Independent and Patchy sub-domains in a Hamilton-Jacobi Equation

Adriano Festa and several Maurizio's collaborators

4th December 2014

Numerical methods for PDEs Conference on the occasion of Maurizio Falcone's 60th birthday

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A 'sparse' story

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

1: Rome: 2011 Patchy Decomposition

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Patchy Decomposition

- Cacace, Cristiani, Falcone and Picarelli, *A patchy dynamic programming scheme for a class of Hamilton-Jacobi-Bellman equation*, SIAM J. Sc. Comp. (2012)

- Reconstruction of some "Sub-Domains of Invariance" through the resolution of the problem on a course grid passing by the synthesis of the controls
- Goal: solve the problem in parallel on a fine grid
- Good point: Some cases of interest where this idea works well
- Open questions:
 - Convergence, error introduced,
 - Extension of this idea to a wider class of problems

(ロ) (同) (三) (三) (三) (○) (○)

Patchy Decomposition: example

Figure: Some steps of the *Patchy Algorithm* (thanks to the authors)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2: London: 2013 Decomposition for Differential Games

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Decomposition for Differential Games

(with Vinter, preprint 2014)

Let us consider, for an H not necessarily convex

$$\left\{ egin{array}{ll} \lambda v(x) + \mathcal{H}(x,\mathcal{D}v(x)) = 0 & x \in \Omega \ v(x) = g(x) & x \in \Gamma \end{array}
ight.$$

Considered a **decomposition of the boundary** $\Gamma := \bigcup_{i \in \mathbb{I}} \Gamma_i$, with $\mathcal{I} := \{1, ..., m\} \subset \mathbb{N}$, we call $v_i : \overline{\Omega} \to \mathbb{R}$ a Lipschitz continuous viscosity solution of the problem

$$\left\{ egin{array}{ll} \lambda v_i(x) + H\left(x, Dv_i(x)
ight) = 0 & x \in \Omega \ v_i(x) = g_i(x) & x \in \Gamma \end{array}
ight.$$

where the functions $g_i : \Gamma \to \mathbb{R}$ is a regular function such that

$$g_i(x) = g(x), \text{ if } x \in \Gamma_i,$$

 $g_i(x) > g(x), \text{ otherwise.}$

Define

$$\begin{split} I(x) &:= \{ i \in \{1, \dots, m\} | v_i(x) = \min_j v_j(x) \}, \\ \Sigma &:= \{ x \in \mathbb{R}^N | card(I(x)) > 1 \}. \end{split}$$

Theorem

Assume the following condition satisfied: for arbitrary $x \in \Sigma$, any convex combination $\{\alpha_i | i \in I(x)\}$ and any collection of vectors $\{p_i \in \partial^L v_i(x) | i \in I(x)\}$ we have

$$\lambda \bar{\mathbf{v}} + H\left(\mathbf{x}, \sum_{i} \alpha_{i} \mathbf{p}_{i}\right) \leq \mathbf{0}.$$
 (E)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Then, for all $x \in \mathbb{R}^N \setminus \mathcal{T}$,

 $v(x) = \bar{v}(x) := \min_{i} \{v_1(x), \ldots, v_m(x)\}.$

3: Paris: 2014 Independent subdomains reconstruction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Differential Games Problem

Let the dynamics be given by

$$\begin{cases} \dot{y}(t) = f(y(t), a(t), b(t)), & a.e. \\ y(0) = x, \end{cases}$$

 $x \in \Omega \subseteq \mathbb{R}^n$ open, $a, b \in \mathcal{A}, \mathcal{B} = \{\mathbb{R}^+ \to A, measureable\}, A, B$ compact sets. A solution is a trajectory $y_x(t, a(t), b(t))$.

The goal is to find the sup - inf optimum over \mathcal{A} , \mathcal{B} of

$$egin{aligned} J_x(a,b) &:= \int_0^{ au_x(a,b)} l(y_x(s,a(s),b(s)),a(s),b(s))e^{-\lambda s}ds \ &+ e^{-\lambda au_x(a,b)}g(y_x(au_x(a,b))), \quad \lambda \geq 0, \end{aligned}$$

where $\tau_x(a, b) := \min \{t \in [0, +\infty) \mid y_x(t, a(t), b(t)) \notin \Omega\}$.

the value function of this problem is

$$v(x) := \sup_{\phi \in \Phi} \inf_{a \in \mathcal{A}} J_x(a, \phi(a)),$$

 $\Phi := \{ \phi : \mathcal{A} \to \mathcal{B} : t > 0, a(s) = \tilde{a}(s) \text{ for all } s \le t \\ \text{ implies } \phi[a](s) = \phi[\tilde{a}](s) \text{ for all } s \le t \}.$

we will assume the Isaacs' conditions verified.

Theorem

The value function of the problem is a viscosity solution of the HJ equation associated with

$$H(x,p) := \min_{b \in \mathcal{B}} \max_{a \in \mathcal{A}} \{-f(x,a,b) \cdot p - I(x,a,b)\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Independent Sub-Domains

Definition

A closed subset $\Sigma \subseteq \overline{\Omega}$ is an independent sub-domain of the problem (11) if, given a point $x \in \Sigma$ and an optimal control $(\overline{a}(t), \overline{\phi}(\overline{a}(t)))$

(i.e. $J_x(\bar{a}, \bar{\phi}(\bar{a})) \leq J_x(a, \bar{\phi}(a))$ for every choice of $a \in A$, and $J_x(\bar{a}, \bar{\phi}(\bar{a})) \geq J_x(\bar{a}, \phi(\bar{a}))$ for every choice of $\phi \in \Phi$),

the trajectory $y_x(\bar{a}(t), \bar{\phi}(\bar{a}(t))) \in \Sigma$ for $t \in [0, \tau_x(\bar{a}, \bar{\phi}(\bar{a}))]$.

Independent Domains Decomposition

Proposition

Given a collection of n - 1 dimensional subsets $\{\Gamma_i\}_{i=\mathcal{I}}$ such that $\Gamma = \bigcup_{i=1}^m \Gamma_i$, the sets defined as

 $\Sigma_i := \{ x \in \overline{\Omega} | v_i(x) = v(x) \}, \quad i = 1, ..., m$

A D F A 同 F A E F A E F A Q A

where v_i , v are defined accordingly to Theorem (1), are independent sub-domains of the original problem.

Proof.

By contradiction using the DPP.

Example of Reconstruction (I)

Figure: Distance function: Exact decomposition and two (of the four) approximated independent subsets found with a course grind of 15^2 points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example of Reconstruction (II)

Figure: Van Der Pol: Exact decomposition and two (of the four) approximated independent subsets with a course grind of 15² points.

・ロット (雪) (日) (日)

Conclusions

- In this last years the Patchy approach aroused a large interest in the Numerical HJ community
- Patchy approach is showing to be effective in various (non trivial) situations
- Independent domains reconstruction seems to be a good modification/tool to have a proof of convergence

(ロ) (同) (三) (三) (三) (○) (○)

► add sparsity? → Linz (Austria)?

The other side of the coin..

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

