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Introduction

Time dependent HJ equation

We are interested in computing the approximation of viscosity
solution of Hamilton-Jacobi (HJ) equation:{

∂tv + H(x ,∇v) = 0, (t , x) ∈ (0,T )× Rd ,

v(0, x) = v0(x), x ∈ Rd .
(1)

(A1) H(x ,p) is continuous in all its variables.
(A2) v0(x) is Lipschitz continuous.

We aim to propose new higher order schemes, and prove their
properties of consistency, stability and convergence.
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Several schemes have been developed:
Finite difference schemes (Crandall-Lions(84), Sethian(88),
Osher/Shu(91), Tadmor/Lin(00)).
Semi-Lagrangian schemes (Capuzzo Dolcetta(83,89,90)),
(Falcone(94,09)/ Ferretti-Carlini(03,04,13)).
Discontinuous Galerkin approach (Hu/Shu(99), Li/Shu(05),
Bokanowski/Cheng/Shu(11,13,14), Cockburn(00).
Finite Volume schemes (Kossioris/Makridakis/Souganidis(99),
Kurganov/Tadmor(00)), Abgrall(00,01).
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Monotone scheme

• Discretization: Let ∆t > 0 denotes the time steps and ∆x > 0 a mesh
step, tn = n∆t , n ∈ [0, . . . ,N], N ∈ N and xj = j∆x , j ∈ Z. For the given
function u(x).

Finite difference scheme (FD) Crandall-Lions (84) :

Let SM be a monotone FD scheme

un+1(xj ) ≡ SM (un
j ) := un

j −∆t hM (xj ,D−un
j ,D

+un
j ) (2)

with D±un
j := ±

un
j±1 − un

j

∆x
.

Assumptions on hM :
(A3) hM is Lipschitz continuos function.
(A4) (Consistency) ∀x , ∀u, hM (x , v , v) = H(x , v).
(A5) (Monotonicity) for any functions u, v ,

u ≤ v =⇒ SM (u) ≤ SM (v).
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Consistency error estimate: For any v ∈ C2([0,T ]× R), there exists a
constant CM ≥ 0 independent of ∆x such that

|ESM (v)(t , x)| ≤ CM

(
∆t‖∂ttv‖∞ + ∆x‖∂xx v‖∞

)
. (3)

High Order scheme

Let SA denote a high order (possibly unstable) scheme:

SA(un)(x) := un(x)−∆thA(x ,Dk,−u, . . . ,D−un(x),D+un(x), . . . ,Dk,+un(x))
(4)

High order consistency : There exists k ≥ 2,and 1 < ` < k , for any
v = v(t , x) of class C`+1, there exists CA,` ≥ 0,

|ESA (v)(t , x)| ≤ CA,`

(
∆t`‖∂`+1

t v‖∞ + ∆x`‖∂`+1
x v‖∞

)
. (5)
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Filtered scheme

It is known (Godunov’s Theorem) that a monotone scheme can be at
most of first order. Therefore it is needed to look for non-monotone
schemes.

The difficulty is then to combine non-monotony with a convergence to
viscosity solution of (1), and also obtain error estimates.

This is the core of the present work . In our approach we adapt an
idea of Froese and Oberman (13) (for second order HJ equations) to
treat mainly the case of evolutive first order PDEs.
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filtered scheme:
The scheme we propose is then

un+1
j ≡ SF (un

i ) := SM(un
j ) + ε∆tF

(
SA(un

j )−SM (un
j )

ε∆t

)
(6)

with a proper initialization of u0
i .

•Where ε = ε(∆t ,∆x) > 0 is the switching parameter that will satisfy

lim
(∆t,∆x)→0

ε = 0.

More precision on the choice of ε will be given later on.
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Filtered function
Instead of the Froese and Oberman’s filter function i.e.
F (x) = sign(x) max(1−

∣∣|x | − 1
∣∣, 0), we used new filter function i.e.

F (x) := x 1|x|≤1:

Froese and Oberman’s filter function and new filter function.

• To keep high order when |hA − hM | ≤ ε i.e.
∣∣∣∣SA(un

j )−SM (un
j )

ε∆t

∣∣∣∣ ≤ 1⇒ SF ≡ SA

• Otherwise F = 0 and SF = SM , i.e., the monotone scheme itself.
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Consistency error estimate

For any regular function v = v(t , x), for all x ∈ R and t ∈ [0,T ], we
have

|ESF (v)(t , x)| =

∣∣∣∣v(t + ∆t , x)− SF (v(t , .))(x)

∆t
−
(
vt + H(x , vx ))

∣∣∣∣
≤ CM

(
∆t‖∂ttv‖∞ + ∆x‖∂xxv‖∞

)
+ εC0∆t .

(7)

Definition (ε-monotonicity)

Filtered scheme is ε-monotone i.e. For any functions u, v ,

u ≤ v =⇒ S(u) ≤ S(v) + Cε∆t ,

where C is constant and ε→ 0 as ∆t → 0.
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Convergence Theorem

Theorem

Assume (A1)-(A2), and v0 bounded. We assume also that SM

satisfies (A3)-(A5), and |F | ≤ 1. Let un denote the filtered scheme (6).
Let vn

j := v(tn, xj ) where v is the exact solution of (1). Assume

0 < ε ≤ c0
√

∆x (8)

for some constant c0 > 0.
(i) The scheme un satisfies the Crandall-Lions estimate

‖un − vn‖∞ ≤ C
√

∆x , ∀ n = 0, ...,N. (9)

for some constant C independent of ∆x.
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Theorem ((Cont.))

(ii) (First order convergence for classical solutions.) If furthermore the
exact solution v belongs to C2([0,T ]× R), and ε ≤ c0∆x (instead of
(8)). Then it holds

‖un − vn‖∞ ≤ C∆x , n = 0, ...,N, (10)

for some constant C independent of ∆x.
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Theorem ((Cont.))

(iii) (Local high-order consistency.) Let N be a neighborhood of a
point (t , x) ∈ (0,T )× R. Assume that SA is a high order scheme
satisfying (A7) for some k ≥ 2. Let 1 ≤ ` ≤ k and v be a C`+1

function on N. Assume that

(CA,1 + CM )

(
‖vtt‖∞∆t + ‖vxx‖∞∆x

)
≤ ε. (11)

Then, for sufficiently small tn − t , xj − x, ∆t , ∆x, it holds

SF (vn)j = SA(vn)j

and, in particular, a local high-order consistency error for the filtered
scheme SF :

ESF (vn)j ≡ ESA (vn)j = O(∆x`)

(the consistency error ESA is defined as before).
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Tuning of the parameter ε

Bounds for ε :

Upper bound: ε ≤ C
√

∆x , with constant C > 0 (⇒ to have error
estimates and convergence ).

Lower bound: 1
2 |vxx (xi )|

∣∣∣∣∂hM (v)i
∂Dv+ − ∂hM (v)i

∂Dv−

∣∣∣∣∆x ≤ ε. (⇒ to have

high-order behavior )

⇒ Typically the choice ε := C∆x is made, for some constant C of the
order of ‖vxx‖L∞ .

Smita Sahu An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equations



Introduction
Filtered scheme
Numerical Tests

Conclusion

Eikonal equation in 1D
Example 2. {

vt + |vx | = 0, t > 0, x ∈ (−2, 2),
v(0, x) = v0(x), := −max(0, 1− x2)4, x ∈ (−2, 2),

with periodic boundary condition on (−2, 2), terminal time T = 0.3

Errors Filter ε = 5∆x CFD ENO2
M N L2 error order L2error order L2 error order
40 8 1.24E-02 1.93 2.02E-02 1.42 2.62E-02 1.49
80 16 3.05E-03 2.02 8.76E-03 1.20 8.08E-03 1.70

160 32 7.65E-04 2.00 1.04E-02 -0.24 2.52E-03 1.68
320 64 1.90E-04 2.01 1.23E-01 -3.57 7.88E-04 1.69
640 128 4.76E-05 2.00 1.03E+02 -9.70 2.47E-04 1.67

Table : L2 errors for filtered scheme, Central finite difference (CFD) scheme,
ENO (2nd order) scheme with RK2 in time.
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Initial data (left), and plots at time T = 0.3, by Central finite difference
scheme - middle - and Filtered scheme - right (M = 160 mesh points).
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1D steady equation
Example 3. (as in Abgrall [6])

{
|vx | = f (x), on (0, 1)
v(0) = v(1) = 0 f (x) := 3x2 + a, a :=

1−2x3
0

2x0−1 ,

x0 :=
3√2+2
4 3√2

.

Filter (ε = 5∆x) CFD ENO
M L∞ error order L∞error order L∞ error order

100 1.15E-03 2.25 + inf - 3.54E-02 0.99
200 2.68E-04 2.10 + inf - 1.78E-02 1.00
400 8.74E-05 1.62 + inf - 8.89E-03 1.00
800 4.20E-05 1.06 + inf - 4.45E-03 1.00

Table : L∞ Errors for filtered scheme, CFD scheme, and RK2-2nd order ENO
scheme. ⇒ Filter can stabilize an otherwise unstable scheme
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Advection with obstacle
Example 4. (as in Bokanowski et al. [9])

{
min(vt + vx , g(x)) = 0, t > 0, x ∈ [−1, 1],
u(0, x) = 0.5 + sin(πx) x ∈ [−1, 1],

with periodic boundary condition, g(x) = sin(πx), and where the terminal time T = 0.5.

Errors Filter ε = 5∆x CFD ENO2
M N L∞ error order L∞ error order L∞ error order
40 20 7.93E-03 2.03 1.63E-02 1.54 2.14E-02 1.59
80 40 1.84E-03 2.10 2.98E-02 -0.87 7.75E-03 1.46

160 80 3.92E-04 2.24 4.46E-02 1.03 1.07E-03 2.86
320 160 9.67E-05 2.02 8.02E-03 0.86 2.72E-04 1.97
640 320 2.40E-05 2.01 4.10E-03 0.97 6.92E-05 1.98

Table : Local L∞ errors for filtered scheme, Central finite difference (CFD)
scheme, ENO (second order) scheme and RK2 in time.

Smita Sahu An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equations



Introduction
Filtered scheme
Numerical Tests

Conclusion

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
t=0

 

 

 Exact
 Scheme

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
t=0.33333

 

 

 Exact
 Scheme

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
t=0.5

 

 

 Exact
 Scheme

Initial data (left), and plots at time T = 0.3 - middle and T = 0.5- right
by filtered scheme.
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Eikonal in 2D
Example 6. In this example we consider HJB equation with smooth initial data and
Ω = (−3, 3)2{

vt + |∇v | = 0, (x , y) ∈ Ω, t > 0,

v(0, x , y) = v0(x , y) = v0(x , y) := 0.5− 0.5 max(0, 1−(x−1)2−y2

1−r2
0

)4,

where |.| is the Euclidean norm and r0 = 0.5 with Drichlet boundary conditions.

Filter (ε = 20∆x) CFD ENO2
Mx = Nx N L2 error order L2 error order L2 error order

25 25 3.39E-01 - 4.54E-01 - 4.22E-01 -
50 50 1.14E-01 1.57 2.11E-01 1.11 1.57E-01 1.42
100 100 2.77E-02 2.04 8.89E-02 1.24 5.12E-02 1.62
200 200 6.81E-03 2.02 3.99E-02 1.16 .48E-02 1.80
400 400 1.70E-03 2.00 1.87E-02 1.10 4.34E-03 1.77

Table : L2 errors for filtered scheme, Central finite difference (CFD) scheme,
ENO (second order) scheme and RK2 in time.

Smita Sahu An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equations



Introduction
Filtered scheme
Numerical Tests

Conclusion

−3 −2 −1 0 1 2 3−2

0

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

 t=0

y

x

y

 t=0

 

 

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Numerical front

 exact front

−3 −2 −1 0 1 2 3−2

0

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

 t=0.6

y
x

y

 t=0.6

 

 

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Numerical front

 exact front

Smita Sahu An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equations



Introduction
Filtered scheme
Numerical Tests

Conclusion

Eikonal in 2D
Example 7. Ω = (−3, 3)2{

v(0, x , y) = v0(x , y) = 0.5− 0.5 max
(

max(0, 1−(x−1)2−y2

1−r2
0

)4, max(0, 1−(x+1)2−y2

1−r2
0

)4
)
.

where |.| is the Euclidean norm and A± := (±1, 0) with Drichlet boundary conditions and
CFL condition µ = 0.37

Filter (ε = 20∆x) CFD ENO2
Mx = Nx N L2 error order L2 error order L2 error order

25 25 5.39E-01 - 3.73E-01 - 4.22E-01 -
50 50 1.82E-01 1.57 1.42E-01 1.39 1.57E-01 1.42
100 100 3.72E-02 2.29 4.72E-02 1.59 5.12E-02 1.62
200 200 9.36E-03 1.99 1.66E-02 1.51 1.48E-02 1.80
400 400 2.36E-03 1.99 7.23E-03 1.20 4.34E-03 1.77

Table : L2 errors for filtered scheme, Central finite difference (CFD) scheme,
ENO (second order) scheme and RK2 in time.
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Initial data (left), and plots at time T = π/2„ by filtered scheme
(M = 50 mesh points).
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Conclusion

• A general and simple presentation of filtered scheme and easy to
implement.
• Convergence of filtered scheme is confirmed. Error estimate is of
O(
√

∆x) and numerically observed that O(∆x2) behavior in smooth
regions.
• Remark : We propose a general strategy of taking a good scheme
(like ENO second order) but for which there is no convergence proof,
and use the filter to assure convergence and error estimate (the
theoretical

√
∆x as for the monotone scheme), and numerically show

that we almost keep the same precision as ENO (i.e. second order)
on basic linear and non linear examples.
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Organizing team.
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