79, Cazenave-Weissler 90).

If s < 0 it is ill-posed (Kenig-Ponce-Vega 01, Christ-Colliander-Tao 03).

Well-posedness holds for data with Fourier transform in Lp spaces
(Vargas-Vega 01, Grünrock 05, Christ 07).

Methods of proving existence : fixed points arguments relying on
Strichartz type spaces.
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Results for 1-D cubic NLS with Dirac data

For aδ0 as initial data, the 1-D cubic NLS is ill-posed: when looking for a

(unique) solution, by using Galilean invariance, one obtains e ia
2 log t a√

t
e i

x2

4t

which has no limit at t = 0 (Kenig-Ponce-Vega 01).

A natural change to do is to consider the perturbed cubic 1DNLS

iψt + ψxx ±
(
|ψ|2 − a2

t

)
ψ = 0,

and get as an explicit solution a√
t
e i

x2

4t = ae it∆δ0(x).

The problem is however ill-posed, as smooth perturbations of the solution
a√
t
e i

x2

4t at time t = 1 behave near t = 0 as e ia
2 log t f (x) (B.-Vega 09).
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Some notations

For a sequence {αk} and s ≥ 0 we denote

‖{αk}‖2
l2,s :=

∑
k∈Z

(1 + |k |)2s |αk |2, ‖{αk}‖2
l∞,s := sup

k∈Z
(1 + |k|)2s |αk |2.

We consider distributions

u =
∑
k∈Z

αkδk .

Their Fourier transform on R writes

û(ξ) =
∑
k∈Z

αke
−ikξ,

and in particular û is 2π−periodic.

Imposing {αk} ∈ l2,s translates into û ∈ Hs(0, 2π).

We denote

Hs
pF := {u ∈ S ′(R), û(x + 2π) = û(x), û ∈ Hs(0, 2π)}.
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Result for 1-D cubic NLS with several Dirac data

Theorem (B.-Vega ’17)

Let T > 0, s > 1
2 , s − 1

2 < s̃ ≤ s, 0 < γ < 1 and {αk} ∈ l2,s .

We consider the 1-D cubic NLS equation:{
i∂tu + ∆u ± (|u|2 − M

2πt )u = 0,
u|t=0 =

∑
k∈Z αkδk ,

with M =
∑

k∈Z |αk |2.

There exists ε0 = ε0(T ) > 0 such that if ‖{αk}‖l2,s ≤ ε0 then we have a
local solution u ∈ C([0,T ];Hs

pF ).

Moreover, this solution is unique of the form

u(t, x) =
∑
k∈Z

(αk + Rk(t))e it∆δk(x),

with {Rk} satisfying the decay

t−γ‖{Rk(t)}‖l2,s + t ‖{∂tRk(t)}‖l∞,s̃ < C .
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Result for 1-D cubic NLS with several Dirac data

Remarks:

the theorem is a generalization of a result of Kita 2006 valid for
subcubic nonlinearities.

the proof goes as follows:
plugging the ansatz u(t, x) =

∑
k∈Z Ak(t)e it∆δk(x) into the equation

leads to a discrete system on {Ak(t)},

we solve this discrete system by a fixed point argument, in which we
treat separately the nonresonant and the resonant part.

the resonant part is related to the system

i∂ak(t) =
1

2πt
ak(t)(

∑
j

|aj(t)|2 −M),

which has only the constant in time solutions for M =
∑

j |aj(0)|2.
(without the extra-factor M in the initial equation, that is treating
directly the cubic equation, one ends up with the resonant system

above without M, so we get ak(t) = e i
∑

j |aj (0)|2

2π log tak(0) which has
no limit at t = 0).
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The proof: the nonlinearity action on the ansatz

We denote N (u) = |u|2u. Plugging u(t) =
∑

k∈Z Ak(t)e it∆δk into the
equation we get∑

k∈Z
i∂tAk(t)e it∆δk = ±N (

∑
j∈Z

Aj(t)e it∆δj)∓
M

2πt
(
∑
k∈Z

Ak(t)e it∆δk).

As Kita we can rewrite the nonlinear term:

N (
∑
j∈Z

Aj(t)e it∆δj)(x) = N (
∑
j∈Z

Aj(t)
e i

(x−j)2

4t

√
t

) =
e i

x2

4t

t
√
t
N (
∑
j∈Z

Aj(t)e ij·e i
j2

4t )(− x

2t
),

and use the 2π−periodicity of
∑

j∈Z Aj(t)e ij·e i
j2

4t :

=
e i

x2

4t

t
√
t

∑
k∈Z

e−ik
x
2t

1

2π

∫ 2π

0

e−ikθN (
∑
j∈Z

Aj(t)e ijθe i
j2

4t ) dθ

=
∑
k∈Z

e−i
k2

4t

2πt

∫ 2π

0

e−ikθN (
∑
j∈Z

Ak(t)e ijθe i
j2

4t ) dθ

 (e it∆δk)(x).
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The proof: the discrete system

The family e it∆δk(x) = e i
(x−k)2

4t√
t

is an orthogonal basis of L2(0, 2πt), so

i∂tAk(t) = ±e−i
k2

4t

2πt

∫ 2π

0

e−ikθN (
∑
j∈Z

Ak(t)e ijθe i
j2

4t ) dθ ∓ M

2πt
Ak(t).

Now we develop the cubic power and get

i∂tAk(t) = ± 1

2πt

∑
k−j1+j2−j3=0

e−i
k2−j21 +j22−j33

4t Aj1 (t)Aj2 (t)Aj3 (t)∓ M

2πt
Ak(t).

We split the summation indices into the following two sets:

NRk = {(j1, j2, j3) ∈ Z3, k − j1 + j2 − j3 = 0, k2 − j2
1 + j2

2 − j2
3 6= 0},

Resk = {(j1, j2, j3) ∈ Z3, k − j1 + j2 − j3 = 0, k2 − j2
1 + j2

2 − j2
3 = 0}.

As we are in one dimension, the second set is simply

Resk = {(k , j , j), (j , j , k), j ∈ Z}.
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The proof: the fixed point framework

Finally the system writes

i∂tAk(t) =
Ak(t)

2πt
(
∑
j

|Aj(t)|2−M)+
∑

(j1,j2,j3)∈NRk

e−i
k2−j21 +j22−j33

4t

2πt
Aj1 (t)Aj2 (t)Aj3 (t).

We want to obtain the existence of Ak(t) = αk + Rk(t), with

{Rk} ∈ X γ := {{fk} ∈ C([0,T ]; l2,s) ∩ C 1(]0,T ]; l∞,s̃), ‖{fk}‖Xγ <∞},

where ‖{fk}‖Xγ := sup0≤t<T t−γ‖{fk(t)}‖l2,s + t ‖{∂t fk(t)}‖l∞,s̃ .

We shall prove that the operator Φ : {Rk} → {Φk({Rj})} defined as

Φk({Rj})(t) := i

∫ t

0

αk + Rk(τ)

2πτ
(
∑
j

|(αj + Rj(τ))|2 − |αj |2) dτ

+i

∫ t

0

∑
(j1,j2,j3)∈NRk

e−i
k2−j21 +j22−j23

4τ

2πτ
(αj1 +Rj1 (τ))(αj2 + Rj2 (τ))(αj3 +Rj3 (τ)) dτ

is a contraction in X γ on a small ball of radius δ, to be chosen later.
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The proof: the resonant part

The resonant part ΦR
k we perform Cauchy-Schwarz in the summation in

j , and then in time:

|ΦR
k ({Rj})(t)| ≤ C

∫ t

0

|αk |+ |Rk(τ)|
τ

(
∑
j

|αj ||Rj(τ)|+
∑
j

|Rj(τ))|2) dτ

≤ C

∫ t

0

|αk |+ |Rk(τ)|
τ

(ε0δτ
γ + δ2τ 2γ) dτ

≤ C |αk |(ε0δt
γ + δ2t2γ) + C (

∫ t

0

|Rk(τ)|2

τ 1+γ
(ε2

0δ
2τ 2γ + δ4τ 4γ) dτ)

1
2 t

γ
2 .

Then
‖ΦR({Rk})(t)‖2

l2,s :=
∑
k

(1 + |k |)2s |ΦR
k ({Rj})|2

≤ Cε2
0(ε2

0δ
2t2γ+δ4t4γ)+C

∫ t

0

∑
k(1 + |k |)2s |Rk(τ)|2

τ 1+γ
(ε2

0δ
2τ 2γ+δ4τ 4γ) dτ tγ

≤ Cδ2t2γ(ε4
0 + ε2

0δ
2t2γ + δ4t4γ) ≤ Cδ2t2γ(ε2

0 + δ2t2γ)2 ≤ δ2t2γ

10
.

The ‖∂tΦR({Rk}(t))‖2
l∞,s̃ is treated similarly, by using l2,s ⊂ l2,s̃ ⊂ l∞,s̃ .
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The proof: the non-resonant part

On the non-resonant part operator ΦNR we shall perform an integration
by parts to get advantage of the non-resonant phase (without the phase
gain we have an issue for the discrete summations ; this is the only
reason of adding the derivative in time in the definition of the space X γ)

For instance the boundary term ΦNR,B
k ({Rj})(t) for the IBP is

t
∑

(j1,j2,j3)∈NRk

e−i
k2−j21 +j22−j23

4t

π(k2 − j2
1 + j2

2 − j2
3 )

(αj1 +Rj1 (t))(αj2 + Rj2 (t))(αj3 +Rj3 (t)).

On the non-resonant set 1 ≤ |k2 − j2
1 + j2

2 − j2
3 | = 2|j1 − j2||k − j1|, so

|ΦNR,B
k ({Rj})(t)| ≤ Ct

∑
j1,j2∈Z

|(αj1 + Rj1 (t))(αj2 + Rj2 (t))(αj3 + Rj3 (t))|
(1 + |j1 − j2|)(1 + |k − j1|)

.

10/20



The proof: example of term in the non-resonant part

By Cauchy-Schwarz in the summation in j1, j2 we get

|ΦNR,B({Rk})(t)|2 ≤ Ct2
∑

j1,j2∈Z
(1+|j1|)2s(1+|j2|)2s |(αj1 +Rj1 (t))(αj2 +Rj2 (t))|2

×
∑

j1,j2∈Z

|αk−j1+j2 + Rk−j1+j2 (t)|2

(1 + |j1|)2s(1 + |j2|)2s(1 + |j1 − j2|)2(1 + |k − j1|)2
.

Therefore we control

‖ΦNR,B({Rk})(t)‖2
l2,s ≤ Ct2(ε2

0 + δ2t2γ)3,

provided that the following sum is finite∑
k,j1,j2∈Z

(1 + |k |)2s

(1 + |j1|)2s(1 + |j2|)2s(1 + |k − j1 + j2|)2s(1 + |j1 − j2|)2(1 + |k − j1|)2
.
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Example of summation estimation

Lemma

For 0 < s − 1
2 < s̃ the following sum is finite:

∑
k,j1,j2∈Z

(1 + |k|)2s

(1 + |j1|)2s̃(1 + |j2|)2s(1 + |j1 − j2|)2(1 + |k − j1|)2(1 + |k − j1 + j2|)2s
.

We split the summation in k into nine regions, in terms of the
comparison of k with j1 and with j1 − j2. We denote, for j1, j2 fixed, the
two series of three exhaustive regions on Z:

B1 = {|k| ≤ 1

2
|j1−j2|}, B2 = {1

2
|j1−j2| < |k| ≤

3

2
|j1−j2|}, B3 = {3

2
|j1−j2| < |k|},

C1 = {|k| ≤ 1

2
|j1|}, C2 = {1

2
|j1| < |k| ≤

3

2
|j1|}, C3 = {3

2
|j1| < |k|}.

We split the sum as follows:∑
k,j1,j2∈Z =

∑
j1,j2∈Z(

∑
k∈B1∪B3

+
∑

k∈B2∩C1
+
∑

k∈B2∩C2
+
∑

k∈∪B2∩C3
).
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Example of summation estimation

On B1 ∪ B3 we have (1+|k|)2s

(1+|k−j1+j2|)2s < C so, as 2s > 1,

∑
j1,j2∈Z,k∈B1∪B3

(1 + |k|)2s

(1 + |j1|)2s̃(1 + |j2|)2s(1 + |j1 − j2|)2(1 + |k − j1|)2(1 + |k − j1 + j2|)2s

≤ C
∑

j1,j2∈Z

1

(1 + |j2|)2s(1 + |j1 − j2|)2

∑
k∈B1∪B3

1

(1 + |k − j1|)2
<∞.

On C1 we have |k| ≤ 1
2 |j1| so, as 2s > 1 and 2s̃ + 2− 2s > 1,

∑
j1,j2∈Z,k∈B2∩C1

(1 + |k|)2s

(1 + |j1|)2s̃(1 + |j2|)2s(1 + |j1 − j2|)2(1 + |k − j1|)2(1 + |k − j1 + j2|)2s

≤ C
∑

j1,j2∈Z

(1 + |j1|)2s

(1 + |j1|)2s̃+2(1 + |j2|)2s(1 + |j1 − j2|)2

∑
k∈B2∩C1

1

(1 + |k − j1 + j2|)2s

≤ C
∑
j1∈Z

1

(1 + |j1|)2s̃+2−2s

∑
j2∈Z

1

(1 + |j1 − j2|)2
<∞.
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Example of summation estimation

On B2 ∩ C2 we have |k | ≤ 3
2 |j1| and |j1| < 3|j1 − j2| so

∑
j1,j2∈Z,k∈B2∩C2

(1 + |k|)2s

(1 + |j1|)2s̃(1 + |j2|)2s(1 + |j1 − j2|)2(1 + |k − j1|)2(1 + |k − j1 + j2|)2s

≤ C
∑

j1,j2∈Z

(1 + |j1|)2s

(1 + |j1|)2s̃(1 + |j2|)2s(1 + |j1 − j2|)2

∑
k∈B2∩C2

1

(1 + |k − j1|)2

≤ C
∑

j1,j2∈Z

1

(1 + |j1|)2s̃+2−2s(1 + |j2|)2s
<∞.

On B2 ∩ C3 we have 3
2 |j1| < |k | ≤

3
2 |j1 − j2| ≤ 3

2 (|j1|+ |j2|):

∑
j1,j2∈Z,k∈B2∩C3

(1 + |k|)2s

(1 + |j1|)2s̃(1 + |j2|)2s(1 + |j1 − j2|)2(1 + |k − j1|)2(1 + |k − j1 + j2|)2s

≤ C
∑

j1,j2∈Z

(1 + |j1|)2s + (1 + |j2|)2s

(1 + |j1|)2s̃+2(1 + |j2|)2s(1 + |j1 − j2|)2

∑
k∈B2∩C3

1

(1 + |k − j1 + j2|)2s

≤ C
∑

j1,j2∈Z

1

(1 + |j1|)2s̃+2−2s(1 + |j2|)2s
+C

∑
j1,j2∈Z

1

(1 + |j1|)2s̃+2(1 + |j1 − j2|)2
<∞.
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A Talbot effect

The linear and nonlinear Schrödinger evolution on the torus of functions
with bounded variation was proved to present Talbot effect features
(Berry, Klein; Oskolkov; Kapitanski, Rodnianski; Taylor ; Erdogan,
Tzirakis ’96-’13).

Here we place ourselves in a more singular setting on R.

A consequence of the Theorem is that the solution u(t) of the modified
cubic NLS with initial data u0 =

∑
k∈Z αkδk such that ‖{αk}‖l2,s ≤ ε0

behaves for small times like the linear evolution e it∆u0.

We compute first the linear evolution e it∆u0 which display a Talbot effect.
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A Talbot effect for linear evolutions of several Diracs

Proposition

Let t = 1
2π

p
q with q odd. Let u0 be such that û0 is 2π−periodic and û0

located modulo 2π only in a neighborhood of zero of radius less than π
p .

For a given x ∈ R we denote lx ∈ Z and 0 ≤ mx < q the unique numbers
such that

x − lx −
mx

q
∈ [0,

1

q
),

and we define
ξx :=

πq

p
(x − lx −

mx

q
) ∈ [0,

π

p
).

Then for some θmx ∈ R

e it∆u0(x) =
1
√
q
û0(ξx) e−it ξ

2
x+ix ξx+iθmx .

The data u0 =
∑

k∈Z δk enters the above setting of the 2π−periodicity in
Fourier and localization in Fourier, as û0 = u0 =

∑
k∈Z δk . Therefore

e it∆u0(x) = 0 for x /∈ Z + Z
q , and is a Dirac mass otherwise, which is a

Talbot effect. This kind of data does not enter our nonlinear framework.
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A Talbot effect for nonlinear evolutions of several Diracs

If moreover û0 is located modulo 2π only in a neighborhood of zero of
radius less than η πp with 0 < η < 1, then the previous linear evolution

vanishes for x at distance larger than η
q from Z + Z

q .

Proposition

Let u0 such that û0 is a 2π−periodic, located modulo 2π only in a
neighborhood of zero of radius less than η πp with 0 < η < 1 and having

Fourier coefficients {αk} satisfying ‖{αk}‖l2,s ≤ ε0.

Let u(t, x) be the local in time solution obtained in the Theorem.

Then for t = 1
2π

p
q with q odd and for all x at distance larger than η

q from

Z + Z
q the function u(t, x) almost vanish for small times, in the sense:

u(t, x) =
∑
k∈Z

Rk(t)e it∆δk(x),

with {Rk} satisfying the decay

t−γ‖{Rk(t)}‖l2,s + t ‖{∂tRk(t)}‖l∞,s̃ < C .
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A model for one vortex filament dynamics

In a 3D homogeneous incompressible inviscid fluid a vortex filament is a a
vortex tube with infinitesimal cross section: the vorticity is a singular
measure supported along a curve in R3 that moves with the flow.

The binormal flow is the oldest, simpler and richer model for one vortex
filament dynamics (Da Rios 1906, Arms-Hama 1965 using a truncated
Biot-Savart’s law). It imposes the evolution in time of a R3-curve χ(t) by

χt = χs ∧ χss = c b.

|
Frenet’s system | Hasimoto 72

(direct computations) | (...Madelung−1)
↓

The filament function u(t, s) = c(t, s)e i
∫ s

0
τ(t,s)ds satisfies the 1D NLS

iut + uss +
1

2

(
|u|2 − A(t)

)
u = 0,

with A(t) in terms of curvature and torsion (c , τ)(t, 0).
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Binormal flow results

Conversely, for A(t) and u s.t. iut + uss + 1
2

(
|u|2 − A(t)

)
u = 0, one can

construct a solution of the binormal flow.
Examples:

Lines: u(t, s) = 0, A(t) = 0.

Circles: u(t, s) = 1, A(t) = −1.

Helices: u(t, s) = e−itN
2

e iNs , A(t) = −1.

Travelling waves: u(t, s) = e−itN
2

e iNs 1
2
√

2
1

cosh(s−2Nt) , A(t) = −1,

(Hasimoto 72, Hopfinger-Browand 81).

Self-similar solutions u(t, s) = a e i
x2

4t√
t

for A(t) = |a|2
t and

perturbations (physicists 70-80, Guttierez-Rivas-Vega 03,
Guttierez-Vega 04, Banica-Vega 08-15).

χ(0) admits a corner at x = 0 u0 presents a Dirac mass at x = 0.

Local well-posedness for (c , τ) in Sobolev spaces (Hasimoto 72,
Nishiyama-Tani 94-97, Koiso 97-08), for currents for a weak formulation,
with analysis at the level of the frame (Jerrard-Smets 11), for curves with
a corner and curvature in weighted space (B.-Vega 15).
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Corners interaction through the binormal flow

• A non-closed curve with one corner and curvature in weighted space
smoothens instantaneously is an oscillating way (B.-Vega 15).
This is in link with the Kelvin waves observed in vortex reconnections.

• A planar regular polygon with M sides is expected to evolve through
the binormal flow to skew polygons with Mq sides at times of type p

q

(numerical simulations Grinstein-De Vore 96, Jerrard-Smets 15 and
integration of the Frenet frame at rational times De la Hoz-Vega 15).

At infinitesimal times evidence is given for the evolution to be the
superposition of the evolutions of each initial corner (De la Hoz-Vega 17).

• Here the framework is of a broken line, for instance with two corners.

The Theorem says that the curve gets through the binormal flow
instantaneously smooth. Moreover, for infinitesimal times the evolution is
as a superposition of the evolutions of each initial corner.

The smoothening is in an oscillating way: the Proposition insures that at
times of type p

q the curvature of χ(t) displays concentrations near the
locations x such that xq ∈ Z, and almost straight segments are between.
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