
SEMIDISCRETE AND FINITE
DIFFERENCES APPROXIMATION OF

MEAN FIELD GAMES

Italo Capuzzo Dolcetta
Sapienza Università di Roma
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Italo Capuzzo Dolcetta Sapienza Università di Roma Maurizio 60. Roma, December 4, 2014



1987
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Italo Capuzzo Dolcetta Sapienza Università di Roma Maurizio 60. Roma, December 4, 2014



1997
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A classical optimization problem

Given a time interval [0,T ] consider the classical Mayer type problem

inf

∫ T

t

[
1

2
|Ẋs |2 + L(Xs)

]
ds + G (XT ) (1)

where X := X t,x is any curve in the Sobolev space W 1,2([t,T ];Rd) such
that XT = x ∈ Rd for t ∈ [0,T ].

Well-known that if L : Rd × [0,T ]→ R, g : Rd → R are continuous and
bounded, then the value function of problem (1) above, i.e.

u(t, x) = inf

{∫ T

t

[
1

2
|Ẋs |2 + L(Xs)

]
ds+G (XT ) ; X ∈W 1,2([0,T ];Rd)

}

is the unique bounded continuous viscosity solution of
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the backward Cauchy problem −∂tu(t, x) + 1
2 |∇xu(t, x)|2 = L(x) in (0,T )× Rd ,

u(T , x) = G (x) in Rd
(2)

of Hamilton-Jacobi type.
The proof that u solves (2) in viscosity sense is a simple consequence of
the following identity, the Dynamic Programming Principle:

u(t, x) = inf

{
u(s,X t,x(s)) +

∫ t

s

L(Xs) ds ; X ∈W 1,2([0,T ];Rd)

}

valid for any given (t, x) ∈ (0,T )× Rd and any s ∈ [t,T ].

Uniqueness of solution of (2) is a non trivial, fundamental result in
viscosity solutions theory (Lions 1982).
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As for optimal curves, easy to check that X
t,x

is optimal for the initial
setting (t, x) if and only if

u(t, x) = u(s,X
t,x

(s)) +

∫ T

s

L(X
t,x

(τ)) dτ for all s ∈ [t,T ]

Moreover, if u is smooth enough, the velocity field of the optimal
paths is the spatial gradient of the solution of the HJ equation.

More precisely,
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The Verification Lemma

Lemma
Let X ∗(t) be such that

Ẋ ∗(s) = −∇xu(s,X ∗(s)) for s ∈ [t,T ] , X ∗(t) = x

Then, ∫ T

t

[
1

2
|Ẋ ∗(s)|2 + L(X ∗(s))

]
ds + G (X ∗(T )) =

= inf

∫ T

t

[
1

2
|Ẋs |2 + L(Xs)

]
ds + G (XT )
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A deterministic mean field game problem

A very interesting new class of optimal control or game problems
concerning the optimal decision policy of an agent acting in a scenario
comprising a continuum of similar agents has become recently object of
interest after the 2006/07 papers by Lasry and Lions. Related ideas have
been developed independently in the engineering literature, and at about
the same time, by Huang, Caines and Malhamé. See also for more recent
developments:

I P.-L. Lions, Cours au Collège de France www.college-de-france.fr.

I Camilli, Fabio; Capuzzo Dolcetta, Italo; Falcone, Maurizio Preface
[Special issue on mean field games]. Netw. Heterog. Media 7 (2012)

I Bardi, Martino; Caines, Peter E.; Capuzzo Dolcetta, Italo Preface:
DGAA special issue on mean field games. Dyn. Games Appl. 3
(2013)

I Bardi, Martino; Caines, Peter E.; Capuzzo Dolcetta, Italo Preface:
DGAA 2nd special issue on mean field games. Dyn. Games Appl. 4
(2014)
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Assume that the running cost L(Xs) depends also on an exhogenous
variable m(s,Xs) modeling the density of population of agents at state
Xs at time s. The new cost criterion is then

inf

∫ T

t

[
1

2
|Ẋs |2 + L(Xs ,m(s,Xs))

]
ds + G (XT ,m(T ,XT )) (3)

Here, m is a non-negative function valued in [0, 1] such that∫
Rd m(s, x) dx = 1 for all s.

The time evolution of m starting from an initial configuration m(0, x) is
governed by the continuity equation

∂tm(t, x)− div (m(t, x)Dxu(t, x)) = 0 in (0,T )× Rd

Note that in the cost criterion the evolution of the measure m enters as

a parameter. The value function of the agent is then given by

inf

∫ T

t

[
1

2
|Ẋs |2 + L(Xs ,m(s,Xs))

]
ds + G (XT ,m(T ,XT )) (4)
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His optimal control is, at least heuristically, given in feedback form by
α∗(t, x) = −∇xu(t, x).

Now, if all agents argue in this way, their repartition will move with a
velocity which is due to the drift term ∇xu(t, x).
This leads eventually to the continuity equation.
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We are therefore led to consider the following system of nonlinear
evolution pde’s for the unknown functions u = u(t, x) , m = m(t, x):

−∂u

∂t
+

1

2
|∇u|2 = L(x ,m) in (0,T )× Rd (5)

∂m

∂t
− div (m∇u) = 0 in (0,T )× Rd (6)

with the initial and terminal conditions

m(0, x) = m0(x), u(T , x) = G (x ,m(T , x)) in Rd (7)
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Three crucial structural features:

I first equation backward, second one forward in time

I the operator in the continuity equation is the adjoint of the
linearization at u of the operator in the HJ operator in the first
equation

I nonlinearity in the HJB equation is convex with respect to |∇u|
I Hamiltonian structure
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The planning problem

An interesting variant of the (MFG) system has been also proposed by
Lions for modeling the presence of a regulator prescribing a target
density to be reached at final time:

∂u

∂t
+

1

2
|∇u|2 = L(x ,m) in (0,T )× Rd

∂m

∂t
− div (m∇u) = 0 in (0,T )× Rd

with the initial and terminal conditions

m(0, x) = m0(x) ≥ 0, m(T , x) = mT (x), in Rd

No side conditions on u.
For L ≡ 0, the above is the equivalent formulation of
Monge-Kantorovich optimal mass transport problem considered by
Benamou-Brenier (2000), see also Achdou-Camilli-CD SIAM J. Control
Optim. (2011), Porretta, pOn the planning problem for the mean field
games system. Dyn. Games Appl. 4 (2014),.
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Stochastic mean field game models

The presence of Brownian random effects in the evolution of the state of
the system gives rise to the the following system ((MFG)) of second
order evolution pde’s:

−∂u

∂t
− ν∆u +

1

2
|∇u|2 = L(x ,m) in (0,T )× Rd (8)

∂m

∂t
− ν∆m − div(m∇u) = 0 in (0,T )× Rd (9)

with the initial and terminal conditions

m(0, x) = m0(x), u(T , x) = G (x ,m(T , x)) in Rd (10)

ν is a positive number.
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A semi-discrete approach to deterministic (MFG)

We describe next a semi-discretization approach to the deterministic
mean field game system:

− ∂u

∂t
+

1

2
|∇u|2 = L(x ,m) in (0,T )× Rd

∂m

∂t
− div (m∇u) = 0 in (0,T )× Rd

with the initial and terminal conditions

m(0, x) = m0(x), u(T , x) = G (x ,m(T , x)) in Rd

To begin let us recall first the semi-discrete approximation to equations
of Hamilton-Jacobi type introduced in CD (1983), see also CD-Ishii
(1984) and CD-Falcone (1989), a prototype of semi-Lagrangian
approximation of convex HJ equations.
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A very good updated source for this is of course:

Falcone M., Ferretti R., Semi-Lagrangian Approximation Schemes for
Linear and Hamilton-Jacobi Equations, Society for Industrial and
Applied Mathematics, Philadelphia, USA (2014)

Fix ∆t > 0, set K = [ T
∆t ] and for n = 0, 1, ...,K − 1 consider piecewise

constant controls
α = (αk)K−1

k=n ∈ Rd×(K−n)

To each α there is an associated discrete dynamics X x,n
k [α] obtained by

the recurrence

Xn = x ; Xk+1 = Xk −∆tαk = x −∆t
k∑

i=n

αi for k = n, ...,K − 1
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A semi-Lagrangian approximation

the discrete cost criterion :

J∆t(α; x , n) = ∆t
K−1∑
k=n

[1

2
|αk |2 + L(k∆t,Xk)

]
+ G (XK )

the discrete value function:

u∆t(n, x) = inf
α

J∆t(α; x , n) ; u∆t(K , x) = G (x)
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I the discrete Hamilton-Jacobi-Bellman equation

u∆t(n, x) = inf
α∈Rd

[
u∆t(n + 1, x −∆t α) +

1

2
∆t|α|2

]
+ ∆t L(nh, x)

forn = 1, ...,K − 1 and, for n = K , the terminal condition

u∆t(K , x) = G (x)

I synthesis : take the argmin in the discrete equation; note that this
does not require any regularity at the discrete level and produces
suboptimal controls for the original problem
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Assume that L : Rd × [0,T ]→ R, g : Rd → R are continuous and

‖L(t, .)‖C 2 ≤ C ∀t ∈ [0,T ], ‖g‖C 2 ≤ C

and set û∆t(t, x) = u∆t([ th ], x). Then,

Theorem

I uniform semiconcavity:
u∆t(n, x + y)− 2u∆t(n, x) + u∆t(n, x − y) ≤ C |y |2, C independent
of h

I uniform convergence: as ∆t → 0+, û∆t converge locally uniformly
in [0,T ]× Rd to the unique viscosity solution of

− ∂u

∂t
+

1

2
|∇u|2 = L(x) , u(T , x) = G (x)

moreover, ||û∆t − u|| ≤ C ∆t

I regularity: u ∈W 1,∞([0,T ]× Rd), u is semiconcave w.r.t x
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Approximation of the continuity equation

We describe now, following Camilli-Silva (2012) an approximation
scheme for the continuity equation :

∂m

∂t
− div (m∇u) = 0 m(0, x) = m0(x)

Denote by P1 the set of probability measures m on Rd s.t∫
Rd

|x |dm(x) < +∞

endowed with Kantorovic-Rubinstein-Wasserstein distance

d1(m1,m2) = sup

{∫
Rd

f (x) d(m1 −m2)(x) : f is -1 Lipschitz

}
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Precisely, the optimal discrete flow starting from x is defined by

Φ∆t
0 (x) = x , Φ∆t

k+1(x) = Φ∆t
k (x)−∆t∇u∆t(k+1,Φ∆t

k (x)), k = 1, ...,K−1

Define now m∆t(k) := Φk [m0] as the push-forward of m0 through the
discrete flow, i.e. by asking that, for k = 1, ...,K ,∫

Rd

Ψ(x)dm∆t(k) =

∫
Rd

Ψ(Φ∆t
k (x))m0(x) dx

for any Ψ ∈ C (Rd).

Theorem
As ∆t → 0+, the discrete measures m∆t converge to a measure m in
C ([0,T ];P1) which solves the Fokker-Planck equationin the sense of
distributions.
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The semi-discrete scheme for the (MFG)system

The complete semi-discrete scheme is

u∆t(k, x) = inf
α∈Rd

[
u∆t(k+1, x−∆t α)+

1

2
∆t|α|2

]
+∆t L(x ,mh(k)) , n = 1, ...,K−1

m∆t(k) = Φ∆t
k [m0] ,m∆t(0) = m0 ∈ P1

u∆t(K , x) = G (x ,m∆t(K ))

Remember that the flow Φ∆t
k [m0] is constructed via the optimization

procedure dictated by the solution of the discrete H-J-B equation.
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The following well-posedness result due to Camilli-Silva (2012) holds:

Theorem
For sufficiently small time step ∆t:

I the discrete system has a solution
(u∆t ,m∆t) ∈ C ([0,T ]× Rd)× C ([0,T ];P1)

If, in addition, for all m1,m2 ∈ P1,m1 6= m2

I
∫
Rd (L(x ,m1)− L(x ,m2)) d(m1 −m2)(x) > 0

I
∫
Rd (G (x ,m1)− G (x ,m2)) d(m1 −m2)(x) ≥ 0

then the solution is unique.

As ∆t → 0:

I u∆t converges to u locally uniformly to u,

I m∆t converges to m in C ([0,T ];P1),

where (u,m) is the unique solution of system (MFG)

Further research on this line: Carlini, E.; Silva, F. J. A fully discrete
semi-Lagrangian scheme for a first order mean field game problem. SIAM
J. Numer. Anal. 52 (2014)
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Finite difference schemes

A different approximation approach using finite differences for numerical
solution of

∂u

∂t
− ν∆u + H(x ,∇u) = F (m(x)) in (0,T )× Td

∂m

∂t
+ ν∆m + div

(
m
∂H

∂p
(x ,∇u)

)
= 0 in (0,T )× Td

I Y. Achdou-I.CD, Mean Field Games: Numerical Methods, SIAM J.
Numerical Analysis (2010)

I Y. Achdou-F. Camilli-I.CD, Mean field games: numerical methods
for the planning problem, SIAM J. Control and Optimization (2011)

I Y. Achdou-F. Camilli-I.CD, Mean field games: convergence of a
finite difference method, SIAM J. Numerical Analysis (2013)
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Finite difference schemes

In those papers:
finite difference methods basically relying on monotone approximations of
the Hamiltonian and on a suitable weak formulation of the Fokker-Planck
equation, both for infinite, finite horizon and planning problems with
mean field games. These schemes were shown to have several important
features:

I existence and uniqueness for the discretized problems obtained by
similar arguments as those used in the continuous case by
Lasry-Lions,

I they are robust when ν → 0 (the deterministic limit of the models),

I bounds on the solutions (especially on the Lipschitz norm of u(t, ·)),
which are uniform in the grid step proved under reasonable
assumptions on the data,

I convergence of the schemes in the reference case
H(x , p) = c(x) + |p|β where β > 1, c is a smooth periodic function
and F satisfies monotonicity assumptions which are standard in
MFG theory,

I fast algorithms for solving the discrete nonlinear systems

Italo Capuzzo Dolcetta Sapienza Università di Roma Maurizio 60. Roma, December 4, 2014



Finite difference schemes for the (MFG) planning
problem

Take d = 2, for simplicity of notation

I Let Th be a uniform grid on the torus T2 with mesh step h, and xij
be a generic point in Th

I Uniform time grid: ∆t = T/NT , tn = n∆t

I The values of u and m at (xi,j , tn) are approximated by Un
i,j and Mn

i,j
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Notations

I the discrete Laplace operator:

(∆hW )i,j = − 1

h2
(4Wi,j −Wi+1,j −Wi−1,j −Wi,j+1 −Wi,j−1)

I right-sided finite difference formulas for ∂W
∂x1

(xi,j) and ∂W
∂x2

(xi,j) :

(D+
1 W )i,j =

Wi+1,j −Wi,j

h
, and (D+

2 W )i,j =
Wi,j+1 −Wi,j

h

I the set of 4 finite difference formulas at xi,j :

[DhW ]i,j =
(

(D+
1 W )i,j , (D+

1 W )i−1,j , (D+
2 W )i,j , (D+

2 W )i,j−1

)
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Discrete HJB equation
∂u
∂t
− ν∆u + H(x ,∇u) = F [m]

↓
Un+1
i,j −Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j ) = (Fh[Mn])i,j

where

g(xi,j , [DhU
n+1]i,j)

=g
(
xi,j , (D+

1 Un+1)i,j , (D+
1 Un+1)i−1,j , (D+

2 Un+1)i,j , (D+
2 Un+1)i,j−1

)
,

for instance,
(Fh[M])i,j = F [mh](xi,j),

where mh is the piecewise constant function on T taking the value Mi,j in
the square |x − xi,j |∞ ≤ h/2.
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Assumptions on the discrete Hamiltonian g

Typical assumptions on g :

(q1, q2, q3, q4)→ g (x , q1, q2, q3, q4)

I monotonicity: g is nonincreasing with respect to q1 and q3 and
nondecreasing with respect to to q2 and q4

I consistency:

g (x , q1, q1, q3, q3) = H(x , q), ∀x ∈ T,∀q = (q1, q3) ∈ R2

I differentiability: g is of class C 1, and∣∣∣∣∂g

∂x

(
x , (q1, q2, q3, q4)

)∣∣∣∣ ≤ C (1 + |q1|+ |q2|+ |q3|+ |q4|)

I convexity: (q1, q2, q3, q4)→ g (x , q1, q2, q3, q4) is convex
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The discrete version of (FP)

The discrete version of (FP)

∂m

∂t
+ ν∆m + div

(
m
∂H

∂p
(x ,∇u)

)
= 0

is built in such a way that

I each time step leads to a linear system governed by a matrix
I whose diagonal coefficients are negative,
I whose off-diagonal coefficients are nonnegative,

in order to hopefully use some discrete maximum principle.

I The argument for uniqueness should hold in the discrete case, so the
discrete Hamiltonian g should be used as well.
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Discretize the weak formulation of (FP)

−
∫
T
div

(
m
∂H

∂p
(x ,∇u)

)
w =

∫
T

m
∂H

∂p
(x ,∇u) · ∇w

by

−h2
∑
i,j

Bi,j(U,M)Wi,j := h2
∑
i,j

Mi,j∇qg(xi,j , [DhU]i,j) · [DhW ]i,j

which leads to

hBi,j (U,M) =



 Mi,j
∂g
∂q1

(xi,j , [DhU]i,j ) − Mi−1,j
∂g
∂q1

(xi−1,j , [DhU]i−1,j )

+Mi+1,j
∂g
∂q2

(xi+1,j , [DhU]i+1,j ) − Mi,j
∂g
∂q2

(xi,j , [DhU]i,j )


+

 Mi,j
∂g
∂q3

(xi,j , [DhU]i,j ) − Mi,j−1
∂g
∂q3

(xi,j−1, [DhU]i,j−1)

+Mi,j+1
∂g
∂q4

(xi,j+1, [DhU]i,j+1) − Mi,j
∂g
∂q4

(xi,j , [DhU]i,j )
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This yields the semi-implicit scheme:

Un+1
i,j
−Un

i,j
∆t

− ν(∆hU
n+1)i,j + g(xi,j , [DhU

n+1]i,j ) =
(
Fh [Mn ]

)
i,j

0 =
Mn+1
i,j
−Mn

i,j
∆t

+ ν(∆hM
n)i,j

+ 1
h



 Mn
i,j
∂g
∂q1

(xi,j , [DhU
n+1]i,j ) − Mn

i−1,j
∂g
∂q1

(xi−1,j , [DhU
n+1]i−1,j )

+Mn
i+1,j

∂g
∂q2

(xi+1,j , [DhU
n+1]i+1,j ) − Mn

i,j
∂g
∂q2

(xi,j , [DhU
n+1]i,j )



+

 Mn
i,j
∂g
∂q3

(xi,j , [DhU
n+1]i,j ) − Mn

i,j−1
∂g
∂q3

(xi,j−1, [DhU
n+1]i,j−1)

+Mn
i,j+1

∂g
∂q4

(xi,j+1, [DhU
n+1]i,j+1) − Mn

i,j
∂g
∂q4

(xi,j , [DhU
n+1]i,j )
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A model convergence result

Assume that

I H(x , p) = c(x) + |p|β with β > 2, c is C 1 and periodic

I u0 and mT are smooth,

I F satisfies the monotonicity condition∫
(F [m](x)− F [m̃](x))(dm(x)− dm̃(x)) ≤ 0⇒ m = m̃.

I F is regularizing, namely continuously maps the set of probability
measures on T2 (endowed with the weak * topology) to a bounded
subset of Lip(T2) (typically a nonlocal convolution operator),

I the numerical Hamiltonian satisfies standard conditions

then:
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A model convergence result

Theorem
Under the assumptions made the semi-implicit scheme has a unique
solution Un

i,j ,M
n
i,j and

lim
h,∆t→0

sup
i,j,n
|u(xi,j , tn)− Un

i,j)| = 0

lim
h,∆t→0

sup
i,j,n
|m(xi,j , tn)−Mn

i,j)| = 0
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l’imprescindibile (1982?):

Italo Capuzzo Dolcetta Sapienza Università di Roma Maurizio 60. Roma, December 4, 2014



l’imprescindibile (1982?):
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