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Aim of this talk is to present a notion of solution for the Eikonal
equation

|Du| = f (x) x ∈ S

where S is the Sierpinski gasket (or a post critically finite fractal).

(a) Sierpinski gasket

Fractal sets are an intermediate case since:

Fractals can be seen as the limit case of nonregular geometric
sets (prefractals)
As for metric spaces, there is no natural notion of gradient on
fractals.
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Fractals

(b) Penta-
gasket

(c) Koch curve (d) Koch is-
land

(e) Tree

The term fractal is derived from the Latin adjective fractus, which
means broken in irregular fragments. The main features are

Self-similarity - when broken into smaller and smaller pieces, the
new pieces look exactly the same as the original
Dimension - the fractals are curves that fill the space
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A brief history

K. W. T. Weierstrass (1815-1897): Nowhere Differentiable
Functions
G.Cantor: Cantor set
Sierpinski, Julia, Koch (beginning of ’900): fractal set via the
iteration of a function of a complex variable
P. Levy : Fractal Random Walks (Random Fractals)

B. Mandelbrot (1970s:) Mandelbrot sets and the development of
a general theory on the ”Fractal Geometry of Nature” (1975)
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A dreadful plague

After Weierstrass invented his nowhere differentiable function, many
mathematicians were alarmed at losing the property of differentiation
as a constant.
Hermite described these new functions as a "dreadful plague" and
Poincaré wrote

"Yesterday, if a new function was invented it was to serve some
practical end; today they are specially invented only to show up the
arguments of our fathers, and they will never have any other use".
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Applications of fractals

Signal Processing: Time Series Analysis, Speech Recognition
Image Processing: Fractal Compression, Fractal Dimension

Segmentation
Simulation: Terrain Modeling, Image Synthesis, Music,
Stochastic Fields
Financial: Fractal Market Analysis, Futures Markets
Medicine: Histology, Monitoring, Epidemiology
Military: Visual Camouflage, Covert Digital Communications

(f) Mobile an-
tenna

(g) lung (h) camouflage
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Fractals everywhere

(i) Hokusai (j) Escher (k) Snow flake

(l) Nautilus (m) Cauliflower (n) coastline
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The Sierpinski gasket

Given an equilateral triangle of vertices Γ0 = {v1, v2, v3}, consider the
3 maps ψi : R2 → R2 defined by

ψi(x) := vi +
1
2

(x − vi) x ∈ R2, i = 1, . . . ,3.

Iterating the ψi ’s, we get the set Γ∞ = ∪∞n=0Γn where each prefractal Γn

is given by the union of the images of Γ0 under the action of the maps
ψi1 ◦ · · · ◦ ψin with ih ∈ {1, . . . ,3}, h = 1, . . . ,n.
The Sierpinski gasket S is the closure of Γ∞ and it is the unique non
empty compact set K which satisfies K = ∪3

i=1ψi(K ).

(o) Γ0 (p) Γ1 (q) Γ2
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Sierpinski iterations

(r) Sierpinski iterations
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The graph (Γn,∼)

We consider a graph given by the vertices of Γn and the relation x ∼ y
if and only if the segment connecting x and y is the image of a side of
Γ under the action of some ψi1 ◦ · · · ◦ ψin .

(s) Vertices in ∼
with x ∈ Γ2

• ∂Γn, the boundary of the graph, is given by the vertices of Γ0
• Γn

int = Γn \ Γ0 is the set of the internal vertices
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The Laplace operator on the Sierpinski gasket

To define the Laplacian on S, the idea is to introduce discrete
operators on the (Γn,∼) and to perform a limit process.

The probabilistic version of this approach was introduced by
Kusuoka and Lindstrøm who considered suitable scaled random
walks on Γn and then passed to the limit to define a Brownian
motion on S.
An analytical approach was taken by Kigami who considered
scaled finite differences

∆nf (x) =
∑
y∼x

(
5
3

)n

(f (y)− f (x))2, x ∈ Γn

and passed to the limit to define ∆f on S.
The two approaches give rise to the same self-adjoint differential
operator on S, the Laplacian ∆ on S.
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The eikonal operator on the Sierpinski gasket

To define the eikonal equation on S we will mimic the analytical
approach of Kigami:

We consider graph eikonal equations on the prefractals and we show
that the solutions of these problems converge to a function which
satisfies an eikonal equation on the fractal set.

The principle underlying the definition of Laplacian and harmonic
functions on the Sierpinski gasket is the minimization of the
energy.
For the eikonal equation the principle is the optimal control
interpretation of the solution at all the different levels (discrete on
the prefractal and continuous on the fractal).
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The discrete eikonal equation on (Γn,∼)

For a function u : Γn → R, we consider the discrete eikonal equation{
|Du(x)|n = f (x) in Γn

int

u = g on Γ0

where

|Du(x)|n := max
y∼x

{
− 1

hn
(u(y)− u(x))

}
,

hn = (1/2)n and the function f : S → R is continuous with

λ := min
S

f (x) > 0.

Remark:
The eikonal equation can be rewritten as

u(x) = inf
y∼x
{u(y) + hnf (x)}
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Theorem

Let g : Γ0 → R be such that g(x) ≤ inf
{∑N

k=0 hnf (xk ) + g(y)
}

∀x , y ∈ Γ0 where xi ∼ xi+1, i = 0, . . . ,N − 1 and x0 = x , xN = y .
Then, the unique solution of graph eikonal equation with Dirichlet
boundary condition is given by the value function

un(x) = min
{∑N

k=0 hnf (xk ) + g(y)
}

where xi ∼ xi+1, i = 0, . . . ,N − 1 and x0 = x , xN = y .

Moreover

|un(x)| ≤ max
Γ0
|g|+ d(x , Γ0) max

Γn
{f} ∀x ∈ Γn

|un(y)− un(x)|
hn

≤ max
Γn
{f} ∀x , y ∈ Γn, x ∼ y
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An immediate consequence of the previous result is that

the sequence {un}n uniformly converges to a function u on the
Sierpinski gasket S

Following the the definition of Laplace equation on Sierpinski, it would
be natural to say that u is the solution of the eikonal equation on S.

Is it possible to characterize u by an eikonal equation defined on S ?
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In Giga-Hamamuki-Nakayasu (Trans.AMS, 2015) is given a definition
of metric viscosity solution for the eikonal equation in a general metric
space X .
To establish the link between the limit u of the sequence {un} and the
definition of metric viscosity solution we proceed in the following way

1 We define an appropriate notion of viscosity solution for
continuous eikonal equations on the prefractal Γn

2 We estimate (uniformly in n) the distance between the solutions of
the discrete and of the continuous eikonal equations on Γn

3 We show that the solutions of the eikonal equations on Γn are also
metric viscosity solutions if X = Γn.

4 By stability the sequence of the solutions of the continuous
eikonal equation, and therefore also of discrete eikonal equations,
on the prefractal Γn converges to the solution of the eikonal
equation on S.
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Step 1: Eikonal equations on networks

Note that the study of Hamilton-Jacobi equation on networks is not a
straightforward generalization of the Euclidean setting because of the
presence of the vertices.
With the aim of extending the notion of viscosity solution to networks,
several different approaches have been recently proposed. Here I will
consider the definition in

D. SCHIEBORN AND F. CAMILLI, Viscosity solutions of Eikonal
equations on topological network, Calc. Var. Partial Differential
Equations. 46 (2013), 671–686.
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We consider the network Sn given by the prefractal Γn = {vi}i∈I and by
the arcs En = {ej}j∈J connecting the vertices of Γn.

(t) Network S2

We denote by
• πj : [0,1]→ R, a parametrization of the edge ej
• Inci := {j ∈ J : xi ∈ ej} the set of the arcs incident the vertex vi
•

aij :=


1 if xi ∈ ej and πj(0) = xi ,
−1 if xi ∈ ej and πj(1) = xi ,

0 otherwise.

the signed incidence matrix A = {aij}i∈I,j∈J which gives the orientation
of the edge induced by πj .
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Definition (test function)

Let ϕ ∈ C1(Sn).
i) Let x ∈ ej , j ∈ J. We say that ϕ is test function at x , if the

restriction the restriction of ϕ to ej , i.e. ϕj := ϕ ◦ πj is differentiable
at π−1

j (x).

ii) Let xi ∈ Γn
int , j , k ∈ Inci , j 6= k . We say that ϕ is (j , k)-test function

at x , if ϕj and ϕk are differentiable at π−1
j (x) and π−1

k (x), with

aijDjϕ(π−1
j (x)) + aikDkϕ(π−1

k (x)) = 0,

where (aij) is the incidence matrix
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Remark:
Condition aijDjϕ(π−1

j (x)) + aikDkϕ(π−1
k (x)) = 0 says that, taking into

account the orientation, the function ϕ is differentiable at xi along the
direction given by the couple of edges ej and ek (no condition, except
continuity, along the other incident edges)

(u) test function
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Definition (network viscosity solution)

i) If x ∈ ej , j ∈ J, then a function u ∈ USC(Sn) (resp., v ∈ LSC(Sn))
is called a subsolution (resp. supersolution) at x if for any test
function ϕ for which u − ϕ attains a local maximum at x (resp., a
local minimum), we have

|Djϕ(x)| ≤ f (x)
(
resp., |Djϕ(x)| ≥ f (x)

)
;

ii) If x = xi ∈ Γn
int , then

• A function u ∈ USC(Sn) is called a subsolution at x if for any
j , k ∈ Inci and any (j , k)-test function ϕ for which u − ϕ attains a
local maximum at x relatively to ej ∪ ek , we have |Djϕ(x)| ≤ f (x).

• A function v ∈ LSC(Sn) is called a supersolution at x if for any
j ∈ Inci , there exists k ∈ Inci \ {j} (said feasible for j at x) such that
for any (j , k)-test function ϕ for which u − ϕ attains a local minimum
at x relatively to ej ∪ ek , we have |Djϕ(x)| ≥ f (x).

Remark: Note that the definitions of sub and supersolution at the
vertices are not symmetric.
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Theorem

Let g : Γ→ R be such that g(x) ≤ infξ
{∫ T

0 f (ξ(t))dt + g(y)
}
∀x , y ∈ Γ0

where ξ is a piecewise differentiable path such that ξ(0) = x , ξ(T ) = y .
Then the unique network viscosity solution un of the eikonal equation
on Sn with the boundary condition u = g on Γ0 is given by

un(x) = inf
ξ

{∫ T

0
f (ξ(t))dt + g(y)

}
for all x ∈ Sn.

Moreover, u is bounded and Lipschitz continuous and

|un(x)| ≤ max
Γ0
|g|+ max

Sn
|f |d(x , Γ0) for all x ∈ Sn,

‖Dun‖∞ ≤ max
Sn
|f |,

the sequence {un}n is decreasing.
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Step 2: Estimate between the solutions of discrete and
continuous eikonal equation on networks

Proposition
Let uhn and un be respectively the solutions of discrete and continuous
eikonal equations on the prefractal Γn. Then

|un(x)− uhn (x)| ≤ Cωf (h1/2
n ) ∀x ∈ Γn

where ωf is the modulus of continuity of f . Hence the sequences uhn

and un converge to the same limit u on S.

The proof is based on the classical doubling of variables argument in
viscosity solution theory adapted to networks

Ψ(x , y) = uhn (x)− un(y)− d(x , y)2

2ε
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Step 3: Giga-Hamamuki-Nakayasu metric viscosity
solutions

• Given a path ξ : I ⊂ R→ X , define the metric derivative of |ξ| by

|ξ′|(t) := lim
s→t

dX (ξ(s), ξ(t))

|s − t |
.

(note in general ξ′(t) may be not well defined).

Let Ax (I) be the set of absolutely continuous curves with ξ(0) = x .

• A function u is said arcwise upper (resp., lower) semicontinuous if for
each ξ ∈ A(I) the function u ◦ ξ is upper (lower) semicontinuous in I.

• For a function w : R→ R, denote by D±w(t) respectively its super-
and subdifferential at the point t .
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In a Euclidean space we have

|Du(x)| = sup
ξ:|ξ′(0)|≤1

|(u ◦ ξ)′(0)|

Hence reflecting this property we have the following definition

Subsolution
Let Ω ⊂ X . An arc-wise u.s.c. function u is said a subsolution if for
each x ∈ Ω and for all ξ ∈ Ax (I,Ω) with |ξ′| ≤ 1, the function
u ◦ ξ : I ⊂ R→ R satisfies

|p| ≤ f (x) ∀p ∈ D+u(ξ(0)).
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The definition of a supersolution is more involved. Roughly speaking, v
is a supersolution if, fixed x , for any ε > 0 there is a curve ξ with
ξ(0) = x and |ξ′| ≤ 1 such that |(v ◦ ξ)′(t)| ≥ f (ξ(t))− ε for all t until ξ
hits the boundary (superoptimality principle).
Define the exit and entrance time of ξ in Ω by

T +
Ω [ξ] := inf{t ∈ [0,+∞) : ξ(t) ∈ ∂Ω} ∈ [0,+∞]

T−Ω [ξ] := sup{t ∈ (−∞,0] : ξ(t) ∈ ∂Ω} ∈ [−∞,0].

Supersolution
An arc-wise l.s.c. v ∈ LSC(Ω) is said a supersolution if for each x ∈ Ω
and ε > 0, there exists ξ ∈ Ax (R,Ω) and w ∈ LSC(R) such that

T± := T±Ω [ξ] are both finite,
w(0) = v(x), w(t) ≥ v(ξ(t))− ε ∀t ∈ (T−,T +),
|p| ≥ f (x)− ε ∀p ∈ D−w(t), t ∈ (T−,T +).
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Remarks:
• The main point is that the previous definitions are 1-dimensional

and they do not involve any definition of gradient on X .

• The definition of metric viscosity solution is consistent with the
classical one in the Euclidean space.

• The definition of subsolution and supersolution are not symmetric.

• The definition of supersolution is not local.
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Prop. (existence/uniqueness on S)
Let S the Sierpinski gasket and let g : Γ→ R be such that
g(x) ≤ infξ

{∫ T
0 f (ξ(t))dt + g(y)

}
for all x , y ∈ Γ0 where

ξ ∈ A((0,T ),S) such that ξ(0) = x , ξ(T ) = y .
Then the unique metric viscosity solution of{

|Du| = f (x) x ∈ S
u = g x ∈ Γ0

is given by

u(x) = inf

{∫ T

0
f (ξ(t))dt + g(y)

}
for all x ∈ S

where y ∈ Γ and ξ ∈ A((0,T ),S) such that ξ(0) = x , ξ(T ) = y .

Moreover u is continuous and bounded.
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Step 4: Passage to the limit

Equivalence on the prefractal Sn

A function u ∈ USC(Sn) (resp. v ∈ LSC(Sn)) is a metric viscosity
subsolution (resp. supersolution) if and only if it is a network viscosity
subsolution (resp. supersolution)

Remark:
• On a network arcwise continuity and continuity coincide.

• The main difficult is to show the equivalence between the (nonlocal)
definition of metric viscosity supersolution and the one of network
viscosity supersolution.
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Theorem (Convergence)
Let un be the sequence of the network viscosity solutions of eikonal
equation on the network Sn. Then, as n→ +∞, un tends to u
uniformly in S where u is the metric viscosity solution of{

|Du| = f (x) x ∈ S
u = g x ∈ Γ0

Hence, as n→ +∞, the sequence {uhn}n of the solutions of graph
eikonal equation also uniformly converges to u.

Remark:
The proof is based on stability properties of the metric viscosity
solutions and the equivalence on Γn of metric and network viscosity
solutions.
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Extensions

More general fractals: The interior approximation method can
be extended to a class of post-critically finite self similar sets
(generally speaking, these sets are obtained by subdividing the
initial cell into cells of smaller and smaller size and the cells must
intersect at isolated points) for which the corresponding
prefractals are expanding, i.e. Γn ⊂ Γn+1 ∀n ∈ N.

(v) post critically finite fractals
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More general Hamiltonians: Whereas the notion of metric
viscosity solution is restricted to the case of the eikonal equation
|Du| = f (x), the results on prefractals can be extended to the
Hamilton-Jacobi equation H(x ,Du) = 0 where the Hamiltonian
H(x ,p) is convex and coercive with respect to p. Hence we obtain
the sequence of the solutions of the Hamilton-Jacobi equation on
the prefractal converges uniformly to a function u defined on the
Sierpinski gasket.
At present since there is no definition of viscosity solution for the
equation H(x ,Du) = 0 on S for a general Hamiltonian, this can be
seen as a constructive way to define Hamilton-Jacobi equations
on the Sierpinski gasket.
Boundary conditions: Following the classical definition of
Laplacian on the Sierpinski gasket, we imposed the boundary
conditions on the vertices of Γ0. By easy modifications, it is
possible to consider the problem in a connected subdomain Ω of
S imposing the boundary condition on any finite subset of vertices
contained in Ω.
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Thank You!
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