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The datasetColor Constancy, Intrinsic Images, and Shape Estimation 9

(a) “Lab” Data (b) “Lab” Samples (c) “Natural” Data (d) “Natural” Samples

Fig. 5. We use two datasets: the “laboratory”-style illuminations of the MIT intrinsic
images dataset [2, 1] which are harsh, mostly-white, and well-approximated by point
sources, and a new dataset of “natural” illuminations, which are softer and much
more colorful. We model illumination using just a multivariate Gaussian on spherical
harmonic illumination. Shown here are some example illuminations from our datasets
and samples from our models, all rendered on Lambertian spheres. The samples looks
superficially similar to the data, suggesting that our model is reasonable.

illumination, we parametrize log-shading rather than shading. This choice makes
optimization easier as we don’t have to deal with “clamping” illumination at 0,
and it allows for easier regularization as the space of log-shading SH illumina-
tions is surprisingly well-modeled by a simple multivariate Gaussian. Training
our model is extremely simple: we fit a multivariate Gaussian to the SH illumi-
nations in our training set. During inference, the cost we impose is the negative
log-likelihood under that model:
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L
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L

(L� µ
L
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where µ
L

and ⌃
L

are the parameters of the Gaussian we learned, and �
L

is the
multiplier on this prior (learned through cross-validation). Separate Gaussians
and multipliers are learned from the illuminations in our two di↵erent datasets
(see Section 8). See Figure 5 for a visualization of our training data and of
samples from our learned models.

The Gaussians we learn for illumination mostly describe a low-rank subspace
of SH coe�cients. For this reason, it is important that we optimize in the space
of whitened illumination. Whitened illumination is used as the internal represen-
tation of illumination during optimization, but is transformed to un-whitened
space when calculating the loss function.

7 Multiscale Optimization

Here we present a novel multi-scale optimization method that is simpler, faster,
and finds better local optima than the previous coarse-to-fine techniques we
have presented [1, 22]. Our technique seems similar to multigrid methods [29],
though it is extremely general and simple to implement. We will describe our
technique in terms of optimizing f(X), where f is some loss function and X is
some n-dimensional signal.

Color Constancy, Intrinsic Images, and Shape Estimation 9

(a) “Lab” Data (b) “Lab” Samples (c) “Natural” Data (d) “Natural” Samples

Fig. 5. We use two datasets: the “laboratory”-style illuminations of the MIT intrinsic
images dataset [2, 1] which are harsh, mostly-white, and well-approximated by point
sources, and a new dataset of “natural” illuminations, which are softer and much
more colorful. We model illumination using just a multivariate Gaussian on spherical
harmonic illumination. Shown here are some example illuminations from our datasets
and samples from our models, all rendered on Lambertian spheres. The samples looks
superficially similar to the data, suggesting that our model is reasonable.

illumination, we parametrize log-shading rather than shading. This choice makes
optimization easier as we don’t have to deal with “clamping” illumination at 0,
and it allows for easier regularization as the space of log-shading SH illumina-
tions is surprisingly well-modeled by a simple multivariate Gaussian. Training
our model is extremely simple: we fit a multivariate Gaussian to the SH illumi-
nations in our training set. During inference, the cost we impose is the negative
log-likelihood under that model:

h(L) = �
L

(L� µ
L

)T⌃�1
L

(L� µ
L

) (7)

where µ
L

and ⌃
L

are the parameters of the Gaussian we learned, and �
L

is the
multiplier on this prior (learned through cross-validation). Separate Gaussians
and multipliers are learned from the illuminations in our two di↵erent datasets
(see Section 8). See Figure 5 for a visualization of our training data and of
samples from our learned models.

The Gaussians we learn for illumination mostly describe a low-rank subspace
of SH coe�cients. For this reason, it is important that we optimize in the space
of whitened illumination. Whitened illumination is used as the internal represen-
tation of illumination during optimization, but is transformed to un-whitened
space when calculating the loss function.

7 Multiscale Optimization

Here we present a novel multi-scale optimization method that is simpler, faster,
and finds better local optima than the previous coarse-to-fine techniques we
have presented [1, 22]. Our technique seems similar to multigrid methods [29],
though it is extremely general and simple to implement. We will describe our
technique in terms of optimizing f(X), where f is some loss function and X is
some n-dimensional signal.



The datasetColor Constancy, Intrinsic Images, and Shape Estimation 9

(a) “Lab” Data (b) “Lab” Samples (c) “Natural” Data (d) “Natural” Samples

Fig. 5. We use two datasets: the “laboratory”-style illuminations of the MIT intrinsic
images dataset [2, 1] which are harsh, mostly-white, and well-approximated by point
sources, and a new dataset of “natural” illuminations, which are softer and much
more colorful. We model illumination using just a multivariate Gaussian on spherical
harmonic illumination. Shown here are some example illuminations from our datasets
and samples from our models, all rendered on Lambertian spheres. The samples looks
superficially similar to the data, suggesting that our model is reasonable.

illumination, we parametrize log-shading rather than shading. This choice makes
optimization easier as we don’t have to deal with “clamping” illumination at 0,
and it allows for easier regularization as the space of log-shading SH illumina-
tions is surprisingly well-modeled by a simple multivariate Gaussian. Training
our model is extremely simple: we fit a multivariate Gaussian to the SH illumi-
nations in our training set. During inference, the cost we impose is the negative
log-likelihood under that model:

h(L) = �
L

(L� µ
L

)T⌃�1
L

(L� µ
L

) (7)

where µ
L

and ⌃
L

are the parameters of the Gaussian we learned, and �
L

is the
multiplier on this prior (learned through cross-validation). Separate Gaussians
and multipliers are learned from the illuminations in our two di↵erent datasets
(see Section 8). See Figure 5 for a visualization of our training data and of
samples from our learned models.

The Gaussians we learn for illumination mostly describe a low-rank subspace
of SH coe�cients. For this reason, it is important that we optimize in the space
of whitened illumination. Whitened illumination is used as the internal represen-
tation of illumination during optimization, but is transformed to un-whitened
space when calculating the loss function.

7 Multiscale Optimization

Here we present a novel multi-scale optimization method that is simpler, faster,
and finds better local optima than the previous coarse-to-fine techniques we
have presented [1, 22]. Our technique seems similar to multigrid methods [29],
though it is extremely general and simple to implement. We will describe our
technique in terms of optimizing f(X), where f is some loss function and X is
some n-dimensional signal.

Color Constancy, Intrinsic Images, and Shape Estimation 9

(a) “Lab” Data (b) “Lab” Samples (c) “Natural” Data (d) “Natural” Samples

Fig. 5. We use two datasets: the “laboratory”-style illuminations of the MIT intrinsic
images dataset [2, 1] which are harsh, mostly-white, and well-approximated by point
sources, and a new dataset of “natural” illuminations, which are softer and much
more colorful. We model illumination using just a multivariate Gaussian on spherical
harmonic illumination. Shown here are some example illuminations from our datasets
and samples from our models, all rendered on Lambertian spheres. The samples looks
superficially similar to the data, suggesting that our model is reasonable.

illumination, we parametrize log-shading rather than shading. This choice makes
optimization easier as we don’t have to deal with “clamping” illumination at 0,
and it allows for easier regularization as the space of log-shading SH illumina-
tions is surprisingly well-modeled by a simple multivariate Gaussian. Training
our model is extremely simple: we fit a multivariate Gaussian to the SH illumi-
nations in our training set. During inference, the cost we impose is the negative
log-likelihood under that model:

h(L) = �
L

(L� µ
L

)T⌃�1
L

(L� µ
L

) (7)

where µ
L

and ⌃
L

are the parameters of the Gaussian we learned, and �
L

is the
multiplier on this prior (learned through cross-validation). Separate Gaussians
and multipliers are learned from the illuminations in our two di↵erent datasets
(see Section 8). See Figure 5 for a visualization of our training data and of
samples from our learned models.

The Gaussians we learn for illumination mostly describe a low-rank subspace
of SH coe�cients. For this reason, it is important that we optimize in the space
of whitened illumination. Whitened illumination is used as the internal represen-
tation of illumination during optimization, but is transformed to un-whitened
space when calculating the loss function.

7 Multiscale Optimization

Here we present a novel multi-scale optimization method that is simpler, faster,
and finds better local optima than the previous coarse-to-fine techniques we
have presented [1, 22]. Our technique seems similar to multigrid methods [29],
though it is extremely general and simple to implement. We will describe our
technique in terms of optimizing f(X), where f is some loss function and X is
some n-dimensional signal.



Let’s test it !



Let’s test it !



Let’s test it !



Let’s test it !



Let’s test it !



Let’s test it !



Let’s test it !



Let’s test it !



Let’s test it !



Let’s test it !

Thank you !


