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Orbifold compactness for extremal
Kahler mertics

Theorem (X. Chen, B. Weber)

If (M;,g;) is a sequence of extremal Kahler
manifolds with

Bounded energy: [|Rm |% <A
Bounded diameters: Diam(M;) < 6
Bounded volumes: Vol(M;) > v
Bounded Sobolev constants: ). < Cg

Then a subsequence converges to a (reduced,
C°) extremal Kahler orbifold.



Orbifolds and Riemannian Orbifolds

A topological orbifold is a (Hausdorff, second
countable) topological space so that every
point has a neighborhood homeomorphic to
a subset of R"/I", where I is a finite group
acting on R".

A Riemannian orbifold (of differentiability class
Cka) is a differentiable orbifold so that a
metric tensor exists at each manifold point,
which can be completed on any orbifold cover
to a metric of differentiability class Ck-.

If some other structure exists at every man-
ifold point, the orbifold is said to carry that
structure if it can be completed on the lift to
any orbifold cover.



Role played by analysis

The sectional curvature restriction, required
by the standard Riemannian convergence the-
orems, is very strong. Can we weaken it?

Main idea: consider manifolds on which Rm
satisfies an elliptic system.

Then Analysis may lead to recovery of sec-
tional curvature bounds, provided only much
weaker assumptions.

Any Riemannian manifold satisfies,

ARM = RmMmx*Rm —|—V2Ric

But clearly this is not enough.



Naturality of elliptic systems

For example if V2 Ric disappears (as happens
with Einstein metrics) we get

ARM = Rm+«Rm.

In other case we get more complicated elliptic
systems, say for the Ricci tensor, which lets
us control V2 Ric.

Curvature tensors of various ‘““Canonical met-
rics,” minimizers of some energy functional

[irRmP2, w2, R et

tend to satisfy additional elliptic inequalities.



Form of the equations

Equations on an Extremal Kahler manifold:

ARM = RmxRm +V2Ric
ARic = Rm=xRic +V2R
AVR = RicxVR

Previously studied Einstein case:

ARM = RmxRm
Also CSC-Kahler, CSC-Bach Flat:

ARM = Rmx*Rm —|—V2Ric
A Ric = RmxRIicC.

T he analytic technique is clearest in the Ein-
stein case, where

Au > —u?

where u = |Rm|.



Ordinarily one assumes the scale-invariant quan-
tity [ |Rm |2 is bounded.

Consider

Au > — fu.

If the Sobolev inequality is available, then

n
fel2=uelLl  allg>?2
n
fELp,somep>§:>ueL°°

With Aw > —u?, this theorem can’'t give us
pointwise bounds on w.

Anderson (1989), BKN (1989), Tian (1990)
managed to exploit the equation’s non-linearity
to partially recover the L°° bounds.



e-Regularity

Theorem
T here exists numbers ¢y, C' so that

/ IRM|2 < ¢
B(o,r)

implies

2
sup |[Rm| < Cr—? (/ |Rm|%)”.
BT’/Q T

The numbers e and C depend on the Sobolev
constant.

Proof: Modified version of Moser iteration.



CO-orbifold compactness

Theorem
Assume M; is a sequence of Riemannian man-
ifolds that satisfy

* A sufficiently strong elliptic system for cur-
vature

* Bounded energies: [j; [Rm |% <A

* Bounded diameters: Diam(M;) <6

* Bounded volumes: Vol(M;) > v

% A Sobolev constant bound: Cy; < Cg
***% A |local volume growth bound:

Vol B(o,7) <ovr™ when r<1

Then a subsequence of M; converges in the
GH-topology to a manifold-with-singularities
M.

T he singularities are isolated, the number of
singularities is bounded, and each is an orb-
ifold point with a €9 orbifold metric.



Sketch of Proof I: Weak Compactness

Let bad,; be the set of points p € M; so that
fB(p,r) |[RM |2 > €.

Cover bad,; by balls B(p;;,2r) with p € €, ;
and so the B(p,r) are disjoint. There are at
most A/eg balls in any such covering.

OQutside of these balls curvature is bounded
by Cr—2, so the manifolds M, — (Uj B(pyj, 27“))

(sub)converge to a limit M,.

That M, is nonempty is guaranteed by ***.

Define
M — U Mfr
r>0
S=M- | M
r>0

Then M is a complete length space with sin-

gular set S.
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Sketch of proof II: S consists of CO©
Riemannian orbifold points

Let p € S, and let r denote distance from p.

Then |Rm| = o(r—2) near p, so any tangent
cone at p is flat.

Also, p has a unique tangent cone; topolog-
ically it is a (one-point union of) standard

cone(s) over S*1/r.

The metric on the tangent cone is flat; if
n > 2 it is therefore C°.

Thus the original metric is a C° orbifold met-
ric (possibly nonreduced).
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C°°-Riemannian orbifold points, n > 5.
Lift to an orbifold cover B of p € S.

We have seen that the metric can be com-
pleted on B to a C° metric.

We know |Rm| = o(r~2) near the singular
point. If the regularity of Rm can be im-
proved, so can the regularity of g.

Dimension 5 and higher: equations of the
type Au > —fu yield removable singularity
theorems; proof is entirely analytic.

Dimension n = 4 is the critical case. No
purely analytic removable singularity theorem
IS possible.
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C°°-Riemannian orbifold points, n = 4.

The geometry itself must provide some help
if we are to improve regularity in the n = 4
case.

One attempts to find an improved Kato in-
equality: for some o > 0,

1+ )|VIT|? < |VT)%

From this one can derive an improved elliptic
inequality,

TIATIF? > —(1—&)|T°|AT

when ¢ is small enough.

Metrics for which such an improved Kato in-
equality is possible include the Einstein, Yang-
Mills, harmonic curvature, CSC-Kahler, and
CSC-Bach flat metrics.

(ref: [Branson 2000], [Calderbank-Gouduchon-
Herzlich 2000])
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C*°° orbifold regularity

In higher dimensions the removable singular-
ity result goes through as before.

In dimension 4 we remove the singularity by
using a new Kato inequality.

O
Letting RiC;z = RiC;5 —%@;R denote the trace-
free Ricci tensor, we find that

2|v|vRic|® < y|v2Ric|® + [VVRic|”

With knowledge about X = VR coming from
the theory of extremal metrics, we boost |V Ric|
into a higher LP space.

This is sufficient for Uhlenbeck’s removable
singularity result to go through.
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Orbifold compactness for extremal
Kahler mertics

T heorem

If (M;,g;) is a sequence of extremal Kahler
manifolds with:

Bounded energy: [|Rm |% <A
Bounded diameters: Diam(M;) < 6
Bounded volumes: Vol(M;) > v
Bounded Sobolev constants: Cy; < Cg

Then a subsequence converges to a extremal
Kahler orbifold.
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Application: Finding extremal Kahler
metric on CP242C P2

(Joint work with C. LeBrun and X. Chen)

Let —H be the hyperplane class, and Eq, E>
the classes of the exceptional divisors.

A typical symmetric Kahler class:

[wagl =sH + t(E1 + E)

Put, say, s =1 and

wi] = H 4+ t(E1 + E»).

When t = 0, one has the Fubini-Study metric
on (C[PQ. We want to show that given any t,
[wi] possesses an Extremal representative.
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By Arezzo-Pacard-Singer (2006), when ¢t is
sufficiently small, [w¢] has an extremal repre-
sentative

By LeBrun-Simanca (1994), the set of classes
with extremal representatives is open.

The Chen-Weber result can be used to show
closedness.

Justification of the Sobolev inequality is re-
quired.

One must show that curvature concentration
does not occur.
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We can recover the Sobolev inequality if the
Yamabe constant is uniformly positive.

Idea of Tian's, modified by Chen-Weber:

2
Y2 > C% . g (([UJ] Cl) + ||f||2) .

- 3 [w - [w]

It is known that the Yamabe constant is pos-
itive. We have information on the Futaki in-
variant.

Thus we get a lower bound on Y.

This yields a Sobolev inequality of the form

1
] 6 a
()" < § 1w+ "5 [
Y Y
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Lastly we show that the singularities cannot
possibly form, essentially for energy reasons.

On Compact Kahler manifolds,
5 o}

IRm|?2 = EL/R2+2/ﬁRmF-k/HV12
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On ALE ZSC-Kahler manifolds,
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Using [R? < 9-3272 and that 7+ = —1 on
CP242C P2, we get

/@ PQﬁQ—CP2|W_|2 < 24rZ.

On any bubble, by = b3 =0, and bp =1, 2.

Only one bubble can possibly form, and it
has Zo symmetry.

Neither possibility for b, leads to a realizable
bubble.
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