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Who is Dijkstra and what do we want from him?

The Dijkstra algorithm (1959) is a classical tool for finding shortest
paths on finite graphs,

it has low computational complexity: running time = O(e + v log v) ,
v=number of vertices , e=number of edges

reasons: it is ”single pass”, i.e., once a node is accepted the value is
not recomputed on it, and terminates in a finite number of steps,

it is the basis for Fast Marching Methods in optimal control (Tsitsiklis
95) and in front propagation (Sethian 96, book 99).

Question 1: can it be adapted to discrete games?

Question 2: can it be used for the numerical solution of differential
games and of Hamilton-Jacobi equations with non-convex
Hamiltonian?

Related refs.: Q1: Alfaro, Henzinger, Kupferman 07;
Q2: vonLossow 07, Grüne-Junge 08, Cristiani 09, Cacace-Cristiani-Falcone
12.
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Zero-sum discrete dynamic games

Two players choose simultaneously and independently actions at each
instant of time. They know the costs they incurr, they remember the
(perfectly observed) past, and they are aware of each other’s goals.

Shapley (1953) proved that the value of finite state, discrete time,
discounted stochastic games satisfies a dynamic programming
principle and is the unique fixed point of a contractive operator.

Many methods to compute the value are more or less variants of more
general algorithms to compute fixed points, see the
survey by Filar and Raghavan (ZOR 1991), or
Kushner (IEEE Trans. Autom. Control 2004).

A Dijkstra-type algorithm makes sense for positive running costs. We
will also assume alternating moves, instead of simultaneous moves.
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The model

Let X be a finite set (the state space), A,B be finite action sets for
player 1 and 2 respectively.

For a deterministic transition function S : X × A× B → X define the
trajectory x• = x•(x , a•, b•) recursively by

xn+1 = S(xn, an, bn), x0 = x .

Let Xf ⊂ X , denote a terminal set of nodes (which player 1 wishes to
attain) and let γ ∈ (0, 1] be a discount factor.

The arrival time n̂ : X × AN × BN → R is

n̂(x , a•, b•) =

{
min{n ∈ N : xn ∈ Xf }, if {n ∈ N : xn ∈ Xf } 6= ∅

+∞ else,
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The running and terminal cost (for player 1)

` : X × A× B → R, 0 <`0 ≤ `(x , a, b) ≤ L,

g : Xf → R, g0 ≤ g(x) ≤ g1, ∀x ∈ Xf

Total cost: J : X × AN × BN → R , with 0 < γ ≤ 1 ,

J(x , a•, b•) :=
n̂−1∑
n=0

`(xn, an, bn)γn + γn̂g(xn̂).

Example: for ` ≡ 1, g ≡ 0, γ = 1,

J = number of steps to reach the target.
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The game: alternating moves

We consider the case when player 1 chooses his action after player 2.

Definition

A map α : BN → AN is a non-anticipating strategy for player 1 if

bn = b̃n, ∀n ≤ m =⇒ α[b•]n = α[b̃•]n, ∀n ≤ m,

and we denote α ∈ A.

This allows us to introduce the lower value function

V−(x) := inf
α∈A

sup
b•∈BN

J(x , α[b•], b•).

The upper value function can be defined in a completely analogous way
and corresponds to the game where player 2 knows in advance the move of
player 1.
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Dynamic programming

Proposition

The lower value function satisfies

V−(x) = g(x), ∀x ∈ Xf ,

V−(x) = max
b∈B

min
a∈A

{
`(x , a, b) + γV−(S(x , a, b))

}
, ∀x /∈ Xf ,

V−(x) = inf
α∈A

sup
b•∈BN

{
k∧n̂−1∑
n=0

`(xn, α[b•]n, bn)γn + γk∧n̂V−(xk∧n̂)

}
, ∀k .

Proposition (Dynamic programming ”for sets”)

(DPS) Let Xf ⊂ X̃ ⊂ X and let ñ denote the arrival time to X̃ , i.e.
ñ = ñ(x , a•, b•) = inf{n ∈ N : xn ∈ X̃}. Then

V−(x) = inf
α∈A

sup
b•∈BN

{
ñ−1∑
n=0

`(xn, α[b•]n, bn)γn + γñV−(xñ)

}
.
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The algorithm

Require: n = 0,Acc0 := Xf , W0(x) := +∞, ∀x ∈ X ,
V−0 (x) = g(x), ∀x ∈ Xf

while Accn 6= X do
for x ∈ X \Accn, b ∈ B do

An(x , b) := {a ∈ A : S(x , a, b) ∈ Accn}
end for

end while

Consn := {x ∈ X \Accn : An(x , b) 6= ∅ ∀b ∈ B}
while Consn 6= ∅ do

Wn+1(x) :=
maxb∈B mina∈An(x ,b){`(x , a, b) + γV−n (S(x , a, b))}, ∀x ∈ Consn

Accn+1 := Accn∪argminWn+1

V−n+1(x) := Wn+1(x), ∀x ∈ argminWn+1

V−n+1(x) := V−n (x),∀x ∈ Accn
n← n + 1

end while
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Note that Accn is strictly increasing as long as Consn 6= ∅, so the
algorithm terminates in a finite number N of steps, at most
|X \ Xf | = the cardinality of X \ Xf .

For the convergence we consider the set R of nodes from which player 1
can reach the terminal set for any behavior of player 2, i.e.,

R := {x ∈ X : inf
α∈A

sup
b•∈BN

n̂(x , α[b•], b•) < +∞},

called the reachability set (by player 1).
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Convergence of the algorithm

Condition

(Condition C) If γ < 1

L + γg1 ≤
`0

1− γ
.

Proposition

Assume either γ = 1 or γ < 1 and Condition C. Then, for any n ≤ N,

V−n (x) = V−(x), for all x ∈ Accn,

and the algorithm converges in N ≤ |X \ Xf | steps to the value function
V− on the reachability set R.
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Sketch of proof

From DPS, it suffices to prove that V−1 (x) = V−(x). The inequality
V−1 (x) ≥ V−(x) follows easily from the definitions. Now for

x̄ ∈ argminx∈Cons1
W1(x)

consider an optimal pair (α∗, b∗•) ∈ A× BN and the corresponding optimal
trajectory xn starting from x̄ , that is,

xn+1 = S(xn, α
∗[b∗•]n, b

∗
n), x0 = x̄

V−(x̄) = J(x̄ , α∗[b∗•], b
∗
•).

If n̂(x̄ , α∗[b∗•], b
∗
•) = 1, then V−(x̄) = W1(x̄) = V−1 (x̄), which is the

desired conclusion.

If, instead, n̂ := n̂(x̄ , α∗[b∗•], b
∗
•) > 1 we will distinguish two cases.
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Case γ = 1. Since ` > 0 we have that

V−(x̄) =
n̂−2∑
n=0

`(xn, α
∗[b•]n, b

∗
n) + V−(xn̂−1) > V−(xn̂−1).

On the other hand, we have an optimal pair strategy-control and
corresponding optimal trajectory starting from xn̂−1 that reaches Xf

in one step. Then V−(xn̂−1) = W1(xn̂−1) and so

V−(xn̂−1) = W1(xn̂−1) ≥W1(x̄) = V−1 (x̄) ≥ V−(x̄)

which is a contradiction.

Case γ < 1. Follow the same argument and use Condition C in the
last part, to show that for player 1 it is always more convenient to
follow a path with a smaller number of steps.
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Some remarks

The algorithm has the computational advantages as Dijkstra.
In particular, for constant costs l and g , all considered nodes are
accepted and hence the value function is computed only once in each
node, i.e., the algorithm is single pass.

If γ = 1, ` ≡ 1, and g ≡ 0, the problem for player 1 is the shortest
length of paths reaching Xf while player 2 maximizes such length.
If in addition B is a singleton, the problem reduces to the classical
shortest path and the algorithm is exactly Dijkstra.

If γ = 1, we can add a final step to the algorithm by setting
V−N+1(x) := W0(x) = +∞ for all x ∈ X \AccN , so

V−N+1(x) = V−(x) for x ∈ X \ R and we have convergence on the
whole state space X .
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More questions

Question 1B: is there a Dijkstra-type algorithm for stochastic games?

It is open, some extensions for a single player and stochastic
transitions are in Bertsekas (book 2001) Vladimirsky (MOR 2008).

Question 2: can we use our algorithm for the discrete schemes
associated to differential games?

We discuss it in the next slides, but in general there are troubles, even
for 1 player, see Cacace, Cristiani and Falcone (SIAM J. Sci. Comp.
2014)
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Differential games

Consider a continuous-time dynamical system controlled by two players

y ′(t) = f (y(t), a(t), b(t)), y(0) = x .

We are given a closed target T ⊆ Rn, and consider the first time the
trajectory yx(·; a, b) hits T

tx(a, b) := inf{t : yx(t; a, b) ∈ T },

and the the cost functional (for player 1)

J̃(x , a, b) :=

∫ tx

0
l(y(t), a(t), b(t))e−λtdt + e−λtx g(yx(tx ; a, b)),

for measurable controls a ∈ Ã, b ∈ B̃, λ ≥ 0 is the discount rate.

Call Γ the set of non-anticipating strategies for player 1.
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Hamilton-Jacobi-Isaacs equation

The lower value of the game (Varaiya, Roxin, Eliott-Kalton) is

v−(x) := inf
α∈Γ

sup
b∈B̃

J̃(x , α[b], b).

Under natural conditions it is a viscosity solution of the HJI equation

λv− −max
b∈B

min
a∈A

{
f (x , a, b) · Dv− + l(x , a, b)

}
= 0 in Ω := Rd \ T

with the boundary condition v−(x) = g(x) ∀ x ∈ ∂T .

For a time step h > 0 consider the discrete-time game with

S(x , a, b) = x + hf (x , a, b), `(x , a, b) = hl(x , a, b), γ = e−λh,

a natural approximation of the differential game.

Take also a finite grid X with final nodes Xf := X ∩ T .
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Discrete (Hamilton-Jacobi-)Isaacs equation

The Discrete (HJ)I equation, semi-Lagrangian approximation of the HJI
PDE, is

W (x) = max
b∈B

min
a∈A
{`(x , a, b) + γW (S(x , a, b))} , ∀ x ∈ X \ Xf ,

with the boundary condition W (x) = g(x), ∀ x ∈ Xf .
In general S(x , a, b) /∈ X , so in the right hand side W must be extended
by interpolation among the neighbouring nodes.
Call k = mesh size of the grid, Wh,k = solution of DI equation + BC.

Theorem ( M.B. - Falcone - Soravia 94)

If k/h→ 0 the weak (viscosity) semilimits

W (x) := lim sup
h,k→0, y→x

Wh,k(y), W (x) := lim inf
h,k→0, y→x

Wh,k(y)

are a sub- and a supersolution of the HJI PDE.
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The weak convergence above becomes local uniform convergence of
Wh,k → v− if the HJI PDE + BC has a continuous solution, by the
Comparison Principle.

Question: Can we combine this convergence result with a
Dijkstra-type algorithm?

In general this is not obvious and there are indeed troubles, even for a
single player: see Cacace, Cristiani, Falcone (SIAM J. Sci. Comp. 2014).
A simple positive case: grid adapted to the dynamics, i.e.,

S(x , a, b) ∈ X ∀ x ∈ X \ Xf , a ∈ A, b ∈ B. (AG)

Then W = Wh,k in the DI equation can be computed only on the nodes,
without any interpolation procedure.

Proposition

Under the assumption (AG) the solution W of the Discrete Isaacs
equation coincides with the lower value function V− of the discrete game.
Thus it can be computed by the Dijkstra-type algorithm.
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Grids adapted to the dynamics

Example 1. If f = f (a, b) independent of x , can build an adapted grid by

X0 := Xf , Xn+1 := {x − hf (a, b) for some x ∈ Xn, a ∈ A, b ∈ B}.

Example 2. For the convex-concave eikonal equation in the rectangle
Ω = (0, c)× (0, d) ⊆ R2

|ux | − δ|uy | = l(x , y) in Ω, u(x , y) = g(x , y) on ∂Ω,

the associated differential game has dynamics

x ′ = a, y ′ = b, a ∈ {−1, 1}, b ∈ {−δ, δ}.

A rectangular grid X = {(jh, kδh) : j = 1, . . . , ch , k = 1, . . . , d
δh} is adapted

to the dynamics for all h = hn of a sequence hn → 0 if cδ/d is rational.

Trouble: for adapted grids k = O(h) instead of k/h→ 0, so cannot apply
the BFS theorem.

Martino Bardi (Padova) A Dijkstra-type algorithm for dynamic games Roma, December 2014 19 / 24



Convergence on admissible sequences of grids

For hn → 0 take a sequence of grids X n adapted to the dynamics with
time step hn and such that

∀ x ∈ Rd ∃ x (n) ∈ X n such that lim
n

x (n) = x ,

This is an admissible sequence of grids. For each pair hn,X n call Wn the
solution of the Discrete Isaacs equation and define the weak semi-limits

W (x) := lim sup
X n3x(n)→x

Wn(x (n)), W (x) := lim inf
X n3x(n)→x

Wn(x (n)), x ∈ Ω.

Proposition

Assume hn, X n, Wn are as above with Wn locally equibounded.
Then W and W are, respectively, a viscosity sub- and supersolution of the
H-J-Isaacs PDE.
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As before if v− ∈ C (Ω) then W = W = v− by the Comparison Principle.
This implies the following form of uniform convergence of Wn to v−:

for all ε > 0 and compact set K there exists n and δ > 0 such that

|Wn(x (n))− v−(x)| < ε ∀ x ∈ K , x (n) ∈ X n, n ≥ n, |x (n) − x | < δ.

Rmk: no condition on k/h in the last result!
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How were we in 1994?

Look rather serious ... must go to the beach!
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Thanks for your attention and

Happy Birthday Maurizio!
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