Independent and Patchy sub-domains in a Hamilton-Jacobi Equation

Adriano Festa and several Maurizio's collaborators

4th December 2014
Numerical methods for PDEs
Conference on the occasion of Maurizio Falcone's 60th birthday

ITN SADCO
Initial Training Network
Sensitivity Analysis for Deterministic Controller Design

A 'sparse' story

1: Rome: 2011
Patchy Decomposition

Patchy Decomposition

- Cacace, Cristiani, Falcone and Picarelli, A patchy dynamic programming scheme for a class of Hamilton-Jacobi-Bellman equation, SIAM J. Sc. Comp. (2012)
- Reconstruction of some "Sub-Domains of Invariance" through the resolution of the problem on a course grid passing by the synthesis of the controls
- Goal: solve the problem in parallel on a fine grid
- Good point: Some cases of interest where this idea works well
- Open questions:
- Convergence, error introduced,
- Extension of this idea to a wider class of problems

Patchy Decomposition: example

Figure: Some steps of the Patchy Algorithm (thanks to the authors)

2: London: 2013

Decomposition for Differential Games

Decomposition for Differential Games

(with Vinter, preprint 2014)
Let us consider, for an H not necessarily convex

$$
\begin{cases}\lambda v(x)+H(x, D v(x))=0 & x \in \Omega \\ v(x)=g(x) & x \in \Gamma\end{cases}
$$

Considered a decomposition of the boundary $\Gamma:=\bigcup_{i \in \mathbb{I}} \Gamma_{i}$, with $\mathcal{I}:=\{1, \ldots m\} \subset \mathbb{N}$, we call $v_{i}: \bar{\Omega} \rightarrow \mathbb{R}$ a Lipschitz continuous viscosity solution of the problem

$$
\begin{cases}\lambda v_{i}(x)+H\left(x, D v_{i}(x)\right)=0 & x \in \Omega \\ v_{i}(x)=g_{i}(x) & x \in \Gamma\end{cases}
$$

where the functions $g_{i}: \Gamma \rightarrow \mathbb{R}$ is a regular function such that

$$
\begin{aligned}
& g_{i}(x)=g(x), \text { if } x \in \Gamma_{i}, \\
& g_{i}(x)>g(x), \text { otherwise. }
\end{aligned}
$$

Define

$$
\begin{array}{rcc}
I(x):= & \left\{i \in\{1, \ldots, m\} \mid v_{i}(x)=\min _{j} v_{j}(x)\right\} \\
\Sigma:= & \left\{x \in \mathbb{R}^{N} \mid \operatorname{card}(I(x))>1\right\}
\end{array}
$$

Theorem

Assume the following condition satisfied: for arbitrary $x \in \Sigma$, any convex combination $\left\{\alpha_{i} \mid i \in I(x)\right\}$ and any collection of vectors $\left\{p_{i} \in \partial^{L} v_{i}(x) \mid i \in I(x)\right\}$ we have

$$
\begin{equation*}
\lambda \bar{v}+H\left(x, \sum_{i} \alpha_{i} p_{i}\right) \leq 0 \tag{E}
\end{equation*}
$$

Then, for all $x \in \mathbb{R}^{N} \backslash \mathcal{T}$,

$$
v(x)=\bar{v}(x):=\min _{i}\left\{v_{1}(x), \ldots, v_{m}(x)\right\}
$$

3: Paris: 2014 Independent subdomains reconstruction

Differential Games Problem

Let the dynamics be given by

$$
\left\{\begin{array}{l}
\dot{y}(t)=f(y(t), a(t), b(t)), \quad \text { a.e } \\
y(0)=x
\end{array}\right.
$$

$x \in \Omega \subseteq \mathbb{R}^{n}$ open, $a, b \in \mathcal{A}, \mathcal{B}=\left\{\mathbb{R}^{+} \rightarrow A\right.$, measureable $\}, A, B$ compact sets. A solution is a trajectory $y_{x}(t, a(t), b(t))$.

The goal is to find the sup - inf optimum over \mathcal{A}, \mathcal{B} of

$$
\begin{aligned}
& J_{x}(a, b):=\int_{0}^{\tau_{x}(a, b)} I\left(y_{x}(s, a(s), b(s)), a(s), b(s)\right) e^{-\lambda s} d s \\
&+e^{-\lambda \tau_{x}(a, b)} g\left(y_{x}\left(\tau_{x}(a, b)\right)\right), \quad \lambda \geq 0
\end{aligned}
$$

where $\tau_{x}(a, b):=\min \left\{t \in[0,+\infty) \mid y_{x}(t, a(t), b(t)) \notin \Omega\right\}$.
the value function of this problem is

$$
\begin{gathered}
v(x):=\sup _{\phi \in \Phi} \inf _{a \in \mathcal{A}} J_{x}(a, \phi(a)), \\
\Phi:=\{\phi: \mathcal{A} \rightarrow \mathcal{B}: t>0, a(s)=\tilde{a}(s) \text { for all } s \leq t \\
\\
\quad \text { implies } \phi[a](s)=\phi[\tilde{a}](s) \text { for all } s \leq t\} .
\end{gathered}
$$

we will assume the Isaacs' conditions verified.

Theorem

The value function of the problem is a viscosity solution of the HJ equation associated with

$$
H(x, p):=\min _{b \in \mathcal{B}} \max _{a \in \mathcal{A}}\{-f(x, a, b) \cdot p-I(x, a, b)\}
$$

Independent Sub-Domains

Definition
A closed subset $\Sigma \subseteq \bar{\Omega}$ is an independent sub-domain of the problem (11) if, given a point $x \in \Sigma$ and an optimal control $(\bar{a}(t), \bar{\phi}(\bar{a}(t))$
(i.e. $J_{X}(\bar{a}, \bar{\phi}(\bar{a})) \leq J_{x}(a, \bar{\phi}(a))$ for every choice of $a \in \mathcal{A}$, and $J_{x}(\bar{a}, \bar{\phi}(\bar{a})) \geq J_{x}(\bar{a}, \phi(\bar{a}))$ for every choice of $\left.\phi \in \Phi\right)$,
the trajectory $y_{x}(\bar{a}(t), \bar{\phi}(\bar{a}(t))) \in \sum$ for $t \in\left[0, \tau_{x}(\bar{a}, \bar{\phi}(\bar{a}))\right]$.

Independent Domains Decomposition

Proposition

Given a collection of $n-1$ dimensional subsets $\left\{\Gamma_{i}\right\}_{i=\mathcal{I}}$ such that $\Gamma=\cup_{i=1}^{m} \Gamma_{i}$, the sets defined as

$$
\Sigma_{i}:=\left\{x \in \bar{\Omega} \mid v_{i}(x)=v(x)\right\}, \quad i=1, \ldots, m
$$

where v_{i}, v are defined accordingly to Theorem (1), are independent sub-domains of the original problem.

Proof.

By contradiction using the DPP.

Example of Reconstruction (I)

Figure: Distance function: Exact decomposition and two (of the four) approximated independent subsets found with a course grind of 15^{2} points.

Example of Reconstruction (II)

Figure: Van Der Pol: Exact decomposition and two (of the four) approximated independent subsets with a course grind of 15^{2} points.

Conclusions

- In this last years the Patchy approach aroused a large interest in the Numerical HJ community
- Patchy approach is showing to be effective in various (non trivial) situations
- Independent domains reconstruction seems to be a good modification/tool to have a proof of convergence
- add sparsity? \rightarrow Linz (Austria)?

The other side of the coin..

Thank you.

