Metodi Matematici nel trattamento delle immagini Roma, 15-16 gennaio 2013

Spatially-Adaptive Methods for Image Deblurring and Denoising

Alessandro Lanza, Serena Morigi, Fiorella Sgallari University of Bologna, Dept. Math, Italy

Raymond H. Chan
The Chinese University of Hong Kong, Hong Kong, China

Outline

- Image restoration
- Texture-preserving: the regularization operator is constructed by using fractional order derivatives
- Model and Numerical Algorithm
- Fractional-order derivatives
- Numerical Examples
- Edge-preserving: norm adapted to the image features
- Simple iterative alternating algorithms based on the half-quadratic strategy.

Image Recovery

Image Restoration Problem

Observed image

Unknown true image

Known Point
Spread Function

Unknown noise

$$
f \quad \text { u } \quad k
$$

Goal: Given f, recover u

Degradation model

Continuous degradation model:

Point Spread Function

Integral equation can be expressed as

$$
f=k * u+e
$$

Space variant - space invariant blur

Two causes for motion blur

Hand shaking

Object motion

Degradation model

Continuous degradation model:

Point Spread Function

Integral equation can be expressed as

$$
f=k * u+k
$$

Discretization yields

$$
\mathbf{f}=\mathbf{K} \mathbf{u}
$$

with matrix K block Toeplitz with Toeplitz blocks
P. C. Hansen, Regularization tools version 4.0 for Matlab 7.3, Numer. Algorithms, Vol. 46, 2007.

Solution $\mathrm{Ku}=\mathrm{f}$: add 0.1% noise to rhs Shaw.m

$$
\begin{aligned}
& \mathbf{f}=\widehat{\mathbf{f}}+\mathbf{e} \\
& \mathbf{u}=\mathbf{K}^{-1}(\widehat{\mathbf{f}}+\mathbf{e})=\mathbf{K}^{-1} \widehat{\mathbf{f}}+\mathbf{K}^{-1} \mathbf{e}=\widehat{\mathbf{u}}+\mathbf{K}^{-1} \mathbf{e}
\end{aligned}
$$

$$
u=K^{-1 f}
$$

$$
\mathrm{u}=\mathrm{K}^{-1 \mathrm{f}}
$$

Regularization

- Minimize the energy functional

$$
E(u)=\left\{\int_{\Omega} \Phi\left(\left(k^{*} \boldsymbol{u}-f\right)^{2}\right)+\lambda \boldsymbol{R}\left(|\nabla \boldsymbol{u}|^{2}\right) d x\right\}
$$

Data term: enforces the match between the sought image and the observed image via the blur model

Smoothness term: brings in regularity assumptions about the unknown image

$$
\begin{array}{ll}
\Phi\left(s^{2}\right)=s^{2} & R\left(s^{2}\right)=s^{2} \\
& R\left(s^{2}\right)=\sqrt{s^{2}+\varepsilon^{2}}
\end{array}
$$

Tikhonov

TV

$$
R\left(s^{2}\right)=\rho^{2} \ln \left(1+s^{2} / \rho^{2}\right) \quad \text { Perona }- \text { Malik }
$$

Solve the minimization problem

$$
\min _{u}\left\{\|\mathbf{K u}-\mathbf{f}\|_{p}^{p}+\frac{\lambda}{q}\|A(\mathbf{u})\|_{q}^{q}\right\}
$$

- \mathbf{A} is a regularization operator, λ is a positive regularization parameter that controls the trade-off between the data fitting term and the regularization term.
- $p=2, q=2$, Tikhonov regularization
- $p=2, q=1$, TV regularization $\left(\ell_{2}-T V\right) A(u)$ the gradient magnitude of u.
- $p=1, q=1$, TV regularization $\left(\ell_{1}-T V\right) A(u)$ the gradient magnitude of u.

Regularization: TV

$\ell_{1}-T V$ regularization $\min _{u}\left\{\|\mathbf{K u} \mathbf{- f}\|_{1}+\lambda\|\boldsymbol{u}\|_{T V}\right\}$,

$$
\begin{aligned}
& \|u\|_{T V}=\|A(u)\|_{1}:=\sum_{i=1}^{n^{2}} \sqrt{\left(G_{x, i} u\right)^{2}+\left(G_{y, i} u\right)^{2}} \\
& \nabla u_{i}:=\left(G_{x, i} u, G_{y, i} u\right)^{T}
\end{aligned}
$$

ℓ_{1}-TV regularization
has problems in preserving textures
blocky smoothed image

Adaptive Fractional (AF) Variational model

Replace the TV regularization term $\|u\|_{T V}$ with a spatially adaptive fractional order TV regularization term.

- fractional order a of derivatives to better preserve textures,
- spatial adaptivity of α in order to allow flexibility in choosing the correct regularizing operator,
- spatial adaptivity of $\boldsymbol{\lambda}$ in order to locally control the extent of restoration over image regions according to their content,
- effective texture detection methodology based on the noise auto-correlation energy which makes no assumption about the noise level of the image.

Adaptive Fractional Variational model

$\min _{u}\left\{\|\mathrm{Ku}-\mathbf{f}\|_{1}+\left\|\Lambda A_{\alpha}(\boldsymbol{u})\right\|_{1}\right\}$,

where
$\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n^{2}}\right) \quad n^{2} \times n^{2}$

$$
\boldsymbol{A}_{\alpha}\left(\boldsymbol{u}_{i}\right)=\left\|\nabla^{\alpha_{i}} \boldsymbol{u}_{i}\right\|
$$

$\nabla^{\alpha_{i}} \boldsymbol{u}_{i}:=\left(\boldsymbol{G}_{x, i}^{\alpha_{i}} u, \boldsymbol{G}_{y, i}^{\alpha_{i}} u\right)^{T}$
diagonal matrix λ_{i} representing the regularization parameter for the ith pixel,
α_{i} represents the fractional order of differentiation for the ith pixel,
is the fractional-order discrete gradient operator, with components representing the x and y directional fractional finite difference operators.

Adaptive Fractional Variational Algorithm

First phase: apply the texture detector to the observed image \mathbf{f} to obtain a texture map.

The texture map is partitioned into C subclasses according to the texture measure.

$$
\alpha_{i}=\left\{\begin{array}{cc}
1 & \text { if the ith pixel belongs to the non }- \text { texture class } \\
\left\{\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{C}\right\} & \text { if the ith pixel belongs to one of the } \mathrm{C} \text { texture subclasses }
\end{array}\right.
$$

The regularization parameters λ_{i} in the diagonal matrix Λ are then chosen according to α_{i} 's; Non-texture class has $\lambda=1.0$

Second phase: apply TV regularization $\left(\ell_{1}-T V\right)$ to the non-texture regions apply a fractional order TV regularization $\left(\ell_{1}-T V \alpha\right)$ in the texture classes.

The numerical algorithm

Minimize the functional

$$
\|v\|_{1, \beta}:=\sum_{i}\left|v_{i}\right|_{\beta}
$$

$$
\begin{aligned}
\Phi(u) & =\|K u-f\|_{1, \gamma}+\left\|\Lambda A_{\alpha}(\boldsymbol{u})\right\|_{1, \beta} \quad\left|v_{i}\right|_{\beta}:=\sqrt{v_{i}^{2}+\beta} \\
& =\sum_{i=1}^{n^{2}}\left|\boldsymbol{K}_{i} u-f_{i}\right|_{\gamma}+\lambda_{i}\left|\nabla^{\alpha_{i}}\left(u_{i}\right)\right|_{\beta} \quad\left(^{\star *}\right) \\
& =\sum_{i=1}^{n^{2}} \sqrt{\left(K_{i} u-f\right)^{2}+\gamma}+\lambda_{i} \sqrt{\left(G_{x, i}^{\alpha_{i}} u\right)^{2}+\left(G_{y, i}^{\alpha_{i}} u\right)^{2}+\beta}
\end{aligned}
$$

where
K_{i} is the i-th row of K,
$\mathbf{f}_{\mathbf{i}}$ is the intensity of the i -th pixel of the observed image

The numerical algorithm

Half-quadratic regularization $\quad|x|=\min _{v>0}\left\{v x^{2}+\frac{1}{4 v}\right\}$ minimum at $v=\frac{1}{2|x|}$

quadratic in x but not in v

$$
\begin{aligned}
& \min _{u} \Phi(u):=\min _{u, v>0, w>0} \mathcal{L}(u, v, w) \\
& \mathcal{L}(u, v, w)=\sum_{i=1}^{n^{2}}\left[w_{i}\left|K_{i} u-f_{i}\right|_{\gamma}^{2}+\frac{1}{4 w_{i}}+\lambda_{i}\left(v_{i}\left|\nabla^{\alpha_{i}} u_{i}\right|_{\beta}^{2}+\frac{1}{4 v_{i}}\right)\right]
\end{aligned}
$$

[a] M. Nikolova and R. Chan, The equivalence of half-quadratic minimization and the gradient linearization iteration, IEEE Trans. Image Proc.,vol. 16, pp. 1623-1627, 2007.
[b] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization and FFTs, IEEE Trans. Image Proc., vol. 4, pp. 932-946, 1995.

Alternating minimization procedure

For each iteration step $\mathrm{k}=0,1, \ldots$, we solve successively

$$
\begin{aligned}
& \min _{u, v>0, w>0} \mathcal{L}(u, v, w) \\
& v^{(k+1)}=\underset{v>0}{\arg \min } \mathcal{L}\left(u^{(k)}, v, w^{(k)}\right) \\
& w^{(k+1)}=\underset{w>0}{\arg \min } \mathcal{L}\left(u^{(k)}, v^{(k+1)}, w\right) \\
& u^{(k+1)}=\underset{u}{\arg \min } \mathcal{L}\left(u, v^{(k+1)}, w^{(k+1)}\right)
\end{aligned}
$$

For each iteration step k :

1. Explicit solution:

$$
v_{i}^{(k+1)}=\frac{1}{2}\left|\nabla^{\alpha_{i}} u_{i}^{(k)}\right|_{\beta}^{-1}
$$

2. Explicit solution

$$
w_{i}^{(k+1)}=\frac{1}{2}\left|K_{i} u^{(k)}-f_{i}\right|_{r}^{-1}
$$

3. Compute u by imposing

$$
\begin{aligned}
0 & =\nabla_{u} \mathcal{L}\left(u, v^{(k+1)}, w^{(k+1)}\right) \\
& =\left(G^{\alpha}\right)^{T} \hat{\Lambda} \hat{D}_{\beta}\left(u^{(k)}\right) G^{\alpha}+K^{T} D_{\gamma}\left(u^{(k)}\right)(K u-f)
\end{aligned}
$$

Alternating minimization procedure

3. Compute u by solving

$$
\begin{aligned}
& u^{(k+1)}=\arg \min _{u} \mathcal{L}\left(u, v^{(k+1)}, w^{(k+1)}\right) \\
& {\left[\left(G^{\alpha}\right)^{T} \hat{\Lambda} \hat{D}_{\beta}\left(u^{(k)}\right) G^{\alpha}+K^{T} D_{\gamma}\left(u^{(k)}\right) K\right] u^{(k+1)}=K^{T} D_{\gamma}\left(u^{(k)}\right) f}
\end{aligned}
$$

$\boldsymbol{G}^{\boldsymbol{\alpha}}:=\left[\boldsymbol{G}_{\boldsymbol{x}}^{\boldsymbol{\alpha}} ; \boldsymbol{G}_{\boldsymbol{y}}^{\boldsymbol{\alpha}}\right] \in \mathbb{R}^{\boldsymbol{n}^{2} \times \boldsymbol{n}^{2}}$ discretization matrix of the adaptive fractional gradient operator $\hat{\Lambda}:=\operatorname{diag}(\Lambda, \Lambda) \in \mathbb{R}^{2 n^{2} \times 2 n^{2}} \quad$ diagonal matrix of the adaptive regularization parameters $\hat{D}_{\beta}\left(u^{(k)}\right):=\operatorname{diag}\left(D_{\beta}\left(u^{(k)}\right), D_{\beta}\left(u^{(k)}\right)\right) \in \mathbb{R}^{2 n^{2} \times 2 n^{2}} \quad \hat{D}_{\gamma}\left(u^{(k)}\right) \in \mathbb{R}^{2 n^{2} \times 2 n^{2}}$ $\left(D_{\beta}\left(u^{(k)}\right)\right)_{i}=2 v_{i}^{(k+1)}=\frac{1}{\left|\nabla^{\alpha_{i}} u_{i}^{(k)}\right|_{\beta}}$
$\left(D_{\gamma}\left(u^{(k)}\right)\right)_{i}=2 w_{i}^{(k+1)}=\frac{1}{\left|K_{i} u^{(k)}-f_{i}\right|_{\gamma}}$

Adaptive-Fractional (AF) Algorithm

Input: degraded image f, number of texture classes C;
Output: approximate solution $\mathbf{u}^{(\mathrm{k})}$ of (**);

1. $\left\{\lambda_{i}, \alpha_{i}, i=1, . ., n^{2}\right\}=T D(f ; C)$ compute the texture-adaptive parameters on the degraded image \boldsymbol{f};
2. Initialize the iterative process by setting $u^{(0)}=f$;
3. For $k=1,2, \ldots$ until convergent, solve

$$
\left[\left(G^{\alpha}\right)^{T} \hat{\Lambda} \hat{D}_{\beta}\left(u^{(k)}\right) G^{\alpha}+K^{T} D_{\gamma}\left(u^{(k)}\right) K\right] u^{(k+1)}=K^{T} D_{\gamma}\left(u^{(k)}\right) f
$$

endfor

$$
\left[\left(G^{\alpha}\right)^{T} \hat{\Lambda} \hat{D}_{\beta}\left(u^{(k)}\right) G^{\alpha}+K^{T} D_{\gamma}\left(u^{(k)}\right) K\right] u^{(k+1)}=K^{T} D_{\gamma}\left(u^{(k)}\right) f
$$

- Solver:
the conjugate gradient method
- Stopping criterium: norm of the residual is less than or equal to 10^{-4}.
- No storage problems for large dimension matrices \mathbf{K} and $\mathbf{G}^{\mathbf{a}}$
- the only requirement is matrix-vector products.
- The product which involves matrix K makes use of FFT convolution.

How to compute the matrix-vector product $\left(\left(^{\alpha}\right)^{r} \hat{\hat{D}} \hat{D}_{\beta} G^{\alpha}\right) u^{(k+1)}$

Convergence

Theorem

For the sequence $u^{(k)}$ generated by the half-quadratic AF Algorithm, if

$$
\begin{equation*}
\operatorname{ker}\left(\left(\boldsymbol{G}^{\alpha}\right)^{T} \boldsymbol{G}^{\alpha}\right) \cap \operatorname{ker}\left(\boldsymbol{K}^{T} \boldsymbol{K}\right)=\{0\} \tag{}
\end{equation*}
$$

we have:

- $\left\{\Phi\left(\boldsymbol{u}^{(k)}\right)\right\} \quad$ is monotonic decreasing and convergent;
- $\lim _{k \rightarrow \infty}\left\|u^{(k)}-u^{(k+1)}\right\|_{2}=0$
- $\left\{\Phi\left(u^{(k)}\right)\right\} \quad$ converges to the unique minimizer u^{*} of $\Phi(u)$ from any initial guess $u^{(0)}$

Remark: in our case, for $\alpha \in[1,2], \operatorname{ker}\left(\left(G^{\alpha}\right)^{\top} G^{\alpha}\right)$ is spanned at most by the two vectors: $1_{n}{ }^{2}$, a n^{2} vector of ones, and ($1,2, \ldots, n^{2}$), while the blurring matrix K is a low-pass filter.

Grunwald-Letnikov

Fractional-order derivatives

The discrete fractional-order gradient at a pixel (i, j) is defined as

$$
\left(\nabla^{\alpha_{i, j}} u\right)_{i, j}=\left(\left(\Delta_{i}^{\alpha_{i, j}} u\right)_{i, j},\left(\Delta_{v, j}^{\alpha_{i, j}} u\right)_{i, j}\right)
$$

where $L>0$ is the number of pixels used for the approximation, and $\omega^{\alpha}{ }_{s}$, for a generic $\alpha=\alpha_{i, j}$, are the real coefficients defined as

$$
\omega_{s}^{\alpha}=(-1)^{s}\binom{\alpha}{s}=(-1)^{s} \frac{\Gamma(\alpha+1)}{\Gamma(s+1) \Gamma(\alpha-s+1)}, \quad \alpha \in \mathbb{R}^{+}, s \in \mathbb{N}
$$

The generalized binomial coefficients $\binom{\alpha}{s}$ are computed by the following recurrence relationships

$$
\binom{\alpha}{0}=1 ; \quad\binom{\alpha}{s}=\binom{\alpha}{s-1} \cdot\left(1-\frac{\alpha+1}{s}\right) \quad \alpha \in \mathbb{R}^{+}, s=1,2, \ldots \ldots
$$

Grunwald-Letnikov Fractional-order derivatives

$$
\omega_{s}^{\alpha}=(-1)^{s}\binom{\alpha}{s}=(-1)^{s} \frac{\Gamma(\alpha+1)}{\Gamma(s+1) \Gamma(\alpha-s+1)}, \quad \alpha \in \mathbb{R}^{+}, s \in \mathbb{N}
$$

 respectively.

Finally, we point out that the coefficients sum up to zero independently on $a \in[1,2]$.

Fractional-order Gradient operator
 $$
G^{\alpha}=\left(G_{x}^{\alpha}, G_{y}^{\alpha}\right) \quad 2 n^{2} \times n^{2} \quad \text { matrix }
$$

Non-adaptive α, Assuming Dirichlet homogeneous boundary conditions

$$
\begin{aligned}
\boldsymbol{G}_{x}^{\alpha} & =\boldsymbol{I}_{n} \otimes \boldsymbol{U}^{\alpha} \quad \text { block Toeplitz withToeplitz blocks } \\
\boldsymbol{G}_{y}^{\alpha} & =\boldsymbol{U}^{\alpha} \otimes \boldsymbol{I}_{\boldsymbol{n}} \\
\otimes & \text { denotes the Kronecker product, } \\
\boldsymbol{I}_{\mathrm{n}} & \text { is the n-order identity matrix } \\
\mathrm{U}_{\alpha} & \text { is the } \mathrm{n} \times \mathrm{n} \text { Toeplitz lower triangular banded matrix whose first column is } \\
& \left(\omega^{\alpha} 0, \omega_{1}^{\alpha}, \ldots, \omega^{\alpha} \mathrm{L}-1\right)
\end{aligned}
$$

Adaptive α, the two matrices retain the same sparsity structure but are no longer Toeplitz: each row will contain different coefficients depending on the fractional-order of differentiation selected for the corresponding pixel

Numerical Experiments

ℓ_{2}-TV method
ℓ_{1}-TV method

Rudin-Osher-Fatemi model
$\min _{u}\left\{\|\mathbf{K u} \mathbf{- f}\|_{1}+\lambda\|u\|_{T V}\right\}, \quad \lambda=0.1$
$\alpha_{i}=1, \lambda_{t}=0.1$, for all i in the difference matrix \mathcal{G}^{α} and in the diagonal matrix Λ

AF algorithm

Neumann homogeneous boundary conditions for the difference matrix \mathcal{G}^{α} $\beta=10^{-3}, \gamma=10^{-6}$, the number of nodes $L=8$

Signal-to-Noise Ratio (SNR)

$$
\operatorname{SNR}(u, \hat{u}):=10 \log _{10} \frac{\|u-E(\hat{u})\|}{\|u-\hat{u}\|} d B
$$

\mathbf{u} available approximation of the desired blur- and noise-free image $\hat{\mathbf{u}}$
$E(\hat{u})$ mean gray-level value of the uncorrupted image

Numerical Experiments

The matrix K represents a Gaussian blurring operator generated by the Matlab function blur.m in Regularization Tools [P.C.Hansen].

Band specifies the half-bandwidth of the Toeplitz blocks Sigma is the variance of the Gaussian point spread function.

The larger sigma, the more blurring.
Enlarging band increases the storage requirement, the arithmetic work required for the evaluation of matrix-vector products with K , and to some extent the blurring.

Numerical Experiments

f contaminated either by additive Gaussian noise or by salt-and pepper noise.

In the case of Gaussian noise,

$$
\begin{aligned}
& \tilde{f} \in \mathbb{R}^{n^{2}} \\
& f=\tilde{f}+e
\end{aligned}
$$

blurred image
e represents the noise.
noise-level
$v=\frac{\|e\|}{\|\vec{f}\|}$

In the salt-and-pepper noise white and black pixels randomly occur, while unaffected pixels always remain unchanged.
The salt-and-pepper noise is quantified by the percentage of corrupted pixels

Numerical Experiments

We partitioned the texture-map only into four classes, three texture classes and one non-texture class, associated fractional order and regularization parameter values

$$
\begin{aligned}
& \alpha_{1}=1.9, \lambda_{1}=0.05, \quad \alpha_{2}=1.8, \lambda_{2}=0.05, \\
& \alpha_{3}=1.7, \lambda_{3}=0.05 \quad \alpha_{4}=1.0, \lambda_{4}=1.0,
\end{aligned}
$$

For this particular case, the diagonal entries of the matrix \wedge may assume one of the four different values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4}.

The core of the algorithm: outer iteration loop (step 3) : at most 10 outer iterations inner iteration loop required by CG for the linear system:
with 10^{-4} as stopping tolerance - an average of 18 inner iterations.

Example 1

\%5 salt-and-pepper noise
Gaussian blur, band $=3$, sigma $=1.5$

AF

texture map

texture classes

Example 1

l_{2}-TV

AF

n	SNR_{i}	$\mathrm{SNR}_{\mathrm{AF}}$	SNR $_{\ell 1-\mathrm{TV}}$	$\mathrm{SNR}_{\ell 2-\mathrm{TV}}$
5%	3.89 dB	14.12	13.39	7.56
10%	1.42 dB	13.17	12.93	6.61

Example 2

true
image
255×255

Observed image
spatially-invariant Guassian blur
band = 3
sigma = 1.5,
10\% noise

Example 2

ν	SNR_{i}	$\mathrm{SNR}_{\mathrm{AF}}$	$\mathrm{SNR}_{\ell 1-\mathrm{TV}}$	$\mathrm{SNR}_{\ell 2-\mathrm{TV}}$
0.01	15.98	20.46	20.00	18.22
0.05	13.29	15.86	15.06	15.48

Example 3

true image 510×510

observed image

Gaussian blur, band $=3$. sigma $=1.5,10 \%$ Gaussian noise

Example 3

texture map from original
texture map from corrupted

Example 3

l_{1}-TV

AF

ν	SNR_{i}	$\mathrm{SNR}_{\mathrm{AF}}$	$\mathrm{SNR}_{\ell 1-\mathrm{TV}}$	$\mathrm{SNR}_{\ell 2-\mathrm{TV}}$
0.01	11.41	14.00	13.53	12.14
0.05	10.71	11.94	10.89	11.64
0.10	9.05	10.59	9.73	10.26

Example 4

True image 256x256

Observed Image 10\% Gaussian noise Gaussian blur band $=3$, sigma $=1.5$

SNR=8.17

Example 4

texture map

texture classes

Example 4

AF

SNR=9.79
\%10 Gaussian noise Gaussian blur band $=3$, sigma $=1.5$

SNR=8.17

Example 4

AF

e_{1}-TV

SNR=9.79

SNR=8.44

Regularization: adaptive norm

Solve the minimization problem

$$
\min _{u}\left\{\|\mathbf{K u} \mathbf{- f}\|_{p}^{p}+\frac{\lambda}{\boldsymbol{q}}\|\boldsymbol{A}(\mathbf{u})\|_{q}^{q}\right\},
$$

A is a regularization operator, λ is a positive regularization parameter that controls the tradeoff between the data fitting term and the regularization term.

- $p=2, q=2$, Tikhonov regularization Gaussian noise, oversmoothed
- $p=2, q=1$, TV regularization ($\left.\ell_{2}-T V\right)$
- $p=1, q=1$, TV regularization ($\boldsymbol{e}_{1}-T V$) Impulse noise, blocky restored images)

Main goal: adaptively consider a suitable norm ($q=1$ or $q=2$) driven by a coherence map of the image structures (smooth regions or edges).

Adaptive Norm (AN) image restoration model

Gaussian noise band $=5$, sigma $=3$ noise 5%

L1-TV $p=1, q=1 \quad p=2, q=2$,
SNR $=20.30$ SNR $=9.62$

adaptive-norm $\mathrm{p}=1$ SNR $=20.93$

Coherence matrix construction

1. Compute the tensor matrix $\quad S_{\delta}\left(\nabla u_{\sigma}\right):=\left(K_{\delta} *\left(\nabla u_{\sigma} \otimes \nabla u_{\sigma}\right)\right)$
\mathbf{K}_{δ} is a Gaussian kernel
2. Compute $\lambda_{1} \lambda_{2}$ eigenvalues of \boldsymbol{S}_{δ}

The matrix \boldsymbol{S}_{δ} is symmetric positive semi-definite and its eigenvalues $\lambda_{1} \quad \lambda_{\mathbf{2}}$ integrate the variation of the gray values within a neighborhood of size $\mathrm{O}(\delta)$.

$$
\begin{array}{ll}
\lambda_{1}=\lambda_{2}=0 & \text { constant areas, } \\
\lambda_{1} \gg \lambda_{2}=0 & \text { straight edges }
\end{array}
$$

Coherence matrix construction

3. Compute normalized coherence value at pixel i-th

$$
c_{i}=\frac{\left(\lambda_{1}-\lambda_{2}\right)^{2}}{\max \left\{\left(\lambda_{1}-\lambda_{2}\right)^{2}\right\}}
$$

4. Construct the diagonal matrix C

$$
C_{i i}=\left\{\begin{array}{ccc}
0 & c_{i}<\tau & \text { homogenous regions } \\
1 & c_{i} \geq \tau & \text { edges }
\end{array}\right.
$$

Adaptive Norm (AN) image restoration model

Solve the minimization problem

$$
\min _{u}\left\{\|\mathbf{K u}-\mathbf{f}\|_{p}^{p}+\frac{\lambda}{q}\|A(\mathbf{u})\|_{q}^{q}\right\}
$$

Alternating minimization procedure

For each iteration step $k=0,1, \ldots$, we solve successively

$$
\begin{aligned}
& \min _{u, v>0, w>0} \mathcal{L}(u, v, w) \\
& v^{(k+1)}=\underset{v>0}{\arg \min } \mathcal{L}\left(u^{(k)}, v, w^{(k)}\right) \\
& w^{(k+1)}=\underset{w>0}{\arg \min } \mathcal{L}\left(u^{(k)}, v^{(k+1)}, w\right) \\
& u^{(k+1)}=\underset{u}{\arg \min } \mathscr{L}\left(u, v^{(k+1)}, w^{(k+1)}\right)
\end{aligned}
$$

For each iteration step k :

1. Explicit solution:
2. Explicit solution

$$
\begin{aligned}
& \hline \left.v_{i}^{(k+1)}=\frac{1}{2}\left|\nabla^{\alpha_{i}} u_{i}^{(k)}\right|_{\beta}^{-1} \right\rvert\, \\
& w_{i}^{(k+1)}=\frac{1}{2}\left|K_{i} u^{(k)}-f_{i}\right|_{\gamma}^{-1} \\
& \hline
\end{aligned}
$$

3. Compute u by solving
$\left[\mu_{1} A^{T} C \hat{D}_{\beta}\left(\boldsymbol{u}^{(k)}\right) C A+\mu_{2} L^{T}(I-C) L+K^{T} D_{\gamma}\left(u^{(k)}\right) K\right] u^{(k+1)}=K^{T} D_{\gamma}\left(u^{(k)}\right) \boldsymbol{f}$

Example 1

corrupted image (SNR = 9.43) Band=5, sigma=3 Noise 2\%

coherence map

Example 1

Restoration by L1-TV, $\mathrm{p}=1, \mathrm{q}=1$ $\mu=0.5 \quad(S N R=17.15)$

Restoration by AN $\mathrm{p}=1$, $\mu_{1}=0.5, \mu_{2}=80($ SNR $=17.47) \mathrm{k}=10$

Example 2

Gaussian noise band $=7$, sigma $=5$ Noise 2\%

AN , $p=1$, $\mu_{1}=0.2, \mu_{2}=10$ SNR=16.76.

Example 2

band	sigma	\%noise	SNR (L1-TV)	SNR (AN)
7	5	1%	22.09	22.90
7	5	2%	20.08	20.95
7	5	5%	16.74	17.61
7	5	10%	13.69	15.20
5	3	1%	23.63	24.53
5	3	2%	21.07	22.16
5	3	5%	18.02	18.76
5	3	10%	15.10	15.68
3	1	1%	26.35	26.78
3	1	2%	23.20	23.98
3	1	5%	18.69	19.38
3	1	10%	14.62	15.35

Conclusion

- Spatially-Adaptive Methods for image deblurring and denoising.
- Texture-preserving: the regularization operator is constructed by using fractional order derivatives
- The choice of the fractional order for each pixel in the image

- The regularization parameters are also chosen adaptively according to the texture map.
- Edge-preserving: norm adapted to the image features
- Simple iterative alternating algorithms to solve the models based on the half-quadratic strategy.

