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A variational approach to fully nonlinear operators.

Introduction

Rayleigh quotient.

Let Ω be a bounded smooth domain of RN . Let

λ1 := inf
u∈H1

o (Ω)

∫
Ω |∇u|2dx∫

Ω |u|2dx

it is well known that the infimum is achieved by the Dirichlet
eigenfunction of −∆, i.e. by ϕ a solution of{

∆ϕ+ λ1ϕ = 0 in Ω
ϕ > 0 in Ω ϕ = 0 on ∂Ω.

(1)

Another characterisation of λ1 is given by

λ1 = sup{µ ∈ R, such that ∃ψ > 0,∆ψ + µψ ≤ 0 in Ω}.
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Introduction

Maximum principle

The advantage of this definition of

λ1 = sup{µ ∈ R, such that ∃ψ > 0,∆ψ + µψ ≤ 0 in Ω}

is that it does not use the variational structure of the Laplacian.

The disadvantage of this definition is that it cannot be used to
compute it through a numerical approach.
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Introduction

Maximum principle

This definition of

λ1 = sup{µ ∈ R, such that ∃ψ > 0,∆ψ + µψ ≤ 0 in Ω}

was introduced by
Berestycki, Nirenberg and Varadhan (1993) for Lu = tr(A(x)D2u)
with

λI ≤ A(x) ≤ ΛI

and no regularity required on ∂Ω.
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Introduction

Maximum principle

This definition of eigenvalue

λ1 = sup{µ ∈ R, such that ∃ψ > 0, Lψ + µψ ≤ 0 in Ω}

relies on the maximum principle and it does not use the linearity of
L.

It has been generalised to fullynonlinear operators
(Busca-Esteban-Quaas, Ishii-Yoshimura, Birindelli-Demengel)

Hypothesis

λ tr N ≤ F (x , p,M + N)− F (x , p,M) ≤ Λ tr N
for 0 < λ ≤ Λ and N ≥ 0.

more in general

λ|p|α tr N ≤ F (x , p,M + N)− F (x , p,M) ≤ |p|αΛ tr N
for 0 < λ ≤ Λ, α > −1 and N ≥ 0.

For other generalizations see also Berestycki-Rossi,
Berestycki-Capuzzo Dolcetta-Porretta-Rossi.
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Introduction

Fully nonlinear

Under the above hypothesis

λ tr N ≤ F (x , p,M + N)− F (x , p,M) ≤ Λ tr N

,

λ1 = sup{µ ∈ R, such that ∃ψ > 0,F (x ,∇ψ,D2ψ)+µψ ≤ 0 in Ω}.

is an ”eigenvalue” that corresponds to an ”eigenfunction” φ > 0 in
Ω {

F (x ,∇φ,D2φ) + λ1φ = 0 in Ω
φ = 0 on ∂Ω.
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Fully nonlinear

The main example of fully operator we wish to consider are the so
call Pucci operators

M−λ,Λ(D2u) = inf
λI≤A≤ΛI

tr(AD2u).

M+
λ,Λ(D2u) = sup

λI≤A≤ΛI
tr(AD2u).

These extremal operators play a very important role in the theory
of fully nonlinear operators since any elliptic operator F
(λ tr N ≤ F (x ,M + N)− F (x ,M) ≤ Λ tr N), satisfies

M−λ,Λ(D2u) ≤ F (x ,D2u) ≤M+
λ,Λ(D2u).

Hence solutions of F (x ,D2u) = f , are sub or super solutions for
the extremal operators.
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GOAL

Find some sort of ”Rayleigh quotient” to characterize the
eigenvalues for non variational operators, be they linear or
fully nonlinear.

The idea being to approximate non variational operators with
variational non local operators.
This is a joint work in progress with L. Caffarelli and S. Patrizi.
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GOAL

It is well known that the Rayleigh quotient allows to use Numerical
schemes in order to compute the eigenvalues and eigenfunctions of
the Laplacian. I will just mention the work of

1 Babuska, I.; Osborn, J. Eigenvalue problems, monography
in Handbook of numerical analysis, 1991.

2 Babuska, I.; Osborn, J. E. Finite element-Galerkin
approximation of the eigenvalues and eigenvectors of
self-adjoint problems. Math. Comp. 52 (1989).
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Non local operators.

Approximation

Let ϕ be a compactly supported, smooth, radially symmetric,
probability density such that∫

Rn

|y |2ϕdy = 2n.

Let A = {Rn → M ∈ S(n), λ
2 I ≤ M2 ≤

(
Λ− λ

2

)
I }, where S(n)

is the set of n × n symmetric matrices. For ε > 0 and M ∈ A, let

ϕM
ε (y) =

1

εn det(M)
ϕ
(

M−1 y

ε

)
.
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Non local operators.

Approximation

Proposition (Caffarelli-Silvestre)

If u ∈ C 2(Ω) then, for ε going to zero

IMε [u](x) :=

∫
Rn

u(x + y)− u(x)

ε2
ϕM
ε dy → Lu = tr(M2D2u).

IMε [u](x) =
1

2ε2

∫
RN

[u(x + y) + u(x − y)− 2u(x)]ϕM
ε (y)dy

change of variable y = εMη

=
1

2ε2

∫
RN

[u(x + εMη) + u(x − εMη)− 2u(x)]ϕ(η)dη

Taylor approximation

=
1

2ε2

∫
RN

[〈D2u(x)εMη, εMη〉+ o(ε2)]ϕ(η)dη



A variational approach to fully nonlinear operators.

Non local operators.

Approximation

Proposition (Caffarelli-Silvestre)

If u ∈ C 2(Ω) then, for ε going to zero

IMε [u](x) :=

∫
Rn

u(x + y)− u(x)

ε2
ϕM
ε dy → Lu = tr(M2D2u).

IMε [u](x) =
1

2ε2

∫
RN

[u(x + y) + u(x − y)− 2u(x)]ϕM
ε (y)dy

change of variable y = εMη

=
1

2ε2

∫
RN

[u(x + εMη) + u(x − εMη)− 2u(x)]ϕ(η)dη

Taylor approximation

=
1

2ε2

∫
RN

[〈D2u(x)εMη, εMη〉+ o(ε2)]ϕ(η)dη



A variational approach to fully nonlinear operators.

Non local operators.

Approximation

Proposition (Caffarelli-Silvestre)

If u ∈ C 2(Ω) then, for ε going to zero

IMε [u](x) :=

∫
Rn

u(x + y)− u(x)

ε2
ϕM
ε dy → Lu = tr(M2D2u).

IMε [u](x) =
1

2ε2

∫
RN

[u(x + y) + u(x − y)− 2u(x)]ϕM
ε (y)dy

change of variable y = εMη

=
1

2ε2

∫
RN

[u(x + εMη) + u(x − εMη)− 2u(x)]ϕ(η)dη

Taylor approximation

=
1

2ε2

∫
RN

[〈D2u(x)εMη, εMη〉+ o(ε2)]ϕ(η)dη



A variational approach to fully nonlinear operators.

Non local operators.

Approximation

Proposition (Caffarelli-Silvestre)

If u ∈ C 2(Ω) then, for ε going to zero

IMε [u](x) :=

∫
Rn

u(x + y)− u(x)

ε2
ϕM
ε dy → Lu = tr(M2D2u).

IMε [u](x) =
1

2ε2

∫
RN

[u(x + y) + u(x − y)− 2u(x)]ϕM
ε (y)dy

change of variable y = εMη

=
1

2ε2

∫
RN

[u(x + εMη) + u(x − εMη)− 2u(x)]ϕ(η)dη

Taylor approximation

=
1

2ε2

∫
RN

[〈D2u(x)εMη, εMη〉+ o(ε2)]ϕ(η)dη



A variational approach to fully nonlinear operators.

Non local operators.

Approximation

Proposition (Caffarelli-Silvestre)

If u ∈ C 2(Ω) then, for ε going to zero

IMε [u](x) :=

∫
Rn

u(x + y)− u(x)

ε2
ϕM
ε (y)dy → Lu = tr(M2D2u).

IMε [u](x) =
1

2ε2

∫
RN

[〈D2u(x)εMη, εMη〉+ o(ε2)]ϕ(η)dη

So that

IMε [u](x)→ 1

2

∫
RN
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Now since
∫
RN ηiηjϕ(η)dη = 2δij ,

1

2

∫
RN
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Non local operators.

Rayleigh quotient

For M ∈ A constant, let EM
ε : H1

0 (Ω)→ R be the energy:

EM
ε [u] =

λ

2

∫
Ω
|∇u|2dx +

1

2

∫
Ω

∫
Rn

(u(x)− u(y))2

ε2
ϕM
ε (x − y)dydx ,

where u ∈ H1
0 (Ω) is extended to zero outside Ω.

Let

λε,M1 := inf
u∈H1

0 (Ω)

EM
ε [u]∫

Ω u2dx
. (2)

Theorem (B.-Caffarelli-Patrizi)

The infimum is achieved by ϕ ∈ H1
0 (Ω) solution of

PM
ε [ϕ] + λε,M1 ϕ = 0 in Ω,

where PM
ε [u] := λ

2 ∆u +
∫
Rn

u(x+y)−u(x)
ε2 ϕM

ε (y)dy. Furthermore

ϕ > 0 in Ω so λε,M1 is the principal eigenvalue for −PM
ε in Ω.
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Non local operators.

Rayleigh quotient

Is it possible to use the Finite element-Galerkin approximation
method given by Babuska and Osborne to compute λε,M1 ?
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Non local operators.

Fully nonlinear

In the fully nonlinear case we consider the energy

Eε[u] =
λ

2

∫
Ω
|∇u|2dx+ sup

M∈A

1

2

∫
Ω

∫
Rn

(u(x)− u(y))2

ε2
ϕM
ε (x−y)dydx

recall that A = {M ∈ S(n), λ
2 I ≤ M2 ≤

(
Λ− λ

2

)
I }.

In a similar

fashion let λε1 = infu∈H1
0 (Ω),u≥0

Eε[u]∫
Ω u2dx

Theorem (B.-Caffarelli-Patrizi)

The infimum is achieved by some function ϕ ∈ H1
0 (Ω) solution of

Pε[ϕ] + λε1ϕ = 0 in Ω,

where

Pε[u](x) =
λ

2
∆u(x) + inf

M∈A

∫
Rn

(u(y)− u(x))

ε2
ϕM
ε (x − y)dy .

Furthermore u > 0 in Ω so λε1 is the principal eigenvalue for Pε in
Ω.
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Non local operators.

Approximation.

Let uε be a solution of{
λ
2 ∆u(x) + infM∈A

∫
Rn

(u(y)−u(x))
ε2 ϕM

ε (x − y)dy = f in Ω,
u = g on ∂Ω.

and u be a solution of{
λ
2 ∆u(x) + infM∈A tr(M2D2u) = f in Ω,
u = g on ∂Ω.

Theorem (Caffarelli-Silvestre)

Assume that g ∈ C 1, f is Lipschitz continuous and Ω satisfies the
exterior ball condition. There exists C > 0 and α > 0 such that

‖uε − u‖∞ ≤ Cεα (‖g‖C1 + ‖f ‖Lip) .
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Non local operators.

Idea of the proof of theorem (in the linear case).

Since EM
ε is coercive and, by convexity, lower semicontinuous with

respect to the norm of H1
0 (Ω), λε,M1 is a minimum of EM

ε and any
minimizing function is a solution of the Euler-Lagrange equation;
precisely, for any v ∈ C∞c (Ω)

λ

2

∫
Ω
∇u · ∇vdx +

+
1

2

∫
Ω

∫
Rn

(u(x)− u(y))(v(x)− v(y))

ε2
ϕM
ε (x − y)dydx

− λε,M1

∫
Ω

uvdx = 0,

i.e.



A variational approach to fully nonlinear operators.

Non local operators.

Idea of the proof of theorem (in the linear case).

Since EM
ε is coercive and, by convexity, lower semicontinuous with

respect to the norm of H1
0 (Ω), λε,M1 is a minimum of EM

ε and any
minimizing function is a solution of the Euler-Lagrange equation;
precisely, for any v ∈ C∞c (Ω) i.e.

λ

2

∫
Ω
∇u · ∇vdx +

+

∫
Ω

∫
Rn

(u(x)− u(y))

ε2
ϕM
ε (x − y)dyv(x)dx

− λε,M1

∫
Ω

uvdx = 0.

We just need to prove that u is positive in Ω.



A variational approach to fully nonlinear operators.

Non local operators.

Ingredients

Theorem (Caffarelli-Silvestre)

Let f and g be continuous functions and Ω be a smooth domain

then there exists u ∈ C 1,α(Ω) solution of

{
PM
ε [u] = f in Ω,

u = g on ∂Ω.
Furthermore, the maximum principle holds i.e. if f ≤ 0 and g ≥ 0
then u ≥ 0 in Ω.

Proposition (Strong comparison for eigenfunction, BCP)

Let u and v be respectively bounded sub and supersolution of{
PM
ε [u] + λu = 0 in Ω

u = 0 on Ωc .

If v > 0 in Ω and u(x0) > 0 for some x0 ∈ Ω, then there exists
t > 0 such that v ≡ tu.
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A variational approach to fully nonlinear operators.

Non local operators.

End of the proof.

Recall that we need to prove that u, the function that realises the
minimum and is a solution of PM

ε [u] + λε,M1 u = 0, is positive .

(Max Prin.) By Krein Rutman theorem there exists λKR and uo > 0 in Ω
such that

PM
ε [uo ] + λKRuo = 0 in Ω, uo = 0 on Ωc .

(Definit.) Multiplying by uo and integrating by parts, we get

λKR = EM
ε [uo ]∫

Ω u2
odx

, therefore λε,M1 ≤ λKR .

(S.C.Pr.) Consequently uo > 0 satisfies PM
ε [uo ] + λε,M1 uo ≤ 0, while u is

somewhere positive. Hence we can apply the strong
comparison Proposition and uo ≡ tu.

(End) u > 0 in Ω.
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A variational approach to fully nonlinear operators.

Non local operators.

End of the proof.

The non linear case requires a few more steps, and uses the linear
case result.



A variational approach to fully nonlinear operators.

Non local operators.

Future developments

Characterise other eigenvalues which are not well defined via
Maximum principle. (Work in progress)

Other energy e.g.

EM
ε [u] =

λ

p

∫
Ω
|∇u|pdx+

1

p

∫
Ω

∫
Rn

(u(x)− u(y))p

ε2p
ϕM
ε (x−y)dydx

Considering the Rayleigh quotient would give eigenvalues for a
general class of quasi linear operators.

Non linear Liouville’s theorems for PM
ε [u] + up = 0 i.e. non

existence of entire positive solution for some range of p.
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A variational approach to fully nonlinear operators.

Non local operators.

Future developments

Theorem (Krein-Rutman)

Let X be Banach space and G ⊂ X a closed and convex cone with
vertex at the origin. If T is a compact linear mapping such that
T (G ) ⊂ G and such that there exist e 6= 0 in G and a positive
constant ρ satisfying

Te − ρe ∈ G (3)

then r(T ) := limk→∞ ‖T k‖
1
k > 0.

Thus in particular µo = r(T ) is an eigenvalue for T and there
exists uo ∈ G such that T (uo) = µouo .
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