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Vlasov-Poisson system

Motivation: Vlasov-Poisson system

The collisionless and non-relativistic plasma may be described by the well-known
Vlasov-Poisson (VP) system,

∂f

∂t
+ v · ∇xf + E(t,x) · ∇vf = 0, (1)

E(t,x) = −∇xφ(t,x), −4xφ(t,x) = ρ(t,x). (2)

f(t,x,v): probability density of finding a particle with velocity v at position x at
time t.
ρ(t,x) =

∫
f(t,x,v)dv - 1: charge density
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Vlasov-Poisson system

Numerical methods

Eulerian: fixed numerical mesh, CFL restriction
e.g., finite difference method, finite volume method, disc. Galerkin

Lagrangian: follow characteristics (particles), no CFL restriction.

Semi-Lagrangian: fixed numerical mesh; update solution by following
characteristics, no CFL restriction

with operator splitting:
easy to trace characteristics, but subject to splitting error
without operator splitting:
difficult to trace characteristics with high order accuracy, no splitting error

Other subdivision is between

Forward SL schemes (FSL)

Backward SL schemes (BSL)

We only adopt Backward Semi Lagrangian (BSL) here.
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Vlasov-Poisson system

Semi-Lagrangian: without splitting

How to update solution: {fni,j} ⇒ {f
n+1
i,j }?

1 Tracing characteristics: locate the foot of characteristics
(x∗i,j , v

∗
i,j) = (x(tn), v(tn)) subject to the following final value problem{

dx(t)
dt = v(t); dv(t)

dt = E(x(t), t),
x(tn+1) = xi; v(tn+1) = vj

(3)

2 High order interpolation:

fn+1
i,j = f(x∗i,j , v

∗
i,j , t

n),

where the R.H.S. is approximated by high-dimensional interpolation
(for example WENO).
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Vlasov-Poisson system

Tracing Characteristics

First order accuracy:

x
(1)
i = xi − vj∆t; v

(1)
j = vj − Eni ∆t

from which one can update f (1), ρ(1) and E(1) at tn+1. 1,2

Second order accuracy:

x
(2)
i = xi −

1

2
(vj + v

(1)
j )∆t;

v
(2)
j = vj −

1

2
(E(x

(1)
i , tn) + E(1)(xi, t

n+1))∆t

from which one can update f (2), ρ(2) and E(2) at tn+1.

1superscript (1) means first order approximation
2Eni = E(xi, t

n)
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Vlasov-Poisson system

Tracing Characteristics (cont.)

Third order accuracy:

x
(3)
i = xi − vj∆t+

∆t2

2
(
2

3
E(2)(xi, t

n+1) +
1

3
E(x

(2)
i , tn));

v
(3)
j = vj − E(2)(xi, t

n+1)∆t

+
∆t2

2

(
2

3

d

dt
E(2)(xi, t

n+1) +
1

3

d

dt
E(x

(2)
i , tn)

)
;

from which one can update f (3), ρ(3) and E(3) at tn+1.
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Vlasov-Poisson system

Simulation results: two-stream instability

Consider the symmetric two stream instability, the VP system with initial condition

f(x, v, t = 0) =
2

7
√

2π
(1 + 5v2)(1 + α((cos(2kx)

+ cos(3kx))/1.2 + cos(kx)) exp(−v
2

2
),

with α = 0.01, k = 0.5 and the length of domain in x−direction L = 2π
k .
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Vlasov-Poisson system

Order or accuracy

Table: Order of accuracy in time: two stream instability with sixth order WENO
interpolation Nx = Nv = 160 and T = 5.

first order second order third order
CFL L1 error order L1 error order L1 error order

6 1.17E-4 – 2.40E-6 – 1.13E-7 –
7 1.40E-4 1.13 2.80E-6 2.04 1.79E-7 3.02
8 1.63E-4 1.16 3.69E-6 2.07 2.69E-7 3.02
9 1.87E-4 1.16 4.69E-6 2.04 3.84E-7 3.03

10 2.12E-4 1.20 5.84E-6 2.08 5.31E-7 3.06
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Vlasov-Poisson system

VP system: weak Landau damping α = 0.01

Consider the VP system with initial condition,

f(x, v, t = 0) =
1√
2π

(1 + α cos(kx))exp(−v
2

2
),

with α = 0.01, k = 2.

Figure: Time evolution of L2 norm of electric field.
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Vlasov-Poisson system

Symmetric two stream instability

Initial condition:

f(x, v, t = 0) =
1√

8πvth

[
exp

(
− (v − u)2

2v2th

)
+ exp

(
− (v + u)2

2v2th

)] (
1 + 0.0005 cos(kx)

)
(4)

with u = 5
√

3/4, vth = 0.5 and k = 0.2.
Constant background ion distribution chosen so that net charge density is zero.

Time evolution of electric field in L2 norm (from J. Banks and J. Hittinger, 2010)
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Vlasov-Poisson system

2 stream instab.: phase space portraits

First order, CFL = 5.0 First order, CFL = 0.1

Second order, CFL = 5.0 Third order, CFL = 5.0
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High order semilagrangian for BGK

BGK model

The BGK model (Bhatnagar-Gross-Krook ’54) approximates Boltzmann equation
for the evolution of a rarefied gas.

The main variable is the distribution function f of the particles, as in the
Boltzmann equation. The evolution of f is given by:

∂f

∂t
+ v · ∇xf =

1

ε
(M [f ]− f) (5)

with initial condition f(x, v, 0) = f0(x, v).
Here ε represents the non dimensional collision time. Hydrodynamic regime
→ ε� 1
Rarefied regime → ε ∼ O(1)

Here we present a numerical method for the BGK equation based on a
Semi-Lagrangian formulation using BDF (Stracquadanio, Russo, Groppi, in
progress).
The method is compared with a RK-based approach (Russo, Santagati, 2008).
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High order semilagrangian for BGK

Semi-Lagrangian formulation

Simplified model: 1D in space and velocity:

∂f

∂t
+ v

∂f

∂x
=

1

ε
(M [f ]− f). (6)

with

M [f ] =
ρ

(2πRT )1/2
exp

(
− (v − u)2

2RT

)
t ≥ 0, x, v ∈ R.
Semi-Lagrangian: follow the evolution along the characteristics.

df(x, v, t)

dt
=

1

ε

(
M [f ](x, v, t)− f(x, v, t)

)
,

dx

dt
= v, x(0) = x̃, f(0, t, v) = f0(x̃, v) t ≥ 0, x, v ∈ R.

(7)

Note that x becomes a time dependent variable and its equation gives:

x(t) = x̃+ vt, t ≥ 0, x, v ∈ R, (characteristic straight lines).

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 14 / 40



High order semilagrangian for BGK

Implicit first order Semi-Lagrangian scheme

Let fnij ≈ f(xi, vj , t
n) be approximate solution.

Possible stiffness (small ε) ⇒ implicit formulation.

fn+1
ij = f̃nij +

∆t

ε
(Mn+1

ij − fn+1
ij ), (8)

Here f̃nij = f(tn, x̃i = xi − vj∆t, vj) can be calculated by (linear) interpolation
from {fn.j}.
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High order semilagrangian for BGK

Solution of the implicit step

Equation (8) is non linear.
Indeed M [f ]n+1

i,j depends on fn+1
ij through its moments.

Let φ(v) be the vector φ(v) = (1, v, v2)T . Compute the moments of fn+1
ij :

〈fn+1
ij φ〉 = 〈f̃nijφ〉+

∆t

ε
〈(Mn+1

ij − fn+1
ij )φ〉.

From the conservation, we have

〈(Mn+1
ij − fn+1

ij )φ〉 = 0 ⇒ 〈fn+1
ij φ〉 = 〈f̃nijφ〉

Hence we immediately find the macroscopic variables ρn+1
i , un+1

i and Tn+1
i

corresponding to fn+1
ij using f̃nij and with these values the approximated

Maxwellian is updated.
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High order semilagrangian for BGK

Higher order: Runge-Kutta

Classical RK schemes can be adopted.
Stage values are computed along the characteristics.
First they are computed at grid position xi (empty cycles) and then the value of f
(or the RK flux) is interpolated on the characteristics (empty squares)
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High order semilagrangian for BGK

High order BDF schemes

Runge-Kutta methods may be expensive.
The BDF (Backward Difference Formula) methods allow same order of accuracy
at lower cost.

We will show some numerical results concerning the BDF methods with 2 (BDF2)
and 3 (BDF3) steps. Applying these methods to the Lagrangian formulation of
the BGK model we obtain the following schemes:

fn+1
ij =

4

3

(1)

fnij −
1

3

(2)

fn−1
ij +

∆t

ε
(Mn+1

ij − fn+1
ij )

fn+1
ij =

11

18

(1)

fnij −
9

11

(2)

fn−1
ij +

2

11

(3)

fn−2
ij +

∆t

ε
(Mn+1

ij − fn+1
ij )

where
(s)

fnij= fn(xi − svj∆t, vj), s = 1, 2, 3, obtained by interpolation.

High order in space is obtained by WENO reconstruction.
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High order semilagrangian for BGK

Numerical test for the problem 1+1D

We have considered two numerical test:
1 Smooth initial data

(f0 =M [v, ρ = 1, u = 0.1exp(−(10x− 1)2)− 2exp(−(10x+ 3)2), T = 1])

time interval [0,0.04];
space interval [-1,1];
velocity interval [-10,10];
Nv = 40;
∆t = CFL∆x/|vmax|;

2 Riemann problem (jump in x = 0.5):

(ρL, uL, TL) = (2.25, 0, 1.125), (ρR, uR, TR) = (3/7, 0, 1/6)
time interval [0,0.16];
space interval [0,1];
velocity interval [-10,10];
Nx = 100;
Nv = 60;
∆t = CFL∆x/|vmax|;

For each test the cases ε = 10−2 and ε = 10−6 have been studied.
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High order semilagrangian for BGK

RK2 and BDF2 accuracy 1+1D in rarefied regime
(ε = 10−2)
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High order semilagrangian for BGK

RK2 and BDF2 accuracy 1+1D in hydrodynamic regime
(ε = 10−6)
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High order semilagrangian for BGK

RK3 and BDF3 accuracy 1+1D in rarefied regime
(ε = 10−2)
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High order semilagrangian for BGK

RK3 and BDF3 accuracy 1+1D in hydrodynamic regime
(ε = 10−6)
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High order semilagrangian for BGK

BDF3-weno3-5, CFL-Error for the problem 1D+1D
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High order semilagrangian for BGK

Comparison with the solution of gas dynamics: density
given by BDF3 and RK3 for 1+3D
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High order semilagrangian for BGK

Comparison with the solution of gas dynamics: velocity
given by BDF3 and RK3 for 1+3D
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High order semilagrangian for BGK

Comparison with the solution of gas dynamics:
temperature given by BDF3 and RK3 for 1+3D
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Conservative correction

Conservative correction

Can be adopted both at finite volume or conservative finite difference level (which is
what we treat here)

1 compute a predictor value at the center of the cell

2 use such a predictor to perform reconstruction of the fluxes, at cell edges

3 evolve the conservative values according to the computed fluxes
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Conservative correction

Application to conservation laws

Consider a system of conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0

One can choose a predictor based on
∂u

∂t
+A(u)

∂u

∂x
= 0 or even

∂v

∂t
+B(v)

∂v

∂x
= 0

where u = U(v) is an invertible mapping (v = V (u) is the inverse) and the
formulation in v is somehow simpler.
Then one can apply a conservative correction using finite volume or finite
difference discretization.

skip to stability

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 29 / 40



Conservative correction

Application to conservation laws

Consider a system of conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0

One can choose a predictor based on

∂u

∂t
+A(u)

∂u

∂x
= 0 or even

∂v

∂t
+B(v)

∂v

∂x
= 0

where u = U(v) is an invertible mapping (v = V (u) is the inverse) and the
formulation in v is somehow simpler.
Then one can apply a conservative correction using finite volume or finite
difference discretization.

skip to stability

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 29 / 40



Conservative correction

Application to conservation laws

Consider a system of conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0

One can choose a predictor based on
∂u

∂t
+A(u)

∂u

∂x
= 0

or even
∂v

∂t
+B(v)

∂v

∂x
= 0

where u = U(v) is an invertible mapping (v = V (u) is the inverse) and the
formulation in v is somehow simpler.
Then one can apply a conservative correction using finite volume or finite
difference discretization.

skip to stability

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 29 / 40



Conservative correction

Application to conservation laws

Consider a system of conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0

One can choose a predictor based on
∂u

∂t
+A(u)

∂u

∂x
= 0 or even

∂v

∂t
+B(v)

∂v

∂x
= 0

where u = U(v) is an invertible mapping (v = V (u) is the inverse) and the
formulation in v is somehow simpler.
Then one can apply a conservative correction using finite volume or finite
difference discretization.

skip to stability

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 29 / 40



Conservative correction

Application to conservation laws

Consider a system of conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0

One can choose a predictor based on
∂u

∂t
+A(u)

∂u

∂x
= 0 or even

∂v

∂t
+B(v)

∂v

∂x
= 0

where u = U(v) is an invertible mapping (v = V (u) is the inverse) and the
formulation in v is somehow simpler.
Then one can apply a conservative correction using finite volume or finite
difference discretization.

skip to stability

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 29 / 40



Conservative correction

Finite volume approach

1 from {ūnj } compute the pointwise values of {vnj }.
2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Reconstruct (pointwise) the nonconservative variables at cell edges v
(k)±
j+1/2

4 Compute the fluxes at cell edges: f
(k)

j+ 1
2

= F (u
(k)−
j+ 1

2

, u
(k)+

j+ 1
2

) = F̃ (v
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j = ūnj −

∆t

∆x

ν∑
l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 30 / 40



Conservative correction

Finite volume approach
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Conservative correction

Finite difference approach
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each stage l
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edges f
(k)

j+ 1
2

= f−(x+
j+1/2, t

n + ck∆t) + f+(x−j+1/2, t
n + ck∆t)

5 Evolve the conservative pointwise variables

un+1
j = unj −

∆t

∆x

ν∑
l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 31 / 40



Conservative correction

Finite difference approach

1 compute {vnj = V (uj)}.

2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Compute the splitter fluxes f− and f+ (f− + f+ = f) at cell center xj at
each stage l

4 Reconstruct (from cell average to pointwise) the fluxes f+ and f− at cell

edges f
(k)

j+ 1
2

= f−(x+
j+1/2, t

n + ck∆t) + f+(x−j+1/2, t
n + ck∆t)

5 Evolve the conservative pointwise variables

un+1
j = unj −

∆t

∆x

ν∑
l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 31 / 40



Conservative correction

Finite difference approach

1 compute {vnj = V (uj)}.
2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Compute the splitter fluxes f− and f+ (f− + f+ = f) at cell center xj at
each stage l

4 Reconstruct (from cell average to pointwise) the fluxes f+ and f− at cell

edges f
(k)

j+ 1
2

= f−(x+
j+1/2, t

n + ck∆t) + f+(x−j+1/2, t
n + ck∆t)

5 Evolve the conservative pointwise variables

un+1
j = unj −

∆t

∆x

ν∑
l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 31 / 40



Conservative correction

Finite difference approach

1 compute {vnj = V (uj)}.
2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Compute the splitter fluxes f− and f+ (f− + f+ = f) at cell center xj at
each stage l

4 Reconstruct (from cell average to pointwise) the fluxes f+ and f− at cell

edges f
(k)

j+ 1
2

= f−(x+
j+1/2, t

n + ck∆t) + f+(x−j+1/2, t
n + ck∆t)

5 Evolve the conservative pointwise variables

un+1
j = unj −

∆t

∆x

ν∑
l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 31 / 40



Conservative correction

Finite difference approach

1 compute {vnj = V (uj)}.
2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Compute the splitter fluxes f− and f+ (f− + f+ = f) at cell center xj at
each stage l

4 Reconstruct (from cell average to pointwise) the fluxes f+ and f− at cell

edges f
(k)

j+ 1
2

= f−(x+
j+1/2, t

n + ck∆t) + f+(x−j+1/2, t
n + ck∆t)

5 Evolve the conservative pointwise variables

un+1
j = unj −

∆t

∆x

ν∑
l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2

Giovanni Russo (DMI) On semilagrangian methods for kinetic equations 31 / 40



Conservative correction

Application to gas dynamics

Classical Sod problem solved using primitive variables as predictor

WENO 2-3

WENO 3-5
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Conservative correction

Stability analysis

Consider linear convective equation

ut + (vu)x = 0,

Evolve by conservative FD scheme:

duj
dt

= − 1

∆x

(
f̂j+ 1

2
− f̂j− 1

2

)
,

The numerical solution is computed as

un+1
j = unj −

∆t

∆x

s∑
`=1

b`

(
f̂

(`)

j+ 1
2

− f̂ (`)

j− 1
2

)
.

u
(`)
j = un(x

(`)
j ), x

(`)
j = xj − vc`∆t

Look for Fourier modes
unj [ξ] = ρneijξ,
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Conservative correction

Stability analysis

Use Fourier interpolation for arbitrary x

un(x) = ρneixξ/∆x.

Compute the non conservative semilagrangian stages

u
(`)
j = un(x

(`)
j ) = ρn exp(iξ(xj − v∆tc`)/∆x) = ρneijξe−ic`aξ,

From this obtain the amplification factor

ρ = 1− iξa
s∑
`=1

b` exp(−ic`aξ).
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Conservative correction

Analogy with A-stability

Test equation for A-stability

w′(t) = λw(t), w(0) = 1

Exact solution
w(∆t) = eλ∆t = ez,

Identity obtained observing that
∫ 1

0
ecz dc = (ez − 1)/z:

ez = 1 + z

∫ 1

0

ecz.

Using exact Fourier interpolation, the error is due to the use of quadrature rule to
compute the integral:

R(z) = 1 + z

s∑
`=1

b`e
c`z.

Therefore:
ρ = R(−iξa).
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Conservative correction

Optimal quadrature formulas: given s stages, choose the scheme of order s with
the largest stability region.

Simple optimal formulas achieve:

s = 4, a∗ = 4.81
s = 8, a∗ = 9.41
s = 12, a∗ = 13.77

The function |ρ| − 1 is given by
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Conservative correction

The bad news

Numerical codes for the single scalar equation with such schemes show
instabilities for some CFL numbers much smaller than a∗.

For example: using a third degree polynomial (4th order space interpolation)
rather than Fourier interpolation, s = 8, one obtains instability in a neighborhood
of a = 2.6.
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Conservative correction

The instability disappears for larger values of a, up to about the theoretical value
a∗ = 4.81.
The stability interval has holes (resonance?)

Possible solutions (work in progress):

check stability of different stencils and let nonlinear reconstruction choose the
stable stencil

reformulate the whole stability theory replacing Fourier interpolation by
polynomial interpolations

Basic question: is this of any use, or there is no way to make such
conservative correction stable in practice?
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Conservative correction

Conclusions

Semilagrangian schemes are very promising for kinetic equations because:

Non conservative schemes allow high order accuracy and large CFL numbers

For VP-equations non splitting BSL schemes can be constructed, thus
avoiding splitting error

For BGK high accuracy in space and time can be reached, using RK or BDF

RK are more accurate, but BDF appear are more efficient

No formal restriction on CFL. In practice CFL is restricted by the
fluid-dynamic CFL condition (to avoid oscillations)

A general technique is proposed to construct a conservative scheme starting
from a non conservative one

Deeper analysis is needed to understand and improve the stability property of
such characteristic correction.

Thank you !
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