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Introduction - Shape from Shading (SfS) Problem

Problem:
We want to obtain the 3D shape of an object starting from its
image

Photo Unknown surface
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Introduction - Shape from Shading (SfS) Problem

The SfS problem is described by the following irradiance
equation:

R(N(x)) = I(x) (1)
where

R(N(x)) is the reflectance function;

N(x) is the unit normal to the surface at point (x, u(x));

I(x) is the greylevel measured in the image at point x.

I : Ω→ [0, 1], with Ω compact domain (Ω ⊂ R2 open subset).

S. Tozza - SAPIENZA, Università di Roma A unified approach to SfS models for non-Lambertian surfaces



Introduction - Shape from Shading (SfS) Problem

Assumptions:

1 One light source located at infinity in the direction of ω;

2 no self-reflections on the surface;

3 the light source is sufficiently far from the surface so
perspective deformations are neglected;

4 the diffuse and specular albedos γD(x) and γS(x) are
known (for simplicity we put γD(x) = γS(x) = 1);
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SfS Problem: general unique formulation

As proposed in [T., 2014], it is useful to rewrite (1) as

I(x) = kAIA + kDID(x) + kS IS(x)

where

kA, kD, and kS (with kA + kD + kS = 1): ratio of ambient,
diffuse, and specular reflection;
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SfS Problem: general unique formulation

As proposed in [T., 2014], it is useful to rewrite (1) as

I(x) = kAIA + kDID(x) + kS IS(x)

where

kA, kD, and kS (with kA + kD + kS = 1): ratio of ambient,
diffuse, and specular reflection;

In the whole talk we neglect the contribution of the ambient
component (kA = 0).

S. Tozza - SAPIENZA, Università di Roma A unified approach to SfS models for non-Lambertian surfaces



Lambertian reflectance model (L–model)

Idea: The surface is Lambertian, i.e. the intensity reflected by
a point of the surface is equal from all points of view.

Remark: This is a purely diffuse model → IS doesn’t exist
⇒ I(x) ≡ ID(x) (kD ≡ 1)

Goal: Finding u : Ω→ R s. t. satisfy the following equation:

I(x) = N(x) · ω, ∀ x ∈ Ω (2)

where
N(x) = n(x)

|n(x)| = 1√
1+|∇u(x)|2

(−∇u(x), 1)

ω = (ω1, ω2, ω3) = (ω̃, ω3) (general light direction)
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Lambertian PDE [Falcone-Sagona-Seghini, 2003]

Hamilton-Jacobi equation (HJE) associated to (2):

I(x)
√

1 + |∇u(x)|2 + ω̃ ·∇u(x)− ω3 = 0, in Ω.

By using the exponential transform µv(x) = 1− e−µu(x) we
arrive to the following problem in new variable v

Fixed point formµv(x) = min
a∈∂B3

{bL(x, a) · ∇v(x) + f L(x, a, v(x))}, for x ∈ Ω,

v(x) = 0, for x ∈ ∂Ω,

where

(bL, f L) =

(
I(x)a1,2 − ω̃

ω3
,
−I(x)a3

ω3
(1− µv(x)) + 1

)
,

and B3 is the unit ball in R3.
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Oren-Nayar reflectance model (ON–model)
Idea: Representing a rough surface as an aggregation of
V-shaped cavities, each with Lambertian reflectance properties.

V-cavity

facet

dA

(a) Facet model for surface
patch dA consisting of many V-
shaped Lambertian cavities.

Surface

normal

Camera:

reflected light (I)

Point light source:

incident light (Li)

φr

−φi

θrθi

Reference direction on the surface

dA

(b) Diffuse reflectance for SfS with Oren-Nayar.

Figure: Sketch of the Oren-Nayar surface reflection model.

Remark:
This is a purely diffuse model → IS doesn’t exist
⇒ I(x) ≡ ID(x) (kD ≡ 1)
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Oren-Nayar reflectance model

General Brightness equation [Oren-Nayar, 1995]:

I(x)=cos(θi) (A+B sin(α) tan(β) max[0, cos(ϕi−ϕr )])

where
A = 1− 0.5σ2 (σ2 + 0.33)

−1; B = 0.45σ2 (σ2 + 0.09)
−1;

σ: roughtness parameter of the surface;
θi : angle between N and ω;
θr : angle between N and viewer direction V;
α = max [θi , θr ]; β = min [θi , θr ];
ϕi : angle between the projection of ω and the x1 axis onto
the (x1, x2)-plane;
ϕr: angle between the projection of V and the x1 axis.
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Oren-Nayar reflectance model

Brightness equation in the case ω ≡ V

I(x) = cos(θ)
(
A+B sin(θ)2 cos(θ)−1

)
where θ := θi = θr = α = β.

Dirichlet problem associated to the brightness equation:


(I(x)− B)(
√

1 + |∇u|2) + A(ω̃ · ∇u − ω3)

+B (−ω̃·∇u+ω3)2√
1+|∇u|2

= 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(3)

Remark:
When σ = 0 the ON–model brings back to the L–model.
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Oren-Nayar PDE [T.-Falcone, 2014]
Exponential transform µv(x) = 1− e−µu(x) to write (3) as

µv(x) + max

a∈∂B3
{−bON(x, a) · ∇v(x) + f ON(x, z , a, v(x))} = 1,

x ∈ Ω,
v(x) = 0, x ∈ ∂Ω,

where

bON(x, a) =
1

Aω3
(c(x, z)a1 − Aω1, c(x, z)a2 − Aω2) ,

f ON(x, z , a, v(x)) =
c(x, z)a3

Aω3
(1− µv(x)),

c(x, z) = I(x)− B + B
(
∇S(x, z)

|∇S(x, z)|
· ω
)2

with
∇S(x, z) = (−∇u(x), 1).
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Phong reflectance model (PH–model)

General Brightness equation [B.T. Phong, 1975]:

I(x) = kD(cos(θi)) + kS(cos(θs))α

where

θi : angle between N and ω.

θs : angle between reflected light direction R and V.
0 ≤ θs ≤ π

2 because for greater angles the viewer does not
perceive the light reflected specularly;

α: models the specular reflected light for each material;

N and R are unitary and coplanar.
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Phong reflectance model

Fixing α = 1, the PH–brightness equation becomes

HJE in case V = (0, 0, 1) and α = 1:

I(x)(1 + |∇u(x)|2)−kD(−∇u(x) · ω + ω3)(
√

1 + |∇u(x)|2)

−kS (−2ω̃ · ∇u(x) + ω3(1− |∇u(x)|2)) = 0,
(4)

Remark:
The cosine in the specular term is usually replaced by zero if
R(x) · V < 0 (and in that case we get back to the L–model).
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Phong PDE [T.-Falcone, 2014 submitted]
Exponential transform µv(x) = 1− e−µu(x) to write (4) as

µv(x) + max

a∈∂B3
{−bPH(x, a) · ∇v(x) + f PH(x, z , a, v(x))} = 1,

x ∈ Ω,
v(x) = 0, x ∈ ∂Ω,

where

bPH(x, a) =
1

Q(x, z)
(c(x)a1 − kDω1, c(x)a2 − kDω2) ,

f PH(x, z , a, v(x)) =
c(x)a3

Q(x, z)
(1− µv(x)),

Q(x, z) = 2kS

(
∇S(x, z)

|∇S(x, z)|
· ω
)

+ kDω3,

c(x) = I(x) + ω3kS ,
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Semi-Lagrangian Approximation

Fixed point algorithm
Given an initial guess W (0) iterate on the grid G

W (n) = T [W (n−1)] n = 1, 2, 3, ...

until max
xi∈G
|W (n)(xi)−W (n−1)(xi)| < η

We can write in a unique way the three different operators as

T M
i (W ) = min

a∈∂B3
{e−µhw(xi + hbM(xi , a))− τPMa3(1− µw(xi))}+ τ

where M = L, ON or PH and PM is, respectively,

PL =
I(xi)

ω3
, PON =

c(xi , z)

Aω3
, PPH =

c(xi)

Q(xi , z)
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Operators’ properties [T., 2014]

The following properties are true:

1. Let PMa3 ≤ 1, with a3 ≡

arg min
a∈∂B3

{e−µhw(xi + hbM(xi , a))− τPMa3(1− µw(xi))}.
Then 0 ≤ W ≤ 1

µ
implies 0 ≤ T M(W ) ≤ 1

µ

2. v ≤ u implies T M(v) ≤ T M(u)

3. T M is a contraction mapping in [0, 1/µ)G if PMa3 < µ
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Test 1: Synthetic Vase

in out vertical
view

oblique
view

Lambertian

ON
(σ = 0.4)

Phong
(kS = 0.3
kD = 0.7)
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Test 1: Synthetic Vase

Model σ kS L1(I) L2(I) L∞(I) L1(S) L2(S) L∞(S)

LAM 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569
ON 0 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569
ON 0.4 0.0054 0.0316 0.6118 0.0263 0.0282 0.0562
ON 0.6 0.0049 0.0277 0.5373 0.0259 0.0277 0.0553
ON 1 0.0044 0.0229 0.4510 0.0254 0.0274 0.0547
PHO 0 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569
PHO 0.3 0.0068 0.0396 0.8078 0.0264 0.0283 0.0561
PHO 0.6 0.0073 0.0411 0.8824 0.0247 0.0265 0.0526
PHO 0.9 0.0077 0.0373 0.9569 0.0141 0.0164 0.0432
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Test 2: Real Horse

in out vertical
view

oblique
view

Lambertian

ON
(σ = 1)

Phong
(kS = 0.7
kD = 0.3)

S. Tozza - SAPIENZA, Università di Roma A unified approach to SfS models for non-Lambertian surfaces



Test 2: Real Horse

Model σ kS L1(I) L2(I) L∞(I)

LAM 0.0333 0.0580 0.6941
ON 0 0.0333 0.0580 0.6941
ON 0.4 0.0338 0.0587 0.6980
ON 0.8 0.0345 0.0598 0.6941
ON 1 0.0347 0.0600 0.6941
PHO 0 0.0334 0.0584 0.6941
PHO 0.4 0.0345 0.0599 0.6902
PHO 0.7 0.0359 0.0638 0.6941
PHO 1 0.0807 0.1057 0.8235
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Test 3: Who is he?

in mask vertical
view

Lambertian

ON
(σ = 0.2)

Phong
(kS = 0.8
kD = 0.2)
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Test 3: Who is he?

Model σ kS L1(I) L2(I) L∞(I)

LAM 0.0333 0.0539 0.5608
ON 0 0.0333 0.0539 0.5608
ON 0.2 0.0727 0.0841 0.5765
ON 0.4 0.1534 0.1615 0.6196
ON 0.8 0.2675 0.2836 0.5804
ON 1 0.2924 0.3131 0.5647
PHO 0 0.0333 0.0539 0.5608
PHO 0.2 0.0368 0.0557 0.5529
PHO 0.4 0.0401 0.0581 0.5569
PHO 0.8 0.0457 0.0635 0.5843
PHO 1 0.0498 0.0681 0.6000
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Conclusions

A new unique mathematical formulation for different
reflectance models

The ON–model is more general and incorporates the
L–model

The PH–model recognizes better the silhouette so it
seems to be a more realistic model;

The choice of parameters is crucial for accuracy;

The choice of the subject is crucial too! (See Test 3)
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Work in progress/Future Perspective

1 Combining specular-reflection effects with the more
complex and general Oren-Nayar diffuse model in order to
arrive to the “best” and the most general model;

2 Photometric stereo: using more than one input image (as
already done for the L–model [Mecca-T., 2013]);

3 Parallel algorithms

4 Acceleration methods
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