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Setup

We consider continuous time finite dimensional control systems

ẋ(t) = f(x(t), u(t)), x(0) = x0

with x(t) ∈ Rn, u(t) ∈ U ⊆ Rm, u ∈ U = L∞(R, U)

Goal: Given an equilibrium xe (i.e., f(xe, ue) = 0 for some
ue ∈ U), for any initial value x0 find a control which steers the
trajectory to xe and keeps it there — asymptotic stabilization
problem

Approach: Compute this u via optimal control, preferably in
feedback form u(t) = F (x(t))

Lars Grüne, Stabilization with discounted optimal control, p. 2
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Lars Grüne, Stabilization with discounted optimal control, p. 2



Setup

We consider continuous time finite dimensional control systems
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Special case: linear quadratic optimal control

For the special case of linear systems

ẋ(t) = Ax(t) +Bu(t)

the linear quadratic optimal control problem

minimize
u∈U

∫ ∞
0

x(t)TQx(t) + u(t)TRu(t)dt

with matrices R > 0, Q > 0 yields such controls.

This linear quadratic problem is efficiently solvable via the
algebraic Riccati equation

Lars Grüne, Stabilization with discounted optimal control, p. 3
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Nonlinear case

In the nonlinear case

ẋ(t) = f(x(t), u(t)), x(0) = x0

under standard regularity assumptions, stabilization can be
achieved via the optimal control problem

minimize
u∈U

∫ ∞
0

`(x(t), u(t))dt

with ` satisfying `(x, u) > 0 whenever x 6= xe

Drawback: this problem is very difficult to solve

Lars Grüne, Stabilization with discounted optimal control, p. 4
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Solution strategies
Solution strategies for

minimize
u∈U

∫ ∞
0

`(x(t), u(t))dt

Receding Horizon (aka Model Predictive) Control:

For i = 0, 1, 2, . . . solve iteratively

minimize
u∈U

∫ ti+T

ti

`(x(t), u(t))dt

and apply the optimal control on [ti, ti+1] (usually ti+1 << ti + T )

Advantages: yields a feedback-like control even if the problems
are solved trajectorywise, very efficient for moderate T

Disadvantage: very hard to solve for large T (may be
necessary to ensure stability)

Lars Grüne, Stabilization with discounted optimal control, p. 5
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Solution strategies
Solution strategies for

minimize
u∈U

∫ ∞
0

`(x(t), u(t))dt

Zubov’s method:

Transform the problem via the Kružkov transform

minimize
u∈U

1− exp

(
−
∫ ∞
0

`(x(t), u(t))dt

)
Advantages: optimal value function is now bounded, dynamic
programming operator is a contraction

Disadvantage: Hamilton-Jacobi-Bellman equation has a
singularity at xe  control only stabilizes a neighborhood of xe

Lars Grüne, Stabilization with discounted optimal control, p. 6
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Solution strategies
Solution strategies for

minimize
u∈U

∫ ∞
0

`(x(t), u(t))dt

Minimum time method:

Solve

minimize

∫ t(x,u)

0

`(x(t), u(t))dt

where t(x, u) is the minimum time to reach a target around xe

Advantage: methods for minimum time problems can be
applied

Disadvantage: again, the resulting control only stabilizes a
neighborhood of xe (including the target)

Lars Grüne, Stabilization with discounted optimal control, p. 7
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Solution strategies
Solution strategies for

minimize
u∈U

∫ ∞
0

`(x(t), u(t))dt

New idea:

Solve a discounted problem with δ > 0

minimize

∫ ∞
0

e−δt`(x(t), u(t))dt

Advantage: methods for discounted problems can be applied
(thanks to Maurizio we know how to solve them )

Question: will the optimal control of the discounted problem
stabilize the system?

Lars Grüne, Stabilization with discounted optimal control, p. 8
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Notation and assumptions
We define the discounted functional

Jδ(x0, u) :=

∫ ∞
0

e−δt`(x(t), u(t))dt

and the optimal value function

Vδ(x0) := inf
u∈U

Jδ(x0, u)

The running cost ` penalizes the distance to the equilibrium,
i.e., `(x, u) > 0 whenever x 6= xe (in a suitable uniform way)

We assume continuity of Vδ

For simplicity, we do not consider state constraints in this talk
(but results can be extended provided Vδ remains continuous)

Lars Grüne, Stabilization with discounted optimal control, p. 9
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Lars Grüne, Stabilization with discounted optimal control, p. 9



Towards a sufficient condition

For model predictive control, consider the undiscounted
optimal value function

V0(x0) = inf
u∈U

∫ ∞
0

`(x(t), u(t))dt

Then, model predictive control stabilizes the equilibrium if the
inequality

V0(x0) ≤ γmin
u∈U

`(x0, u)

holds for some γ > 0 and all x0 ∈ Rn [Tuna/Messina/Teel ’06,]

Gr./Rantzer ’08, Reble/Allgöwer ’12]

The larger γ, the larger T must be for guaranteeing stability

Lars Grüne, Stabilization with discounted optimal control, p. 10
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Main theorem

Theorem: Assume that

(i) Vδ satisfies the inequality

α1(‖x− xe‖) ≤ Vδ(x) ≤ α2(‖x− xe‖)

for functions α1, α2 ∈ K∞ and all x ∈ Rn

(ii) there exists K > δ such that the inequality

KVδ(x) ≤ min
u∈U

`(x, u)

holds for all x ∈ Rn

Then the discounted optimal control stabilizes the equilibrium xe

Lars Grüne, Stabilization with discounted optimal control, p. 11



Main theorem

Theorem: Assume that

(i) Vδ satisfies the inequality

α1(‖x− xe‖) ≤ Vδ(x) ≤ α2(‖x− xe‖)

for functions α1, α2 ∈ K∞ and all x ∈ Rn

(ii) there exists K > δ such that the inequality

KVδ(x) ≤ min
u∈U

`(x, u)

holds for all x ∈ Rn

Then the discounted optimal control stabilizes the equilibrium xe
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Idea of proof
Idea: prove that Vδ is a Lyapunov function

t 7→ Vδ(x
?(t)) is an absolutely continuous function

For almost all t ≥ 0, the dynamic programming principle and
(ii) KVδ(x) ≤ minu∈U `(x, u) with K > δ imply:

d

dt
Vδ(x

?(t)) = δVδ(x
?(t))−`(x?(t), u?(t)) ≤ −(K − δ)Vδ(x?(t))

⇒ Vδ(x
?(t)) ≤ e−(K−δ)tVδ(x0)

Together with the bounds (i) on Vδ, this implies the claimed
asymptotic stability

Lars Grüne, Stabilization with discounted optimal control, p. 12
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Lars Grüne, Stabilization with discounted optimal control, p. 12



Idea of proof
Idea: prove that Vδ is a Lyapunov function

t 7→ Vδ(x
?(t)) is an absolutely continuous function

For almost all t ≥ 0, the dynamic programming principle and
(ii) KVδ(x) ≤ minu∈U `(x, u) with K > δ imply:

d

dt
Vδ(x

?(t)) = δVδ(x
?(t))−`(x?(t), u?(t))

≤ −(K − δ)Vδ(x?(t))

⇒ Vδ(x
?(t)) ≤ e−(K−δ)tVδ(x0)

Together with the bounds (i) on Vδ, this implies the claimed
asymptotic stability
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Approximately optimal trajectories

The statement can be extended to approximately optimal
controls ũ?

, provided the relative error along the trajectory x̃?,
i.e.,

|Vδ(x̃?(t))− Jδ(x̃?(t), ũ?(·+ t))|
Vδ(x̃?(t))

is sufficiently small for all t

If the absolute error

|Vδ(x̃?(t))− Jδ(x̃?(t), ũ?(·+ t))|

is small, trajectories converge to a neighborhood of xe whose
size shrinks with the error

Lars Grüne, Stabilization with discounted optimal control, p. 13
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Discussion of the conditions

How restricive are the conditions of the theorem?

(i) Vδ satisfies the inequality

α1(‖x− xe‖) ≤ Vδ(x) ≤ α2(‖x− xe‖)

for functions α1, α2 ∈ K∞ and all x ∈ Rn

(ii) there exists K > δ such that the inequality

KVδ(x) ≤ min
u∈U

`(x, u)

holds for all x ∈ Rn
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Discussion of the condition (i)

Assumption (i):

α1(‖x− xe‖) ≤ Vδ(x) ≤ α2(‖x− xe‖)

These bounds can be assured by appropriate choice of `:

` must be sufficiently flat near xe, sufficiently large away from
xe and fast dynamics must be penalized sufficiently strong

Lars Grüne, Stabilization with discounted optimal control, p. 15
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Discussion of condition (ii)

Assumption (ii): There exists K > δ with

KVδ(x) ≤ min
u∈U

`(x, u)

For δ < 1/γ, this inequality follows from the stability condition
for model predictive control

V0(x) ≤ γmin
u∈U

`(x, u)

This condition, in turn, is always satisfied for suitable ` if the
system is finite time or exponentially controllable to xe

Lars Grüne, Stabilization with discounted optimal control, p. 16
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Example

ẋ1 = −x1 + x1x2

− ux1

ẋ2 = x2 − x1x2

 predator-prey model (x1 = predator, x2 = prey) which for
u = 0 has an equilibrium at (1, 1)T and periodic trajectories.

The u-term models that the predators are hunted for

The goal is to stabilize xe = (1, 1.26)T which is an equilibrium
for ue = 0.26. To this end we use U = [0, 1] and the running
cost

`(x, u) = ‖x− xe‖22 + |u− ue|2

Numerical computations were performed for different δ using
the occupational measure approach of V. Gaitsgory et al.

Lars Grüne, Stabilization with discounted optimal control, p. 17
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ẋ2 = x2 − x1x2

 predator-prey model (x1 = predator, x2 = prey) which for
u = 0 has an equilibrium at (1, 1)T and periodic trajectories.

The u-term models that the predators are hunted for

The goal is to stabilize xe = (1, 1.26)T which is an equilibrium
for ue = 0.26. To this end we use U = [0, 1] and the running
cost

`(x, u) = ‖x− xe‖22 + |u− ue|2

Numerical computations were performed for different δ using
the occupational measure approach of V. Gaitsgory et al.
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Example

Uncontrolled
Lars Grüne, Stabilization with discounted optimal control, p. 18



Example

= 0.5δ

= 1.0δ

= 0.2δ
= 0.1δ

Stabilized at xe = (1, 1.26)T
Lars Grüne, Stabilization with discounted optimal control, p. 18



Conclusions

Discounted optimal control can be used for the
stabilization of nonlinear systems

Sufficient stability conditions are similar to those for
model predictive control

Effects of approximation errors for computing the optimal
control can be rigorously incorporated in the analysis

Reference: V. Gaitsgory, L. Grüne, N. Thatcher
Stabilization with discounted optimal control

Preprint available from num.math.uni-bayreuth.de
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Auguri, Maurizio!
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