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Introduction

Granular matter

A shared interest with Maurizio in the last ten years:
sandpile growth on open tables or tables with walls
(finite difference and semi-Lagrangian schemes),
dunes evolution (modeling and simulations, in progress).

Reason of interest: an example of complex system, large set of
elements whose total behaviour is not just the sum of each single
particle behaviour, but depends on self-organization of the total mass,
showing nonlocal phenomena. Different scales are involved, and
different models are possible, ranging from microscopic to
macroscopic description.

Connections: traffic flows, crowd dynamics, mass transportation,
mean field games
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Introduction

The silo problem

Granular matter: not only sand (cereals, sugar, rocks, pills, etc.)

Crucial problem in the applications: its storage, that is, filling and
emptying a container

Granular materials adapt their shape to the container (like a fluid),
but the free surface strictly depends on the way they are poured
(intensity and dislocation of the sources)

Moreover, the pressure on the bottom does not grow linearly with the
height of the pile, since part of it discharges through arcs of grains
against the walls. This has to be well considered in the construction
of the container. Unpleasant consequence: silos can suddenly explode
and collapse (thousands of cases in the USA every year)
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S. Finzi Vita (Sapienza Università di Roma) Numerics for the silo problem Rome, December 4, 2014 4 / 31



Introduction

The silo problem

Granular matter: not only sand (cereals, sugar, rocks, pills, etc.)

Crucial problem in the applications: its storage, that is, filling and
emptying a container

Granular materials adapt their shape to the container (like a fluid),
but the free surface strictly depends on the way they are poured
(intensity and dislocation of the sources)

Moreover, the pressure on the bottom does not grow linearly with the
height of the pile, since part of it discharges through arcs of grains
against the walls. This has to be well considered in the construction
of the container. Unpleasant consequence: silos can suddenly explode
and collapse (thousands of cases in the USA every year)
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Introduction

A recent case in Italy (september 27, 2014)
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Introduction The Hadeler-Kuttler model for the filling of a silo

The HK model for granular matter in a silo
[Hadeler-Kuttler, ’99]

vt = β∇ · (v ∇u)− γ(α− |∇u|) v + f in Ω× (0,T ]

ut = γ(α− |∇u|) v in Ω× (0,T ]

u(x , 0) = u0(x) , v(x , 0) = 0 in Ω

∂u

∂n
= 0 on ∂Ω× (0,T ]

(1)

Ω: cross-section (base) of the silo

f : (small) vertical source, with support Sf ⊂ Ω

u: standing layer; v : rolling layer;

α: angle of repose; β, γ: mobility and collision rates of grains
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Introduction The Hadeler-Kuttler model for the filling of a silo

BC for the silo: a motivation

Mass conservation in the absence of the source (f ≡ 0) implies:

0 =
d

dt

∫
Ω

(u + v) dx =

∫
Ω
β∇ · (v ∇u) =

∫
∂Ω
βv
∂u

∂n
dσ ,

which suggests

v
∂u

∂n
= 0 on ∂Ω . (2)

On the other hand, the v layer flows in the direction of −∇u, that is ∂Ω is
an outflow region for it, and we cannot prescribe BC on it. Then (2)
reduces to a pure homogeneous Neumann condition on u.
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Introduction Existence and characterization of similarity solutions

Similarity solutions

Definition

We call a pair of functions (U(x),V (x)) a similarity solution of (1) if there exist a
time t0 and a constant c such that the functions

u(x , t) = U(x) + c(t − t0) , v(x , t) = V (x) (3)

solve the system for any t ≥ t0.

In other words, after a certain time the free surface of the standing layer keep
growing without changing its shape anymore, at a constant rate c , while the
rolling layer stabilizes itself.

Theorem

If f = f (x) (the source is constant in time), there exists a similarity solution
(U(x),V (x)) of (1) (U unique up to an additive constant), with

c =
1

|Ω|

∫
Ω

f dx (average precipitation) (4)
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Introduction Existence and characterization of similarity solutions

Proof

Replacing (3) in (1) we get
0 = β∇ · (V ∇U)− γ(α− |∇U|) V + f

c = γ(α− |∇U|) V
(5)

Summing up the two equations we obtain

c = β∇ · (V ∇U) + f ;

from Green formula and boundary condition, it follows by integration

0 = −c |Ω|+
∫

Ω
f dx ⇒ c =

1

|Ω|

∫
Ω

f dx . (6)
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Introduction Existence and characterization of similarity solutions

Proof (2)

If now we set W = V∇U and g = (f − c)/β, we see that W has to solve
∇ ·W = −g in Ω

W · n = 0 on ∂Ω
(7)

with
∫

Ω g dx = 0. We look for W in the form of W = ∇ψ, so that the
potential ψ solves a semidefinite Neumann problem for the Laplacian:

−∆ψ = g in Ω

∂ψ
∂n = 0 on ∂Ω

(8)

which has a solution (unique up to an additive constant) for the zero mean
property of g .
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Introduction Existence and characterization of similarity solutions

Proof (3)

From ψ we can uniquely determine W = ∇ψ; then from the second
equation in (5):

V =
c

γα
+

1

α
|∇U|V =

1

γα|Ω|

∫
Ω

f dx +
1

α
|W |,

and

∇U =
W

V
,

so that U is determined up to an additive constant.

(Q.E.D)
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Introduction Existence and characterization of similarity solutions

1D formulas

In one dimension one can get from that explicit integral expressions for the
similarity solutions.
If for example Ω coincides with the interval (0, L), one has

V (x) =
1

γαL

∫ L

0
f (y)dy +

1

α
|W (x)| (9)

and

Ux(x) = α
W (x)

1
γL

∫ L
0 f (y)dy + |W (x)|

, (10)

where

W (x) =
x

βL

∫ L

0
f (y)dy − 1

β

∫ x

0
f (y)dy .
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Introduction Existence and characterization of similarity solutions

These expressions give several informations about similarity solutions:

if the source is constant (f (x) = k for any x ∈ (0, L)), then
W (x) ≡ 0, V (x) = k/(γα) and Ux ≡ 0 (flat free surface);

for any nonzero source V (x) > 0 everywhere; at the boundary:

V (0) = V (L) =
1

γαL

∫ L

0
f (y)dy ;

|Ux | ≤ α everywhere, that is the slope of the standing layer never
exceeds the angle of repose, and Ux = 0 at the boundary;

the rolling layer thickness is directly proportional to the source
intensity and inversely proportional to α;
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Introduction Existence and characterization of similarity solutions

A point source at the center: the log profile

Let Ω = (0, L) and f = kδL/2. Then

V (x) =
k

γαL
+

k

αβL
min{x , L− x} (11)

and

U(x) =


αγ
β (x − log(1 + x)) if x ≤ L/2

αγ
β (L− x − log(1 + L− x)) if x > L/2

(12)
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Introduction Existence and characterization of similarity solutions

A 2D example: a point source in a cylindrical silo

Let Ω = BR(0), and f = δ(0,0); similarity solutions are radial functions :

V (r) =
c

γα
(1 +

γ

2βr
(R2 − r 2)) (13)

Ur (r) = −α R2 − r 2

R2 − r 2 + 2βr/γ
[Ur (0) = −α]. (14)
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Finite element approximation of similarity solutions

Numerical computation of similarity solutions

1) Solve the semidefinite Neumann problem (8) (its weak formulation) by
P1 finite elements on a regular triangulation Th of Ω.

ψh ∈ Vh,

∫
Ω
∇ψh · ∇φ dx =

∫
Ω

gφ dx , ∀φ ∈ Vh. (15)

where Vh ⊂ H1(Ω) is the space of piecewise linear functions on Th.
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Finite element approximation of similarity solutions

Numerical computation of similarity solutions
1) Solve the semidefinite Neumann problem (8) (its weak formulation) by
P1 finite elements on a regular triangulation Th of Ωh ⊂ Ω.

If Ω is not a polygonal domain, it has to be replaced by a suitable set
Ωh ⊂ Ω (union of the triangular elements of Th); Ωh will be closed to Ω,
but now g loses its zero mean property on Ωh, so that the discrete
problem could not be solvable. Then we have to solve:

ψh ∈ Vh,

∫
Ωh

∇ψh · ∇φ dx =

∫
Ωh

ghφ dx , ∀φ ∈ Vh. (16)

where

gh = f − ch, ch =
1

|Ωh|

∫
Ωh

f dx .

Now ∫
Ωh

gh dx = 0 for any h, and lim
h→0

gh = g ,

so that (16) becomes solvable (see e.g. Capuzzo Dolcetta-FV ’88).
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Finite element approximation of similarity solutions

Assume for simplicity: α = β = γ = 1.

2) Compute the p.w. constant vector on Th: wh = ∇ψh.

Then its euclidean norm |wh| belongs to the space Wh ⊂ L2(Ω) of p.w.
constant functions on Th, as well as

vh = ch + |wh| = ch + |∇ψh| . (17)

3) From wh = vh∇uh, compute ∇uh in any triangle of Th.

zk = ∇uh|τk =
wh

vh
|τk , ∀τk ∈ Th . (18)
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Finite element approximation of similarity solutions

4) Recover uh ∈ Vh from its gradient.

in one dimension one can directly integrate the resulting step function
on Th, fixing for example the zero value at the left boundary node to
ensure uniqueness, so that:

uh(xi ) =

∫ xi

0
(uh)x dx =

i∑
k=1

∫ xk

xk−1

zk = h
i∑

k=1

zk

in two dimensions come back to problem (16), replace ∇ψh with its
known expression in terms of vh ∈Wh, and solve the discrete
variational problem

uh ∈ Vh,

∫
Ωh

vh∇uh · ∇φ dx =

∫
Ωh

ghφ dx , ∀φ ∈ Vh. (19)
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A finite difference scheme for the filling process

A numerical scheme for the filling process

In order to verify that similarity solutions attract the growing profiles
of the heaps in the dynamic process of filling the silo, we implemented
a numerical scheme for the complete system (1)-(2), by adapting the
finite difference approach used in Falcone-FV ’06 for the growing
sandpiles on an open table.

We put a stopping criterium which ends the evolution when the
standing layer does not change anymore its shape, that is when

(un+1
i − un

i ) ' ch∆t ∀i

To compare the reached solutions with the already computed
similarity solutions we bring back both to the bottom of the silo,
through the transformation

ŵi = wi −min
i

wi
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A finite difference scheme for the filling process

1D case
Let Ω = (0, 1), h = 1/(N − 1) the space step, ∆t the time step, xi

(i = 1, ..,N) the nodes of a h-uniform mesh. Then the scheme reads as
vn+1
i = vn

i + ∆t(Gi − (1− |Dun
i |)vn

i + fi )

un+1
i = un

i + ∆t(1− |Dun
i |)vn

i

u0
i = v 0

i = 0 ∀i

(20)

where un
i , v

n
i ,G

n
i denote the approximate values of u, v and the flux

derivative (vux)x at time n∆t in xi ; the latter is the upwind approximation
in the direction of the sign of Dui , that is

Gn
i =


(vn

i+1Dun
i+1 − vn

i Dun
i )/h if Dun

i > 0

(vn
i Dun

i − vn
i−1Dun

i−1)/h if Dun
i < 0

[In each node xi , we define Dui = maxmod(D−ui ,D
+ui ).]
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A finite difference scheme for the filling process

2D case: square or rectangular cross section for the silo.

Decompose the flux term as

∇ · (v∇u) = (vux)x + (vuy )y

Apply the 1D approach in each direction.

The boundary condition reduces to uy = 0 on the north and south
sides, to ux = 0 on the east and west sides. At the four vertices a
good compromise is to assume uν = 0 where ν denotes the direction
of the diagonal at that point.
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Numerical experiments 1D

Central source: Sf = (0.45, 0.55)
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Numerical experiments 1D

Asymmetric source: Sf = (0.5, 0.6)
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Numerical experiments 1D

Disconnected source: Sf = (0.25, 0.35) ∪ (0.65, 0.75)
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Numerical experiments 1D
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Numerical experiments 2D

Test 1: Sf = B0.1(0.5, 0.5) (left: U, right: V, up: FE, down: FD)
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Numerical experiments 2D

Test 2: Sf = B0.1(0.6, 0.5) (left: U, right: V, up: FE, down: FD)
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Numerical experiments 2D

Test 3: Sf = B0.1(0.3, 0.3) ∪ B0.1(0.7, 0.7) (left: U, right: V, up: FE, down: FD)
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Numerical experiments 2D

Some movies ....
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Numerical experiments 2D
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