Photometric 3D-reconstruction: Towards industrial applications

Colloquium Maurizio'60

Jean-Denis DUROU – Yvain QUÉAU

IRIT, Toulouse

Jean-Denis DUROU (IRIT, Toulouse)

- Shape-from-X techniques
- 2 Photometric techniques
- 3 Shape-from-shading
- Photometric stereo

Outline

- 2 Photometric techniques
- 3 Shape-from-shading
- Photometric stereo

< 口 > < 同 >

$\frac{\text{Shape-from-X techniques}}{\text{3D-scanning} \neq \text{3D-reconstruction}}$

3D-scanning $\equiv 3D$ -reconstruction + Color estimation

Some applications of 3D-reconstruction

- Architecture
- Cultural heritage
- Metrology
- Augmented reality

Different kinds of 3D-reconstruction techniques

- Palpation

 Mechanical process
- Telemeters \equiv Time of flight of laser pulses
- Kinect \equiv Projection of an infra-red pattern
- Photographic techniques
 Shape-from-X

$\frac{\text{Shape-from-X techniques}}{\text{3D-scanning} \neq \text{3D-reconstruction}}$

3D-scanning $\equiv 3D$ -reconstruction + Color estimation

Some applications of 3D-reconstruction

- Architecture
- Cultural heritage
- Metrology ⇒ In our laboratory
- Augmented reality \Rightarrow In our laboratory

Different kinds of 3D-reconstruction techniques

- Palpation

 Mechanical process
- Telemeters \equiv Time of flight of laser pulses
- Kinect \equiv Projection of an infra-red pattern
- Photographic techniques
 Shape-from-X

$\frac{\text{Shape-from-X techniques}}{\text{3D-scanning} \neq \text{3D-reconstruction}}$

3D-scanning $\equiv 3D$ -reconstruction + Color estimation

Some applications of 3D-reconstruction

- Architecture
- Cultural heritage
- Metrology ⇒ In our laboratory
- Augmented reality \Rightarrow In our laboratory

Different kinds of 3D-reconstruction techniques

- Palpation

 Mechanical process
- Telemeters \equiv Time of flight of laser pulses
- Kinect = Projection of an infra-red pattern
- Photographic techniques = Shape-from-X ⇒ In our laboratory

Shape-from-X techniques

Shape-from-X techniques

	Geometric techniques	Photometric techniques
Mono-view techniques $(n = 1 \text{ image})$	Shape-from-structured light Shape-from-shadow Shape-from-contour Shape-from-texture	Shape-from-shading
Multi-view techniques (n > 1 images)	Stereoscopy Structure-from-motion Shape-from-silhouettes Shape-from-defocus	Photometric Stereo

Shape-from-X techniques

Shape-from-X techniques

	Geometric techniques	Photometric techniques
Mono-view techniques $(n = 1 \text{ image})$	Shape-from-structured light Shape-from-shadow Shape-from-contour Shape-from-texture	Shape-from-shading
Multi-view techniques $(n > 1 \text{ images})$	Stereoscopy Structure-from-motion Shape-from-silhouettes Shape-from-defocus	Photometric Stereo

Outline

- 3 Shape-from-shading
- Photometric stereo

Photometric techniques

Basic principle of the photometric techniques

Data provided by an atomic force microscope (AFM)

Depth map (Kinect)

Image (camera)

Paradox of the human vision

- Depth map = Solution of the 3D-reconstruction problem
- We better infer the 3D-shape from the image!

Photometric techniques Image model: make your choice

 $Image \equiv Scene + Light + Camera$

Assumption on the scene

- Simplest: Lambert (purely diffusing)
- More complex: Phong, Blinn (diffusing and specular)

Assumption on the light

- Simplest: parallel and uniform (vector S)
- More complex: nearby source

Assumption on the camera

- Simplest: orthographic
- More complex: perspective

< 口 > < 同 > < 三 > < 三 >

Photometric techniques Image model: make your choice

 $Image \equiv Scene + Light + Camera$

Assumption on the scene

- Simplest: Lambert (purely diffusing)
- More complex: Phong, Blinn (diffusing and specular)

Assumption on the light

- Simplest: parallel and uniform (vector S)
- More complex: nearby source

Assumption on the camera

- Simplest: orthographic
- More complex: perspective

< 口 > < 同 > < 三 > < 三 >

Simplest image model

Simplest assumptions

- Scene: Lambert (purely diffusing)
- Light: parallel and uniform (vector S)
- Camera: orthographic

Simplest non-differential model

• Relation between graylevel *I*, albedo ρ and normal *N*: $I = \rho N^{\top} S$ (1)

• Relation between normal N and depth u:

$$N = 1/\sqrt{u_x^2 + u_y^2 + 1} \ [-u_x, -u_y, 1]^{\top}$$
 (2)

Simplest differential model

• (1) + (2)
$$\Rightarrow I = \rho \left(-S_1 u_x - S_2 u_y + S_3 \right) / \sqrt{u_x^2 + u_y^2 + 1}$$
 (3)

Non-linear PDE in u

Jean-Denis DUROU (IRIT, Toulouse)

Outline

- Shape-from-X techniques
- 2 Photometric techniques
- 3 Shape-from-shading
 - Photometric stereo

Shape-from-shading

Even simpler image model

Additional assumptions

- n = 1 image \Rightarrow Shape-from-shading (SFS)
- Frontal light: $S = [0, 0, 1]^{\top} \Rightarrow$ No shadow
- Known albedo: $\rho \equiv 1$

Simplest non-differential SFS model

• (1)
$$\Rightarrow$$
 $I = N^{\top} S$

• Scalar product $N^{\top} S$: called "shading"

Simplest differential SFS model

• (3)
$$\Rightarrow |\nabla u|^2 = \frac{1}{l^2} - 1$$

• Eikonal equation \Rightarrow 50% of the papers on SFS

э.

・ロン ・雪 と ・ ヨ と ・

Shape-from-shading

Resolution of the eikonal equation

PDE approach [Falcone and Sagona, ICIAP 1997]

- Boundary condition required
- Exact solution
- Not easy to code

Optimisation approach [Daniel and Durou, ACCV 2000]

- Boundary condition not required
- Approximated solution
- Not easy to code

Linearization of the model [Tsai and Shah, CVPR 1992]

- Boundary condition required
- Approximated solution
- Easy to code

Simple model or simplistic model?

PDE approach (Falcone and Sagona)

Jean-Denis DUROU (IRIT, Toulouse)

Simple model or simplistic model?

Optimisation approach (Daniel and Durou)

Jean-Denis DUROU (IRIT, Toulouse)

Simple model or simplistic model?

Linearization of the model (Tsai and Shah)

Shape-from-shading

More realistic image models

Assumption on the scene

- Simplest: Lambert (purely diffusing)
- More complex: Phong, Blinn (diffusing and specular)

Assumption on the light

- Simplest: parallel and uniform (vector S)
- More complex: nearby source

Assumption on the camera

- Simplest: orthographic
- More complex: perspective

But similar results, because SFS is ill-posed

Outline

- Shape-from-X techniques
- Photometric techniques
- 3 Shape-from-shading

• • • • • • • • • • • •

Photometric stereo (PS): example of data

$$I^i =
ho N^{ op} S^i, \quad i = 1, 2, 3$$

Photometric stereo (PS): example of results

< 17 >

● Shape ⇒ Visually satisfactory

۲

Jean-Denis DUROU (IRIT, Toulouse)

Photometric stereo (PS): example of results

- Shape ⇒ Visually satisfactory
- Albedo ⇒ Should be uniform

Photometric stereo (PS): example of results

Shape ⇒ Visually satisfactory

● Albedo ⇒ Should be uniform ⇒ Refine the image model

-∃= >

Our compromise between realism and tractability

Assumption on the scene

- Simplest: Lambert (purely diffusing)
- More complex: Phong, Blinn (diffusing and specular)

Assumption on the light

- Simplest: parallel and uniform (vector S)
- More complex: nearby source

Assumption on the camera

- Simplest: orthographic
- More complex: perspective

・ロト ・四ト ・ヨト ・ヨト

Photometric stereo: three recent applications

Virtual glasses trying

- Augmented reality + Metrology
- Industrial application
- Fitting Box company, Toulouse

Dermatological and cosmetic studies

- Metrology
- Industrial application
- Pixience company, Toulouse

3D-scanning from screen-watching

- Augmented reality
- Multimedia application

Conclusion and Perspectives

Importance of the number *n* of images

- Case n = 1 (SFS) \Rightarrow III-posed problem
- Case $n \ge 3$ (PS) \Rightarrow Well-posed problem
- Intermediate case n = 2 (PS2) \Rightarrow cf. Roberto Mecca's talk

Photometric stereo (PS): some tricks towards applications

- Lambert's law is not realistic: Many outliers (shadows, etc.), but n ≈ 20 ⇒ Robustness
- Light model is crucial (nearby sources): Augmented reality (qualitative) < Metrology (quantitative)

Perspectives

- More realistic scene model \Rightarrow cf. Silvia Tozza's talk
- Real-time PS: the scene does not have to be fixed anymore