A numerical method for nonlinear diffusion + obstacle equation

Olivier Bokanowski

Laboratory Jacques Louis Lions University Paris-Diderot (Paris 7)

Rome, déc 4-5, 2014

Numerical methods for PDEs: optimal control, games and image processing. On the occasion of the 60th birthday of Maurizio Falcone

Plan

- I. Motivation
- II. Howard's algorithm
- III. Attempts & Numerical results

э

I. INTRODUCTION

Э.

・ロト ・四ト ・ヨト ・ヨト

Motivation

 American option (obstacle problem), or stopping time problems for optimal stochastic control:

$$\min(u_t - u_{xx}, u - g(x)) = 0$$

Obstacle for treatment of state-constraints in optimal control:

$$\min(u_t + H(x, u_x), u - g(x)) = 0$$

 \Rightarrow Hamilton Jacobi Bellman (HJB) or Hamilton-Jacobi-Isaac (HJI) equations with obstacle terms

simple obstacle problem

• American option pb: $v(t, x) = \sup_{\tau \in \mathcal{T}_{[0,t]}} \mathbb{E}[g(X^{0,x}_{\tau})]$ (with $dX_{\theta} = \sigma dW_{\theta}$)

$$\min(v_t - \frac{\sigma^2}{2}v_{xx}, v - g(x)) = 0, \quad t \in (0, T), x \in (0, 1),$$

$$v(0, x) = v_0(x) \equiv g(x)$$

- We assume dirichlet boundary conditions to simplify
- Explicit scheme: (finite difference scheme)

$$\min\left(\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}-\frac{\sigma^{2}}{2}\left(\frac{-u_{i-1}^{n}+2u_{i}^{n}-u_{i-1}^{n}}{\Delta x^{2}}\right), \ u_{i}^{n+1}-g_{i}\right)=0,$$

$$1 \le i \le I$$

$$u_0^{n+1} = u_{l+1}^{n+1} = 0$$
 (or given values)

- 4 回 ト 4 回 ト

• Linear case

$$v_t - \frac{\sigma^2}{2}v_{xx} = 0$$

• Explicit scheme:

$$\frac{u_{i}^{n+1} - u_{i}^{n}}{\Delta t} - \frac{\sigma^{2}}{2} \left(\frac{-u_{i-1}^{n} + 2u_{i}^{n} - u_{i-1}^{n}}{\Delta x^{2}} \right) = 0 \quad 1 \le i \le I$$

hence

$$u_i^{n+1} = ku_{i-1}^n + (1-2k)u_i^n + ku_{i+1}^n \equiv (Su^n)_i \quad k := \frac{\sigma^2}{2} \frac{\Delta t}{\Delta x^2}.$$

- CONSISTENCY: $\frac{v^{n+1}-Sv^n}{\Delta t} \equiv O(\Delta t) + O(\Delta x^2)$
- STABILITY : CFL condition $2k \le 1 \Rightarrow ||U^{n+1}||_{\infty} \le ||U^n||_{\infty}$

・ロト ・四ト ・ヨト ・ヨト

• IMPLICIT scheme:

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} - \frac{\sigma^2}{2} \left(\frac{-u_{i-1}^{n+1} + 2u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x^2} \right) = 0 \quad 1 \le i \le I$$

 $\Rightarrow AU^{n+1} = U^n$, with

$$A = \begin{bmatrix} 1+2k & -k & & \\ -k & \ddots & \ddots & \\ & & \ddots & -k \\ & & & -k & 1+2k \end{bmatrix} \text{ and } k := \frac{\sigma^2}{2} \frac{\Delta t}{\Delta x^2} \ge 0.$$

- CONSISTENCY: idem, $O(\Delta t) + O(\Delta x^2)$
- STABILITY : NO CFL condition !

A "
$$\delta$$
-diag. dominant" $\Rightarrow \boxed{\|A^{-1}\|_{\infty} \leq \frac{1}{\delta} \leq 1} \Rightarrow \|U^{n+1}\|_{\infty} \leq \|U^{n}\|_{\infty}$

3

• American option, implicit Can we do the same ?

Implicit finite difference scheme

$$\min\left(\frac{u_i^{n+1}-u_i^n}{\Delta t}-\frac{\sigma^2}{2}\left(\frac{-u_{i-1}^{n+1}+2u_i^{n+1}-u_{i-1}^{n+1}}{\Delta x^2}\right), \ u_i^{n+1}-g_i\right)=0,$$

1 \le i \le 1

After multiplication of the left part of the min by $\Delta t > 0$, we get:

$$\min\left(\underbrace{(1+2k)u_{i}^{n+1}-ku_{i-1}^{n+1}-ku_{i+1}^{n+1}}_{=(Au^{n+1})_{i}}-\underbrace{u_{i}^{n}}_{\equiv b_{i}},\ u_{i}^{n+1}-\underbrace{g(x_{i})}_{\equiv g_{i}}\right)=0$$

 $\Leftrightarrow \quad \text{find } x = U^{n+1}, \quad \min((Ax - b)_i, x_i - g_i) = 0, \quad 1 \le i \le I$

• STABILITY : NO CFL condition !

A " $\delta \geq 1$ -diag. dominant" $\Rightarrow \|U^{n+1}\|_{\infty} \leq \max(\|U^n\|_{\infty}, \|g\|_{\infty})$

◎ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ のへの

II. HOWARD'S ALGORITHM

æ

<ロト <回ト < 三ト < 三ト < 三ト :

• Nice discrete scheme, but nonlinear !

$$\min(Bx-b,x-g)=0, \quad x\in\mathbb{R}^N$$

Obstacle PB

• More general: Merton's portfolio problem: ¹

$$v(T-t,x) := \mathop{\mathrm{ess\,sup}}_{lpha:(t,T) o \mathcal{K}} \mathbb{E}[\varphi(X_T^{t,x,lpha})|\mathcal{F}_t], \quad \overline{\mathcal{K} = [0,1]}$$

$$\max_{a\in K}\left(v_t - \frac{1}{2}a^2x^2v_{xx} - (a\mu + (1-a)r)xv_x\right) = 0.$$

• **Implicit** finite difference scheme : we get a matrix B_a depending of the parameter a, and the implicit scheme

$$\max_{a\in K}(B_ax-b_a)=0, \quad x\in \mathbb{R}^N$$

Can we solve this ?

¹ with
$$\frac{dX_{\theta}}{X_{\theta}} = (\mu \alpha + (1 - \alpha)r)d\theta + \alpha \sigma dW_{\theta}$$

Olivier Bokanowski

numerics for diffusion plus obstacle

Howard's algorithm (1958)

• Definition 1. For $\alpha = (\alpha_1, \dots, \alpha_N) \in \mathcal{K}^N$, consider

$$B(\alpha)_{ij} := (B_{\alpha_i})_{ij}$$
 and $b(\alpha)_i = (b_{\alpha_i})_i$.

- Then $F(x) \equiv \min_{a \in \mathcal{K}} (B_a x b_a) \equiv \min_{\alpha \in \mathcal{K}^N} (B(\alpha) x b(\alpha))$
- Obstacle problem:

$$\mathcal{K} = \{0, 1\}, (B_0, b_0) = (B, b), (B_1, b_1) = (I, g)$$

• Definition 2: Howard's algorithm (H) for solving F(x) = 0: Starting from a given $x^0 \in \mathbb{R}^N$, iterate for $k \ge 0$:

$$(\mathbf{H}) \begin{cases} \text{Compute } \alpha_i^{k+1} := \operatorname{argmin}_{\alpha \in \mathcal{K}^N} (\mathcal{B}(\alpha) x^k - \mathcal{b}(\alpha))_i, \\ \text{Compute } x^{k+1} \text{ s.t. } \mathcal{B}(\alpha^{k+1} x^{k+1}) - \mathcal{b}(\alpha^{k+1}) = 0. \end{cases}$$

until some stopping criteria is satisfied.

Proposition

Howard's algorithm (H) and Newton's method (N) are the same

We cannot apply directly Newton's method since F(x) is only Lipschitz and not twice differentiable.

• Assumption (M):

 $\begin{cases} (i) \ \alpha \to B(\alpha), \ \alpha \to b(\alpha) \text{ are continuous fonctions} \\ (ii) \ \forall \alpha \in \mathcal{K}^N, \ B(\alpha) \text{ is a monotone matrix}^2 \end{cases}$

- **Ex.1** For the obstacle pb: *B* is an *M*-matrix \Rightarrow (M)
- Ex.2 For Merton's pb: Implicit scheme \Rightarrow (M)

 ^{2}B is a monotone matrix if B is invertible and $B^{-1} \ge 0$ componentwise $E \rightarrow E = -90$

Theorem (1) (see [B., Maroso, Zidani 09'] for a direct proof)

Assume (M),

(i) there exists a unique $x \in \mathbb{R}^N$ s.t. F(x) = 0; (ii) $\forall x^0$, $\lim_{k \to \infty} x^k = x$. (Furthermore $x^k \le x^{k+1}$)

(iii) The convergence is superlinear.

(iv) If \mathcal{K} is discrete, the convergence is in at most $Card(\mathcal{K})^N$ iterations.

Theorem (2)

For the obstacle pb, assume (M), the convergence is in at most N iterations !

REFS:

- Rust & Santos (2004)
- Intermuller, Ito, Kunish
- B, Maroso, Zidani (2009)

< □ > < 同 > < 三 > < 三 >

Application to american options:

Limitation of the total number's of newton's iteration := bounded by the number of mesh points where the value takes off the payoff function.

Complement : Two player games

find
$$x \in \mathbb{R}^N$$
, $F(x) = \max_{b \in \mathcal{B}} \min_{a \in \mathcal{A}} (B_{a,b}x - b_{a,b}) \equiv 0$

Newton's algo ? Fails here in general because no more convexity. Function *F* in general not slantly differentiable.

Generalized (Ho) algo .:

• Notations:
$$B(\alpha, \beta)$$
, $b(\alpha, \beta)$.

•
$$F(x) = \max_{\beta \in \mathcal{B}^N} F^{\beta}(x)$$
 where $F^{\beta}(x) := \min_{\alpha \in \mathcal{A}^N} (B(\alpha, \beta)x - b(\alpha, \beta))$

• Starting from a given $x^0 \in \mathbb{R}^N$, iterate for $k \ge 0$:

$$\begin{cases} \text{Compute } \beta^{k+1} := argmin_{\beta \in \mathcal{K}^N} F^{\beta}(x^k), \\ \text{Compute } x^{k+1} \text{ s.t. } F^{\beta^{k+1}}(x^{k+1}) = 0 \text{ or s.t. } \|F^{\beta^{k+1}}(x^{k+1})\| \le \eta_k \end{cases}$$

until some stopping criteria is satisfied.

Theorem (B., Maroso, Zidani 2009)

Assuming **(M)** (continuity plus $B(\alpha, \beta)$ all monotone matrices): (i) There exists a unique solution (ii) Generalized Howard's algorithm converges (iii) Bounded number of iterations if A, B finite.

• Furthermore, if we solve only in an approximate way $\|F^{\beta^{k+1}}(x^{k+1})\| \leq \eta_k$ with $\sum_k \eta_k < \infty$, then the corresponding "approximate generalized Howard's algorithm" converges to the solution, and

$$-C\eta_k \leq x^k - x \leq C\sum_{j\geq k} \eta_j$$

• Open questions: linear ? superlinear convergence ? More efficient schemes using penalisation approach (Reisinger & Whitte) ?

< D > < P > < P > < P > < P >

III. TOWARDS SECOND ORDER

- Joint on going work with Kristian Debrabant
- Very useful discussions with Yves Achdou !

Attempt 1 : A Crank-Nicolson (CN) scheme :

$$\min\left(\frac{u_i^{n+1}-u_i^n}{\Delta t}+\frac{1}{2}(AU^n+AU^{n+1})_i,\ u_i^{n+1}-g_i\right)=0\quad 1\leq i\leq I.$$

• **CONSISTENCY:** $O(\Delta t^2) + O(\Delta x^2)$ (for $\sigma = \sigma(x)$ and regular *v*). To see this, there is an equivalent PDE: $\min(u_t + Au, u_t) = 0$. Corresponding CN scheme is

$$\min\left(\frac{u_i^{n+1}-u_i^n}{\Delta t}+\frac{1}{2}(AU^n+AU^{n+1})_i, \ \frac{u_i^{n+1}-u_i^n}{\Delta t}\right)=0 \quad 1\leq i\leq I.$$

In practice, the constraint $u_i^{n+1} \ge u_i^n$ is equivalent to $u_i^{n+1} \ge g_i$.

• STABILITY : **NOT CLEAR** ! Von Neumann L^2 stability result OK. Stability results such as $||B^n||_{\infty} \leq C$ do also hold where $B := (I + \frac{1}{2}\Delta tA)^{-1}(I - \frac{1}{2}\Delta tA)$ is the amplication matrix. (S.I. Serdjukova, 1964; Borovykh, Drissi, Spijker 2002, ...); \Rightarrow stability of the CN scheme for pure diffusion. But the L^{∞} stability is an open question for the obstacle scheme.

Olivier Bokanowski

• IMPLEMENTATION : Newton/Howard's algorithm for *M*-matrices

L ² error		Error L ¹		Error L ²		Error L^{∞}	
- 1	Ν	error	order	error	order	error	order
80	80	1.74E-02	0.00	2.16E-02	0.00	4.49E-02	0.00
160	160	3.14E-03	2.47	3.71E-03	2.54	5.23E-03	3.10
320	320	8.25E-04	1.93	9.68E-04	1.94	1.37E-03	1.93
640	640	2.06E-04	2.00	2.40E-04	2.01	3.34E-04	2.03
1280	1280	4.39E-05	2.23	5.06E-05	2.24	7.07E-05	2.24

Table: Crank-Nicolson scheme for a 1d-American obstacle problem

However, for lower N values (larger CFL numbers) the CN scheme is no more second order and goes back to first order behavior.

Attempt 2 : A Semi-Lagrangian (SL) scheme :

• Let us consider only the semi-discrete problem, let $h = \Delta t$. Then

$$u_i^{n+1} = S^1(u^n)_i := \frac{1}{2}(u^n(x_i - \sigma\sqrt{h}) + u^n(x_i + \sigma\sqrt{h}))$$

is a typical SL scheme of first order (order O(h)).

• Second order can be obtain with the "Platen's" scheme (coming from weak Taylor approximation in stochastic calculus): For $\sigma = const$:

$$u_i^{n+1} = S^2(u^n)_i := \frac{1}{6}(u^n(x_i - \sigma\sqrt{3h}) + 4u^n(x_i) + u^n(x_i + \sigma\sqrt{3h})).$$

• Hence a natural scheme for the obstacle diffusion problem could be:

$$u_i^{n+1} := \max(S^2(u^n)_i, g_i)$$

However, this can only be consistent of first order !

Attempt 3 : Gear (BDF2) obstacle scheme

We propose the following two-step implicit Gear scheme, for $n \ge 1$:

$$H(U^{n})_{i} :\equiv \min\left(\frac{3U_{i}^{n+1} - 4U_{i}^{n} + U_{i}^{n-1}}{2\Delta t} + (AU^{n+1} + q(t_{n+1}))_{i}, \ U_{i}^{n+1} - g_{i}\right) = 0$$

• Second order consistency error, when v is regular, for $V_i^n = v(t_n, x_i)$:

$$H(V^{n}) = \min(v_{t} + Av, v - g)(t_{n+1}, x_{i}) + O(\Delta t^{2} \|v_{3t}\|_{\infty}) + O(\Delta x^{2}(\|v_{3x}\|_{\infty} + \|v_{4x}\|_{\infty})).$$
(1)

• Corresponding discrete obstacle pb solved by Howard/Newton method (efficient)

< D > < P > < P > < P > < P >

Gear (BDF2) obstacle scheme - Numerical results

L ² error		Error L ¹		Error L ²		Error L^{∞}	
1	Ν	error	order	error	order	error	order
80	8	8.23E-03	0.00	1.25E-02	0.00	3.59E-02	0.00
160	16	9.64E-04	3.09	1.28E-03	3.28	2.21E-03	4.02
320	32	4.20E-04	1.20	5.44E-04	1.24	8.88E-04	1.31
640	64	1.56E-04	1.43	1.96E-04	1.47	3.04E-04	1.55
1280	128	5.01E-05	1.64	6.15E-05	1.67	9.21E-05	1.72
2560	256	1.42E-05	1.82	1.72E-05	1.84	2.50E-05	1.88

Table: BDF2-Gear scheme for American option - "Large" CFL number

\Rightarrow GOOD !

< □ > < □ > < □ > < □ > < □ > < □ >

BDF3 obstacle scheme - Numerical results

A three-step (BDF3) implicit scheme, for $n \ge 2$:

$$\min\left(\frac{\frac{11}{6}U_i^{n+1} - 3U_i^n + \frac{3}{2}U_i^{n-1} - \frac{1}{3}U_i^{n-2}}{\Delta t} + (AU^{n+1} + q(t_{n+1}))_i, U_i^{n+1} - g_i\right) = 0$$

(Initial steps U^0, U^1, U^2 of second order)

1	Ν	Error L ¹		Error L ²		Error L^{∞}	
		error	order	error	order	error	order
80	16	1.81E-02	0.00	2.21E-02	0.00	4.39E-02	0.00
160	32	3.67E-03	2.30	4.34E-03	2.35	6.06E-03	2.86
320	64	1.06E-03	1.79	1.24E-03	1.81	1.68E-03	1.85
640	128	2.09E-04	2.34	2.43E-04	2.35	3.42E-04	2.30
1280	256	1.89E-05	3.47	2.86E-05	3.09	6.07E-05	2.49

Table: BDF3 scheme for the American option pb

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Complement : *L*² **stability analysis for BDF2**

With $q \equiv 0$, the scheme has the following form:

$$\min\left(\left(I+\frac{2}{3}\Delta tA\right)U^{n+1}-\frac{4}{3}U^{n}+\frac{1}{3}U^{n-1}\right),\ U^{n+1}-g\right)=0$$

The exact solution satisfies an estimate in the following form:

$$\min\left(\left(I+\frac{2}{3}\Delta tA\right)V^{n+1}-\frac{4}{3}V^{n}+\frac{1}{3}V^{n-1}-\Delta t\,\bar{\epsilon}_{n},\ V^{n+1}-g\right)=0$$

where $\bar{\epsilon}_n$ is a consistency error (hopefully of order $\Delta t^2 + \Delta x^2$)

Let \langle , \rangle denotes the scalar product in \mathbb{R}^{I} .

Lemma

For any matrix B, the following equivalence holds:

$$\min(Bx - b, x - g) = 0 \quad \Leftrightarrow \quad x \ge g \text{ and } \left(\langle Bx - b, v - x \rangle \ge 0, \ \forall v \ge g
ight)$$

Remark: It is known that if *B* is a positive definite symmetric matrix, the above assertion is furthermore equivalent to :

$$\Leftrightarrow \quad x \text{ solves } \min_{x \ge g} \frac{1}{2} \langle x, Bx \rangle - \langle b, x \rangle$$

Energy like estimate: By using the "variational formulation", a similar analysis as for a Gear scheme can be done: Assumption (H):

 $\langle x, Ax \rangle \geq 0, \quad \forall x \in \mathbb{R}^{I}.$

Proposition (Stability of the Gear BDF2 obstacle scheme) Let $e^n := v^n - u^n$ and let $\Delta t > 0$ be sufficiently small. Under assumption (H), then there exists a constant C_1 independant of n such that for all $t_n \leq T$,

$$\|e^n\|_2^2 + \sum_{k=1}^n \frac{2\Delta t}{3} \langle e^n, Ae^n \rangle \leq C_1 \left(\|e^0\|^2 + \|e^1\|^2 + \Delta t \sum_{k=1,...,n} \|\bar{\epsilon}_n\|^2 \right).$$

Roughly speaking,

$$\Rightarrow \|\boldsymbol{e}^n\|_2^2 \leq \boldsymbol{Const} \ \Delta t \sum_{k=1,...,n} \|\bar{\boldsymbol{\epsilon}}_n\|^2.$$

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion.

- We propose a BDF like scheme for obstacle problems. An L^2 stability estimates holds. For the moment, does not gives an error estimate.
- Perform a rigorous L^{∞} stability analysis for the BDF2 Gear scheme for diffusion + obstacle problem.
- First order HJ + obstacle : find efficient really second order schemes with rigourous analysis.