1-D cubic NLS with several Diracs as initial data and consequences

Valeria Banica (Univ. Pierre et Marie Curie) joint work with Luis Vega (BCAM)

Roma, September 2017

Plan of the talk

- The 1-D cubic NLS with rough data
- The 1-D cubic NLS with several Dirac data (existence result and Talbot effect)
- About the binormal flow and vortex filament dynamics
- The results transferred to the binormal flow

Results for 1-D cubic NLS with rough data

The 1-D cubic NLS

$$
i u_{t}+u_{x x} \pm|u|^{2} u=0
$$

is well-posed in $H^{s}, s \geq 0$ (Ginibre-Velo 79, Cazenave-Weissler 90).
If $s<0$ it is ill-posed (Kenig-Ponce-Vega 01, Christ-Colliander-Tao 03).
Well-posedness holds for data with Fourier transform in L^{p} spaces (Vargas-Vega 01, Grünrock 05, Christ 07).

Methods of proving existence : fixed points arguments relying on Strichartz type spaces.

Results for 1-D cubic NLS with Dirac data

For $a \delta_{0}$ as initial data, the 1-D cubic NLS is ill-posed: when looking for a (unique) solution, by using Galilean invariance, one obtains $e^{i a^{2} \log t} \frac{a}{\sqrt{t}} e^{i \frac{x^{2}}{4 t}}$ which has no limit at $t=0$ (Kenig-Ponce-Vega 01).

A natural change to do is to consider the perturbed cubic 1DNLS

$$
i \psi_{t}+\psi_{x x} \pm\left(|\psi|^{2}-\frac{a^{2}}{t}\right) \psi=0
$$

and get as an explicit solution $\frac{a}{\sqrt{t}} e^{i \frac{x^{2}}{4 t}}=a e^{i t \Delta} \delta_{0}(x)$.
The problem is however ill-posed, as smooth perturbations of the solution $\frac{a}{\sqrt{t}} e^{i \frac{x^{2}}{4 t}}$ at time $t=1$ behave near $t=0$ as $e^{i a^{2} \log t} f(x)$ (B.-Vega 09).

Some notations

For a sequence $\left\{\alpha_{k}\right\}$ and $s \geq 0$ we denote

$$
\left\|\left\{\alpha_{k}\right\}\right\|_{\mid 2, s}^{2}:=\sum_{k \in \mathbb{Z}}(1+|k|)^{2 s}\left|\alpha_{k}\right|^{2}, \quad\left\|\left\{\alpha_{k}\right\}\right\|_{\mid \infty, s}^{2}:=\sup _{k \in \mathbb{Z}}(1+|k|)^{2 s}\left|\alpha_{k}\right|^{2} .
$$

We consider distributions

$$
u=\sum_{k \in \mathbb{Z}} \alpha_{k} \delta_{k}
$$

Their Fourier transform on \mathbb{R} writes

$$
\hat{u}(\xi)=\sum_{k \in \mathbb{Z}} \alpha_{k} e^{-i k \xi},
$$

and in particular \hat{u} is 2π-periodic.
Imposing $\left\{\alpha_{k}\right\} \in I^{2, s}$ translates into $\hat{u} \in H^{s}(0,2 \pi)$.
We denote

$$
H_{p F}^{s}:=\left\{u \in \mathcal{S}^{\prime}(\mathbb{R}), \hat{u}(x+2 \pi)=\hat{u}(x), \hat{u} \in H^{s}(0,2 \pi)\right\} .
$$

Result for 1-D cubic NLS with several Dirac data

Theorem (B.-Vega '17)

Let $T>0, s>\frac{1}{2}, s-\frac{1}{2}<\tilde{s} \leq s, 0<\gamma<1$ and $\left\{\alpha_{k}\right\} \in I^{2, s}$.
We consider the 1-D cubic NLS equation:

$$
\left\{\begin{array}{c}
i \partial_{t} u+\Delta u \pm\left(|u|^{2}-\frac{M}{2 \pi t}\right) u=0 \\
u_{\mid t=0}=\sum_{k \in \mathbb{Z}} \alpha_{k} \delta_{k}
\end{array}\right.
$$

with $M=\sum_{k \in \mathbb{Z}}\left|\alpha_{k}\right|^{2}$.
There exists $\epsilon_{0}=\epsilon_{0}(T)>0$ such that if $\left\|\left\{\alpha_{k}\right\}\right\|_{1^{2, s}} \leq \epsilon_{0}$ then we have a local solution $u \in \mathcal{C}\left([0, T] ; H_{p F}^{s}\right)$.
Moreover, this solution is unique of the form

$$
u(t, x)=\sum_{k \in \mathbb{Z}}\left(\alpha_{k}+R_{k}(t)\right) e^{i t \Delta} \delta_{k}(x)
$$

with $\left\{R_{k}\right\}$ satisfying the decay

$$
t^{-\gamma}\left\|\left\{R_{k}(t)\right\}\right\|_{l^{2, s}}+t\left\|\left\{\partial_{t} R_{k}(t)\right\}\right\|_{1 \infty, 5}<C
$$

Result for 1-D cubic NLS with several Dirac data

Remarks:

- the theorem is a generalization of a result of Kita 2006 valid for subcubic nonlinearities.
- the proof goes as follows:
- plugging the ansatz $u(t, x)=\sum_{k \in \mathbb{Z}} A_{k}(t) e^{i t \Delta} \delta_{k}(x)$ into the equation leads to a discrete system on $\left\{A_{k}(t)\right\}$,
- we solve this discrete system by a fixed point argument, in which we treat separately the nonresonant and the resonant part.
- the resonant part is related to the system

$$
i \partial a_{k}(t)=\frac{1}{2 \pi t} a_{k}(t)\left(\sum_{j}\left|a_{j}(t)\right|^{2}-M\right)
$$

which has only the constant in time solutions for $M=\sum_{j}\left|a_{j}(0)\right|^{2}$. (without the extra-factor M in the initial equation, that is treating directly the cubic equation, one ends up with the resonant system above without M, so we get $a_{k}(t)=e^{i \frac{\sum_{j}\left|a_{j}(0)\right|^{2}}{2 \pi}} \log t a_{k}(0)$ which has no limit at $t=0$).

The proof: the nonlinearity action on the ansatz
We denote $\mathcal{N}(u)=|u|^{2} u$. Plugging $u(t)=\sum_{k \in \mathbb{Z}} A_{k}(t) e^{i t \Delta} \delta_{k}$ into the equation we get

$$
\sum_{k \in \mathbb{Z}} i \partial_{t} A_{k}(t) e^{i t \Delta} \delta_{k}= \pm \mathcal{N}\left(\sum_{j \in \mathbb{Z}} A_{j}(t) e^{i t \Delta} \delta_{j}\right) \mp \frac{M}{2 \pi t}\left(\sum_{k \in \mathbb{Z}} A_{k}(t) e^{i t \Delta} \delta_{k}\right)
$$

As Kita we can rewrite the nonlinear term:

$$
\mathcal{N}\left(\sum_{j \in \mathbb{Z}} A_{j}(t) e^{i t \Delta} \delta_{j}\right)(x)=\mathcal{N}\left(\sum_{j \in \mathbb{Z}} A_{j}(t) \frac{e^{i \frac{i(x-j)^{2}}{4 t}}}{\sqrt{t}}\right)=\frac{e^{i \frac{x^{2}}{4 t}}}{t \sqrt{t}} \mathcal{N}\left(\sum_{j \in \mathbb{Z}} A_{j}(t) e^{i j} \cdot e^{i \frac{j^{2}}{4 t}}\right)\left(-\frac{x}{2 t}\right)
$$

and use the 2π-periodicity of $\sum_{j \in \mathbb{Z}} A_{j}(t) e^{i j} e^{i \frac{j^{2}}{4 t}}$:

$$
\begin{gathered}
=\frac{e^{i \frac{x^{2}}{4 t}}}{t \sqrt{t}} \sum_{k \in \mathbb{Z}} e^{-i k \frac{x}{2 t}} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k \theta} \mathcal{N}\left(\sum_{j \in \mathbb{Z}} A_{j}(t) e^{i j \theta} e^{i \frac{j^{2}}{4 t}}\right) d \theta \\
=\sum_{k \in \mathbb{Z}}\left(\frac{e^{-i \frac{k^{2}}{4 t}}}{2 \pi t} \int_{0}^{2 \pi} e^{-i k \theta} \mathcal{N}\left(\sum_{j \in \mathbb{Z}} A_{k}(t) e^{i j \theta} e^{i \frac{j^{2}}{4 t}}\right) d \theta\right)\left(e^{i t \Delta} \delta_{k}\right)(x) .
\end{gathered}
$$

The family $e^{i t \Delta} \delta_{k}(x)=\frac{e^{i \frac{(x-k)^{2}}{4 t}}}{\sqrt{t}}$ is an orthogonal basis of $L^{2}(0,2 \pi t)$, so

$$
i \partial_{t} A_{k}(t)= \pm \frac{e^{-i \frac{k^{2}}{4 t}}}{2 \pi t} \int_{0}^{2 \pi} e^{-i k \theta} \mathcal{N}\left(\sum_{j \in \mathbb{Z}} A_{k}(t) e^{i j \theta} e^{i \frac{j^{2}}{4 t}}\right) d \theta \mp \frac{M}{2 \pi t} A_{k}(t)
$$

Now we develop the cubic power and get
$i \partial_{t} A_{k}(t)= \pm \frac{1}{2 \pi t} \sum_{k-j_{1}+j_{2}-j_{3}=0} e^{-i \frac{k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{3}}{4 t}} A_{j_{1}}(t) \overline{A_{j_{2}}(t)} A_{j_{3}}(t) \mp \frac{M}{2 \pi t} A_{k}(t)$.
We split the summation indices into the following two sets:

$$
\begin{aligned}
& N R_{k}=\left\{\left(j_{1}, j_{2}, j_{3}\right) \in \mathbb{Z}^{3}, k-j_{1}+j_{2}-j_{3}=0, k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{2} \neq 0\right\} \\
& \operatorname{Res}_{k}=\left\{\left(j_{1}, j_{2}, j_{3}\right) \in \mathbb{Z}^{3}, k-j_{1}+j_{2}-j_{3}=0, k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{2}=0\right\}
\end{aligned}
$$

As we are in one dimension, the second set is simply

$$
\operatorname{Res}_{k}=\{(k, j, j),(j, j, k), j \in \mathbb{Z}\}
$$

The proof: the fixed point framework

Finally the system writes
$i \partial_{t} A_{k}(t)=\frac{A_{k}(t)}{2 \pi t}\left(\sum_{j}\left|A_{j}(t)\right|^{2}-M\right)+\sum_{\left(j_{1}, j_{2}, j_{3}\right) \in N R_{k}} \frac{e^{-i \frac{k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{3}}{4 t}}}{2 \pi t} A_{j_{1}}(t) \overline{A_{j_{2}}(t)} A_{j_{3}}(t)$.
We want to obtain the existence of $A_{k}(t)=\alpha_{k}+R_{k}(t)$, with
$\left.\left.\left\{R_{k}\right\} \in X^{\gamma}:=\left\{\left\{f_{k}\right\} \in \mathcal{C}\left([0, T] ;\left.\right|^{2, s}\right) \cap C^{1}(] 0, T\right] ; I^{\infty, \tilde{s}}\right),\left\|\left\{f_{k}\right\}\right\|_{x^{\gamma}}<\infty\right\}$,
where $\left\|\left\{f_{k}\right\}\right\|_{x^{\gamma}}:=\sup _{0 \leq t<T} t^{-\gamma}\left\|\left\{f_{k}(t)\right\}\right\|_{\mid 2, s}+t\left\|\left\{\partial_{t} f_{k}(t)\right\}\right\|_{\mid \infty, \tilde{s}}$.
We shall prove that the operator $\Phi:\left\{R_{k}\right\} \rightarrow\left\{\Phi_{k}\left(\left\{R_{j}\right\}\right)\right\}$ defined as

$$
\begin{gathered}
\Phi_{k}\left(\left\{R_{j}\right\}\right)(t):=i \int_{0}^{t} \frac{\alpha_{k}+R_{k}(\tau)}{2 \pi \tau}\left(\sum_{j}\left|\left(\alpha_{j}+R_{j}(\tau)\right)\right|^{2}-\left|\alpha_{j}\right|^{2}\right) d \tau \\
+i \int_{0}^{t} \sum_{\left(j_{1}, j_{2}, j_{3}\right) \in N R_{k}} \frac{e^{-i \frac{k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{2}}{4 \tau}}}{2 \pi \tau}\left(\alpha_{j_{1}}+R_{j_{1}}(\tau)\right) \overline{\left(\alpha_{j_{2}}+R_{j_{2}}(\tau)\right)}\left(\alpha_{j_{3}}+R_{j_{3}}(\tau)\right) d \tau
\end{gathered}
$$

is a contraction in X^{γ} on a small ball of radius δ, to be chosen later.

The proof: the resonant part

The resonant part Φ_{k}^{R} we perform Cauchy-Schwarz in the summation in j, and then in time:

$$
\begin{aligned}
&\left|\Phi_{k}^{R}\left(\left\{R_{j}\right\}\right)(t)\right|\left.\leq\left. C \int_{0}^{t} \frac{\left|\alpha_{k}\right|+\left|R_{k}(\tau)\right|}{\tau}\left(\sum_{j}\left|\alpha_{j}\right|\left|R_{j}(\tau)\right|+\sum_{j} \mid R_{j}(\tau)\right)\right|^{2}\right) d \tau \\
& \leq C \int_{0}^{t} \frac{\left|\alpha_{k}\right|+\left|R_{k}(\tau)\right|}{\tau}\left(\epsilon_{0} \delta \tau^{\gamma}+\delta^{2} \tau^{2 \gamma}\right) d \tau \\
& \leq C\left|\alpha_{k}\right|\left(\epsilon_{0} \delta t^{\gamma}+\delta^{2} t^{2 \gamma}\right)+C\left(\int_{0}^{t} \frac{\left|R_{k}(\tau)\right|^{2}}{\tau^{1+\gamma}}\left(\epsilon_{0}^{2} \delta^{2} \tau^{2 \gamma}+\delta^{4} \tau^{4 \gamma}\right) d \tau\right)^{\frac{1}{2}} t^{\frac{\gamma}{2}}
\end{aligned}
$$

Then

$$
\begin{gathered}
\left\|\Phi^{R}\left(\left\{R_{k}\right\}\right)(t)\right\|_{p, s}^{2}:=\sum_{k}(1+|k|)^{2 s}\left|\Phi_{k}^{R}\left(\left\{R_{j}\right\}\right)\right|^{2} \\
\leq C \epsilon_{0}^{2}\left(\epsilon_{0}^{2} \delta^{2} t^{2 \gamma}+\delta^{4} t^{4 \gamma}\right)+C \int_{0}^{t} \frac{\sum_{k}(1+|k|)^{2 s}\left|R_{k}(\tau)\right|^{2}}{\tau^{1+\gamma}}\left(\epsilon_{0}^{2} \delta^{2} \tau^{2 \gamma}+\delta^{4} \tau^{4 \gamma}\right) d \tau t^{\gamma} \\
\leq C \delta^{2} t^{2 \gamma}\left(\epsilon_{0}^{4}+\epsilon_{0}^{2} \delta^{2} t^{2 \gamma}+\delta^{4} t^{4 \gamma}\right) \leq C \delta^{2} t^{2 \gamma}\left(\epsilon_{0}^{2}+\delta^{2} t^{2 \gamma}\right)^{2} \leq \frac{\delta^{2} t^{2 \gamma}}{10} .
\end{gathered}
$$

The $\left\|\partial_{t} \Phi^{R}\left(\left\{R_{k}\right\}(t)\right)\right\|_{l_{\infty, 5}}^{2}$ is treated similarly, by using $l^{2, s} \subset l^{2, \tilde{s}} \subset l^{\infty, \tilde{s}}$.

On the non-resonant part operator $\Phi^{N R}$ we shall perform an integration by parts to get advantage of the non-resonant phase (without the phase gain we have an issue for the discrete summations ; this is the only reason of adding the derivative in time in the definition of the space X^{γ})

For instance the boundary term $\Phi_{k}^{N R, B}\left(\left\{R_{j}\right\}\right)(t)$ for the IBP is

$$
t \sum_{\left(j_{1}, j_{2}, j_{3}\right) \in N R_{k}} \frac{e^{-i \frac{k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{2}}{4 t}}}{\pi\left(k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{2}\right)}\left(\alpha_{j_{1}}+R_{j_{1}}(t)\right) \overline{\left(\alpha_{j_{2}}+R_{j_{2}}(t)\right)}\left(\alpha_{j_{3}}+R_{j_{3}}(t)\right) .
$$

On the non-resonant set $1 \leq\left|k^{2}-j_{1}^{2}+j_{2}^{2}-j_{3}^{2}\right|=2\left|j_{1}-j_{2}\right|\left|k-j_{1}\right|$, so

$$
\left|\Phi_{k}^{N R, B}\left(\left\{R_{j}\right\}\right)(t)\right| \leq C t \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{\left|\left(\alpha_{j_{1}}+R_{j_{1}}(t)\right)\left(\alpha_{j_{2}}+R_{j_{2}}(t)\right)\left(\alpha_{j_{3}}+R_{j_{3}}(t)\right)\right|}{\left(1+\left|j_{1}-j_{2}\right|\right)\left(1+\left|k-j_{1}\right|\right)} .
$$

By Cauchy-Schwarz in the summation in j_{1}, j_{2} we get

$$
\begin{aligned}
& \left|\Phi^{N R, B}\left(\left\{R_{k}\right\}\right)(t)\right|^{2} \leq C t^{2} \sum_{j_{1}, j_{2} \in \mathbb{Z}}\left(1+\left|j_{1}\right|\right)^{2 s}\left(1+\left|j_{2}\right|\right)^{2 s}\left|\left(\alpha_{j_{1}}+R_{j_{1}}(t)\right)\left(\alpha_{j_{2}}+R_{j_{2}}(t)\right)\right|^{2} \\
& \quad \times \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{\left|\alpha_{k-j_{1}+j_{2}}+R_{k-j_{1}+j_{2}}(t)\right|^{2}}{\left(1+\left|j_{1}\right|\right)^{2 s}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}\left(1+\left|k-j_{1}\right|\right)^{2}} .
\end{aligned}
$$

Therefore we control

$$
\left\|\Phi^{N R, B}\left(\left\{R_{k}\right\}\right)(t)\right\|_{p, s}^{2} \leq C t^{2}\left(\epsilon_{0}^{2}+\delta^{2} t^{2 \gamma}\right)^{3}
$$

provided that the following sum is finite
$\sum_{k, j_{1}, j_{2} \in \mathbb{Z}} \frac{(1+|k|)^{2 s}}{\left(1+\left|j_{1}\right|\right)^{2 s}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}\left(1+\left|k-j_{1}\right|\right)^{2}}$.

Example of summation estimation

Lemma

For $0<s-\frac{1}{2}<\tilde{s}$ the following sum is finite:

$$
\sum_{k, j_{1}, j_{2} \in \mathbb{Z}} \frac{(1+|k|)^{2 s}}{\left(1+\left|j_{1}\right|\right)^{2 \tilde{s}}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}\left(1+\left|k-j_{1}\right|\right)^{2}\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}}
$$

We split the summation in k into nine regions, in terms of the comparison of k with j_{1} and with $j_{1}-j_{2}$. We denote, for j_{1}, j_{2} fixed, the two series of three exhaustive regions on \mathbb{Z} :

$$
\begin{gathered}
B_{1}=\left\{|k| \leq \frac{1}{2}\left|j_{1}-j_{2}\right|\right\}, \quad B_{2}=\left\{\frac{1}{2}\left|j_{1}-j_{2}\right|<|k| \leq \frac{3}{2}\left|j_{1}-j_{2}\right|\right\}, \quad B_{3}=\left\{\frac{3}{2}\left|j_{1}-j_{2}\right|<|k|\right\}, \\
C_{1}=\left\{|k| \leq \frac{1}{2}\left|j_{1}\right|\right\}, \quad C_{2}=\left\{\frac{1}{2}\left|j_{1}\right|<|k| \leq \frac{3}{2}\left|j_{1}\right|\right\}, \quad C_{3}=\left\{\frac{3}{2}\left|j_{1}\right|<|k|\right\}
\end{gathered}
$$

We split the sum as follows:
$\sum_{k, j_{1}, j_{2} \in \mathbb{Z}}=\sum_{j_{1}, j_{2} \in \mathbb{Z}}\left(\sum_{k \in B_{1} \cup B_{3}}+\sum_{k \in B_{2} \cap C_{1}}+\sum_{k \in B_{2} \cap C_{2}}+\sum_{k \in \cup B_{2} \cap C_{3}}\right)$.

Example of summation estimation

On $B_{1} \cup B_{3}$ we have $\frac{(1+|k|)^{2 s}}{\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}}<C$ so, as $2 s>1$,

$$
\begin{aligned}
& \sum_{j_{1}, j_{2} \in \mathbb{Z}, k \in B_{1} \cup B_{3}} \frac{(1+|k|)^{2 s}}{\left(1+\left|j_{1}\right|\right)^{2 s}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}\left(1+\left|k-j_{1}\right|\right)^{2}\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}} \\
& \quad \leq C \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{1}{\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}} \sum_{k \in B_{1} \cup B_{3}} \frac{1}{\left(1+\left|k-j_{1}\right|\right)^{2}}<\infty .
\end{aligned}
$$

On C_{1} we have $|k| \leq \frac{1}{2}\left|j_{1}\right|$ so, as $2 s>1$ and $2 \tilde{s}+2-2 s>1$,

$$
\begin{aligned}
& \quad \sum_{j_{1}, j_{2} \in \mathbb{Z}, k \in B_{2} \cap c_{1}} \frac{(1+|k|)^{2 s}}{\left(1+\left|j_{1}\right|\right)^{2 s}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}\left(1+\left|k-j_{1}\right|\right)^{2}\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}} \\
& \leq C \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{\left(1+\left|j_{j}\right|\right)^{2 s}}{\left(1+\left|j_{1}\right|\right)^{2 s+2}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}} \sum_{k \in B_{2} \cap C_{1}} \frac{1}{\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}} \\
& \quad \leq C \sum_{j_{1} \in \mathbb{Z}} \frac{1}{\left(1+\left|j_{1}\right|\right)^{2 s+2-2 s}} \sum_{j_{2} \in \mathbb{Z}} \frac{1}{\left(1+\left|j_{1}-j_{2}\right|\right)^{2}}<\infty .
\end{aligned}
$$

On $B_{2} \cap C_{2}$ we have $|k| \leq \frac{3}{2}\left|j_{1}\right|$ and $\left|j_{1}\right|<3\left|j_{1}-j_{2}\right|$ so

$$
\begin{aligned}
& \sum_{j_{1}, j_{2} \in \mathbb{Z}, k \in B_{2} \cap C_{2}} \frac{(1+|k|)^{2 s}}{\left(1+\left|j_{1}\right|\right)^{2 s 5}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}\left(1+\left|k-j_{1}\right|\right)^{2}\left(1+\left|k-j_{1}+j_{j}\right|\right)^{2 s}} \\
& \leq C \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{\left(1+\left|j_{1}\right|\right)^{2 s 5}\left(1+\left|j_{1}\right|\right)^{2 s}}{\left(1+\left|j_{1}-j_{2}\right|\right)^{2}} \sum_{k \in B_{2} \cap C_{2}} \frac{1}{\left(1+\left|k-j_{1}\right|\right)^{2}} \\
& \leq C \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{\left.1+\left|j_{j}\right|\right)^{2 s+2-2 s}\left(1+\left|j_{2}\right|\right)^{2 s}}{}<\infty .
\end{aligned}
$$

On $B_{2} \cap C_{3}$ we have $\frac{3}{2}\left|j_{1}\right|<|k| \leq \frac{3}{2}\left|j_{1}-j_{2}\right| \leq \frac{3}{2}\left(\left|j_{1}\right|+\left|j_{2}\right|\right)$:

$$
\begin{aligned}
& \sum_{j_{1}, j_{2} \in \mathbb{Z}, k \in B_{2} \cap C_{3}} \frac{(1+|k|)^{2 s}}{\left(1+\left|j_{1}\right|\right)^{2 s}\left(1+\left|j_{2}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}\left(1+\left|k-j_{1}\right|\right)^{2}\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}} \\
\leq & C \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{\left(1+\left|j_{1}\right|\right)^{2 s}+\left(1+\left|j_{j}\right|\right)^{2 s}}{(1+\mid)^{2 s+2}\left(1+\left|j_{j}\right|\right)^{2 s}\left(1+\left|j_{1}-j_{2}\right|\right)^{2}} \sum_{k \in B_{2} \cap C_{3}} \frac{1}{\left(1+\left|k-j_{1}+j_{2}\right|\right)^{2 s}} \\
\leq & C \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{1}{\left(1+\left|j_{1}\right|\right)^{2 s+2-2 s}\left(1+\left|j_{j}\right|\right)^{2 s}}+C \sum_{j_{1}, j_{2} \in \mathbb{Z}} \frac{1}{\left(1+\left|j_{1}\right|\right)^{2 s+2}\left(1+\left|j_{1}-j_{j}\right|\right)^{2}}<\infty .
\end{aligned}
$$

A Talbot effect

The linear and nonlinear Schrödinger evolution on the torus of functions with bounded variation was proved to present Talbot effect features (Berry, Klein; Oskolkov; Kapitanski, Rodnianski; Taylor ; Erdogan, Tzirakis '96-'13).

Here we place ourselves in a more singular setting on \mathbb{R}.
A consequence of the Theorem is that the solution $u(t)$ of the modified cubic NLS with initial data $u_{0}=\sum_{k \in \mathbb{Z}} \alpha_{k} \delta_{k}$ such that $\left\|\left\{\alpha_{k}\right\}\right\|_{r_{2, s}} \leq \epsilon_{0}$ behaves for small times like the linear evolution $e^{i t \Delta} u_{0}$.
We compute first the linear evolution $e^{i t \Delta} u_{0}$ which display a Talbot effect.

A Talbot effect for linear evolutions of several Diracs

Proposition

Let $t=\frac{1}{2 \pi} \frac{p}{q}$ with q odd. Let u_{0} be such that \hat{u}_{0} is 2π-periodic and \hat{u}_{0} located modulo 2π only in a neighborhood of zero of radius less than $\frac{\pi}{p}$. For a given $x \in \mathbb{R}$ we denote $I_{x} \in \mathbb{Z}$ and $0 \leq m_{x}<q$ the unique numbers such that

$$
x-I_{x}-\frac{m_{x}}{q} \in\left[0, \frac{1}{q}\right),
$$

and we define

$$
\xi_{x}:=\frac{\pi q}{p}\left(x-I_{x}-\frac{m_{x}}{q}\right) \in\left[0, \frac{\pi}{p}\right) .
$$

Then for some $\theta_{m_{x}} \in \mathbb{R}$

$$
e^{i t \Delta} u_{0}(x)=\frac{1}{\sqrt{q}} \hat{u}_{0}\left(\xi_{x}\right) e^{-i t \xi_{x}^{2}+i x \xi_{x}+i \theta_{m_{x}}}
$$

The data $u_{0}=\sum_{k \in \mathbb{Z}} \delta_{k}$ enters the above setting of the 2π-periodicity in Fourier and localization in Fourier, as $\hat{u_{0}}=u_{0}=\sum_{k \in \mathbb{Z}} \delta_{k}$. Therefore $e^{i t \Delta} u_{0}(x)=0$ for $x \notin \mathbb{Z}+\frac{\mathbb{Z}}{q}$, and is a Dirac mass otherwise, which is a Talbot effect. This kind of data does not enter our nonlinear framework.

A Talbot effect for nonlinear evolutions of several Diracs

If moreover \hat{u}_{0} is located modulo 2π only in a neighborhood of zero of radius less than $\eta \frac{\pi}{p}$ with $0<\eta<1$, then the previous linear evolution vanishes for x at distance larger than $\frac{\eta}{q}$ from $\mathbb{Z}+\frac{\mathbb{Z}}{q}$.

Proposition

Let u_{0} such that \hat{u}_{0} is a 2π-periodic, located modulo 2π only in a neighborhood of zero of radius less than $\eta \frac{\pi}{p}$ with $0<\eta<1$ and having Fourier coefficients $\left\{\alpha_{k}\right\}$ satisfying $\left\|\left\{\alpha_{k}\right\}\right\| \|_{p, s} \leq \epsilon_{0}$.
Let $u(t, x)$ be the local in time solution obtained in the Theorem.
Then for $t=\frac{1}{2 \pi} \frac{p}{q}$ with q odd and for all x at distance larger than $\frac{\eta}{q}$ from $\mathbb{Z}+\frac{\mathbb{Z}}{q}$ the function $u(t, x)$ almost vanish for small times, in the sense:

$$
u(t, x)=\sum_{k \in \mathbb{Z}} R_{k}(t) e^{i t \Delta} \delta_{k}(x),
$$

with $\left\{R_{k}\right\}$ satisfying the decay

$$
t^{-\gamma}\left\|\left\{R_{k}(t)\right\}\right\|_{\mu_{2, s}}+t\left\|\left\{\partial_{t} R_{k}(t)\right\}\right\|_{\rho, s, 5}<C .
$$

A model for one vortex filament dynamics

In a 3D homogeneous incompressible inviscid fluid a vortex filament is a a vortex tube with infinitesimal cross section: the vorticity is a singular measure supported along a curve in \mathbb{R}^{3} that moves with the flow.

The binormal flow is the oldest, simpler and richer model for one vortex filament dynamics (Da Rios 1906, Arms-Hama 1965 using a truncated Biot-Savart's law). It imposes the evolution in time of a \mathbb{R}^{3}-curve $\chi(t)$ by

Frenet's system
(direct comnutations) \mid (... Madelung ${ }^{-1}$)

The filament function $u(t, s)=c(t, s) e^{i \int_{0}^{s} \tau(t, s) d s}$ satisfies the 1D NLS

with $A(t)$ in terms of curvature and torsion $(c, \tau)(t, 0)$.

A model for one vortex filament dynamics

In a 3D homogeneous incompressible inviscid fluid a vortex filament is a a vortex tube with infinitesimal cross section: the vorticity is a singular measure supported along a curve in \mathbb{R}^{3} that moves with the flow.

The binormal flow is the oldest, simpler and richer model for one vortex filament dynamics (Da Rios 1906, Arms-Hama 1965 using a truncated Biot-Savart's law). It imposes the evolution in time of a \mathbb{R}^{3}-curve $\chi(t)$ by

$$
\chi_{t}=\chi_{s} \wedge \chi_{s s}=c b
$$

Frenet's system
(direct computations)

The filament function $u(t, s)=c(t, s) e^{i \int_{0}^{s} \tau(t, s) d s}$ satisfies the 1D NLS

A model for one vortex filament dynamics

In a 3D homogeneous incompressible inviscid fluid a vortex filament is a a vortex tube with infinitesimal cross section: the vorticity is a singular measure supported along a curve in \mathbb{R}^{3} that moves with the flow.

The binormal flow is the oldest, simpler and richer model for one vortex filament dynamics (Da Rios 1906, Arms-Hama 1965 using a truncated Biot-Savart's law). It imposes the evolution in time of a \mathbb{R}^{3}-curve $\chi(t)$ by

$$
\chi_{t}=\chi_{s} \wedge \chi_{s s}=c b
$$

The filament function $u(t, s)=c(t, s) e^{i \int_{0}^{s} \tau(t, s) d s}$ satisfies the 1D NLS

$$
i u_{t}+u_{s s}+\frac{1}{2}\left(|u|^{2}-A(t)\right) u=0
$$

with $A(t)$ in terms of curvature and torsion $(c, \tau)(t, 0)$.

Binormal flow results

Conversely, for $A(t)$ and u s.t. $i u_{t}+u_{s s}+\frac{1}{2}\left(|u|^{2}-A(t)\right) u=0$, one can construct a solution of the binormal flow.
Examples:

- Lines: $u(t, s)=0, A(t)=0$.
- Circles: $u(t, s)=1, A(t)=-1$.
- Helices: $u(t, s)=e^{-i t N^{2}} e^{i N s}, A(t)=-1$.
- Travelling waves: $u(t, s)=e^{-i t N^{2}} e^{i N s} \frac{1}{2 \sqrt{2}} \frac{1}{\cosh (s-2 N t)}, A(t)=-1$, (Hasimoto 72, Hopfinger-Browand 81).
- Self-similar solutions $u(t, s)=a \frac{e^{i x^{2}} 4}{\sqrt{t}}$ for $A(t)=\frac{|a|^{2}}{t}$ and perturbations (physicists 70-80, Guttierez-Rivas-Vega 03, Guttierez-Vega 04, Banica-Vega 08-15).
$\chi(0)$ admits a corner at $x=0 \rightsquigarrow u_{0}$ presents a Dirac mass at $x=0$.

Local well-posedness for (c, τ) in Sobolev spaces (Hasimoto 72, Nishiyama-Tani 94-97, Koiso 97-08), for currents for a weak formulation, with analysis at the level of the frame (Jerrard-Smets 11), for curves with a corner and curvature in weighted space (B.-Vega 15).

Binormal flow results

Conversely, for $A(t)$ and u s.t. $i u_{t}+u_{s s}+\frac{1}{2}\left(|u|^{2}-A(t)\right) u=0$, one can construct a solution of the binormal flow.
Examples:

- Lines: $u(t, s)=0, A(t)=0$.
- Circles: $u(t, s)=1, A(t)=-1$.
- Helices: $u(t, s)=e^{-i t N^{2}} e^{i N s}, A(t)=-1$.
- Travelling waves: $u(t, s)=e^{-i t N^{2}} e^{i N s} \frac{1}{2 \sqrt{2}} \frac{1}{\cosh (s-2 N t)}, A(t)=-1$, (Hasimoto 72, Hopfinger-Browand 81).
- Self-similar solutions $u(t, s)=a \frac{e^{i \frac{x^{2}}{4 t}}}{\sqrt{t}}$ for $A(t)=\frac{|a|^{2}}{t}$ and perturbations (physicists 70-80, Guttierez-Rivas-Vega 03, Guttierez-Vega 04, Banica-Vega 08-15). $\chi(0)$ admits a corner at $x=0 \rightsquigarrow u_{0}$ presents a Dirac mass at $x=0$.

Local well-posedness for (c, τ) in Sobolev spaces (Hasimoto 72, Nishiyama-Tani 94-97, Koiso 97-08), for currents for a weak formulation, with analysis at the level of the frame (Jerrard-Smets 11), for curves with a corner and curvature in weighted space (B.-Vega 15).

Corners interaction through the binormal flow

- A non-closed curve with one corner and curvature in weighted space smoothens instantaneously is an oscillating way (B.-Vega 15).
This is in link with the Kelvin waves observed in vortex reconnections.
- A planar regular polygon with M sides is expected to evolve through the binormal flow to skew polygons with $M q$ sides at times of type $\frac{p}{q}$ (numerical simulations Grinstein-De Vore 96, Jerrard-Smets 15 and integration of the Frenet frame at rational times De la Hoz-Vega 15).
At infinitesimal times evidence is given for the evolution to be the superposition of the evolutions of each initial corner (De la Hoz-Vega 17).
- Here the framework is of a broken line, for instance with two corners. The Theorem says that the curve gets through the binormal flow instantaneously smooth. Moreover, for infinitesimal times the evolution is as a superposition of the evolutions of each initial corner.
The smoothening is in an oscillating way: the Proposition insures that at times of type $\frac{p}{q}$ the curvature of $\chi(t)$ displays concentrations near the locations x such that $x q \in \mathbb{Z}$, and almost straight segments are between.

