
Dedicato a Maurizio Falcone, 4 Dicembre 2014

Most unstable switching laws for
switched linear systems.

Nicola Guglielmi (University of L’Aquila)

jointly with:

Marino Zennaro (University of Trieste)

– p.1/18



Linear switched dynamical systems (LSS)

We consider the linear switched system (forn = 0, 1, . . .)

x(n+ 1) = Aσ(n) x(n), σ : N −→ I := {1, 2, . . . ,m}

wherex(0) ∈ R
k andAσ(n) ∈ R

k×k is an element of thefinite
(this simplifies presentation) family of matrices

F = {Ai}i∈I
associated to the system andσ denotes theswitching law.

We are interested in the following issues:

• Stability properties of the solutions in terms of spectral
characteristics of the associated familyF .

• Describing geometry of worst/best case solutions of LSS.
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A few applications
(1) Discontinuous linear ODEs: switched control systems.

Liberzon: Switching in systems and control, Birkhäuser, 2003

di Bernardo, Budd, Champneys, Kowalczyk, Piecewise-smooth dynamical systems, Springer, 2008

(2) Stability of numerical methods for differential equations.
e.g. G. & Zennaro: Zero stability of variable stepsize BDF formulæ, Numer. Math., 2001

(3) Wavelets, subdivision and refinement schemes.
Daubechies: Comm. Pure Appl. Math., 1988, Heil & Strang: IMAMath. Appl., 1995.

Sabin: Analysis and design of univariate subdivision schemes, Springer-Verlag, 2010

(4) Consensus problems.
Olshevsky & Tsitsiklis: Convergence speed in distributed consensus and averaging, SIAM Rev., 2011– p.3/18



Stability issues: worst case analysis

Aim: determining the most unstable switching law (MUSL),
i.e. the lawσ giving the solution with highest rate of growthρ.
Specifically we look for a lawσ and anorm‖ · ‖ such that

‖x(n)‖ = ρn‖x(0)‖ for all n.

The MUSL can be characterized using optimal control
techniques. The variational approach leads to aHamilton–
Jacobi– Bellmanequation.

Its solution is referred to as aBarabanov normof the LSS.

“ Although the Barabanov norm was studied extensively, it
seems that there are only few examples where it was actually
computed in closed form” (Teichner and Margaliot, 2012).
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The multiplicative semigroup
We consider the set of products of degreen,

Σn(F) = {Ain . . . Ai1 | i1, . . . , in ∈ I}
and define theproduct semigroup

Σ(F) =
⋃

n≥1

Σn(F).

Goals.

• Compute maximal asymptotic rate of growthρ of Σ(F).

• Determine a norm‖ · ‖ such that for anyx(0) there exists
a switching lawσ for which the trajectory

x(n) = Pnx(0), Pn = Aσ(n) . . . Aσ(0)

fulfils ‖x(n)‖ = ρn‖x(0)‖ for all n.
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Generalizing the spectral radius
(1) Joint spectral radius(Rota & Strang ’60):

ρ̂(F) = lim sup
n→∞

ρ̂n(F)1/n with ρ̂n(F) = max
P∈Σn(F)

‖P‖

(2) Generalized spectral radius(Daubechieset al. ’92):

ρ(F) = lim sup
n→∞

ρn(F)1/n with ρn(F) = max
P∈Σn(F)

ρ(P )

(3) Common spectral radius(Elsner ’95):

ν(F) = inf
‖·‖∈N

‖F‖ with ‖F‖ = max
i∈I

‖Ai‖

whereN is theset of operator norms.

All 3 quantities result to be equal so we denote them asρ(F).– p.6/18



Framework

Daubechies & Lagarias proved the following inequality, where
P is any product of degreed and‖ · ‖ any operator norm,

ρ(P )1/d ≤ ρ(F) ≤ ‖F‖
Definitions.

1. We say thatF has the finiteness property if there exists a
spectrum maximizing product, that is a product for which
the left inequality is an equality.

2. We say thatF is non defective if there exists an operator
norm for which the right inequality becomes an equality.
Such norm is called anextremal norm.

Both properties appear to be generic but there is no proof.
a

a
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Extremal norms

Definition [extremal norm]
We say that‖ · ‖ is an extremal norm forF if ‖F‖ = ρ(F), i.e.

max
i∈I

‖Aix‖≤ ρ(F)‖x‖ ∀x ∈ R
k.

Assumeρ(F) = 1 and letB the unit ball of‖ · ‖, thenAix ∈ B
for all x ∈ B andi ∈ I. Geometrically:

A1B A2B

B
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Extremal Barabanov norms

Definition [Barabanov norm]
We say that an extremal norm‖ · ‖ for the familyF is an
(invariant) Barabanov norm if

max
i∈I

‖Aix‖= ρ(F)‖x‖ ∀x ∈ R
k.

Barabanov norms identify - for any initial vector - a most
unstable solution associated to aMUSL.

Theorem(Barabanov, 1988)
Assume that a family of matricesF is irreducible. Then there
exists a Barabanov operator norm forF .

As a consequence the existence of a Barabanov norm appears
generic as well as the existence of a MUSL.
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Computational framework

Recent algorithms proposed in the literature start from the
guess of a candidate spectrum maximizing product and
attempt to obtain anextremal norm.

Assumptions.

(i) Since the joint spectral radiusρ(F) is a positively
homogenous function of the set of matrices, for simplicity
we assumeρ(F) = 1.

(ii) We assume thatF is non defective and has the finiteness
property.

These assumptions imply that there exists a productP∗ such
thatρ(P∗) = 1 and a norm‖ · ‖∗ such that‖F‖∗ = 1.
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The polytope algorithms

These algorithms, proposed e.g. byG., Wirth & Zennaro,
2005, G. & Protasov, 2013attempt to compute an extremal
polytope norm, that is anextremal normwhose unit ball is a
centrally symmetric polytopeP.
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−1

0

1

2 Starting from a suitable initial

vector (the leading eigenvector

v1 of the spectrum maximizing

productP∗), the algorithms

computeP recursively, i.e.

P=convhull(±v1,±A1v1, ...)
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Example 1

LetF = {A1, A2}

A1 = α

(
1 −1

1 0

)
, A2 = α

(
0 1

−1 0

)
.

with α =
(
3+

√
5

2

)−1/5

, having spectral radiusρ(F) = 1 and

spectrum maximizing productP∗ = A1A2A
2
1A2.

Applying the polytope algorithm

We obtain an extremal polytope norm after5 iterations, with
P a polytope with6 vertices.

Is this aBarabanovnorm?
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Computed extremal polytope norm
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In the right picture a boundary pointx is drawn in red and the
transformed vectorsA1x andA2x are drawn in blue. =⇒

This isnot a Barabanov norm.
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Duality

Definition [adjoint polytope]
LetP be a real centrally symmetric polytope, that is there
exists a set of vectorsV = {v1, . . . , vp} such that

P = convhull (±v1, . . . ,±vp)

We define itsadjoint(or dual), the polytope

P∗ = adj(V ) =
{
x ∈ R

k
∣∣∣
∣∣〈x, vi

〉∣∣ ≤ 1, i = 1, . . . , p
}
.

Theorem
LetP andP∗ a polytope and its ajoint and‖ · ‖P and‖ · ‖P∗ the
associated norms. Then, for any matrixA, ‖AT‖P = ‖A‖P∗.

CorollaryFor a familyF , we have‖F‖P∗ = ‖FT‖P
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How to get a Barabanov extremal norm

Key observation:the polytope algorithm determines a
polytopeP = convhull (±v1, . . . ,±vp), characterized by

vℓ = Aiℓvjℓ for some jℓ ∈ {1, . . . , p} & iℓ ∈ {1, . . . ,m}.
This implies

P = convhull
( m⋃

i=1

AiP
)

(H)

Theorem [canonical construction of a Barabanov norm]
LetP define an extremal norm‖ · ‖P for F and assume that
(H) holds. Then‖ · ‖P∗ is a Barabanov norm forFT.

Recipe:GivenF apply the polytope algorithm toFT.
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Example 1 (ctd.)

Consider the familyFT = {AT
1 , A

T
2 } and the norm‖ · ‖P∗.

Then we observe:

−1.5 .0 1.5

−1.5

.0

1.5

For any initial vectorx ∈ ∂P∗ (in red), at least one of the
vectorsAT

1 x,A
T
2 x ∈ ∂P∗ (in blue).
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Example 2
Consider the control system (withu : R+ → {1, 2})

ẋ(t) = B(u(t)) x(t), with

B(1) =




−1 0 0

10 −1 0

0 0 −10




B(2) =




−10 0 10

0 −10 0

0 10 −1




and discretize it on a grid with∆t = 1/256.
A MUSL is computed through the determination of a the
Barabanov norm whose unit ballB is shown in the figure.– p.17/18



Software

Matlab routines are made available at

http://univaq.it/∼guglielm/

TANTI AUGURI MAURIZIO
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