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Orbifold compactness for extremal

Kähler mertics

Theorem (X. Chen, B. Weber)

If (Mi, gi) is a sequence of extremal Kähler

manifolds with

Bounded energy:
∫
|Rm |

n
2 < Λ

Bounded diameters: Diam(Mi) < δ

Bounded volumes: Vol(Mi) > ν

Bounded Sobolev constants: CMi
< CS

Then a subsequence converges to a (reduced,

C∞) extremal Kähler orbifold.
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Orbifolds and Riemannian Orbifolds

A topological orbifold is a (Hausdorff, second

countable) topological space so that every

point has a neighborhood homeomorphic to

a subset of Rn/Γ, where Γ is a finite group

acting on Rn.

A Riemannian orbifold (of differentiability class

Ck,α) is a differentiable orbifold so that a

metric tensor exists at each manifold point,

which can be completed on any orbifold cover

to a metric of differentiability class Ck,α.

If some other structure exists at every man-

ifold point, the orbifold is said to carry that

structure if it can be completed on the lift to

any orbifold cover.
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Role played by analysis

The sectional curvature restriction, required

by the standard Riemannian convergence the-

orems, is very strong. Can we weaken it?

Main idea: consider manifolds on which Rm

satisfies an elliptic system.

Then Analysis may lead to recovery of sec-

tional curvature bounds, provided only much

weaker assumptions.

Any Riemannian manifold satisfies,

4Rm = Rm ∗Rm +∇2 Ric

But clearly this is not enough.

4



Naturality of elliptic systems

For example if ∇2 Ric disappears (as happens

with Einstein metrics) we get

4Rm = Rm ∗Rm .

In other case we get more complicated elliptic

systems, say for the Ricci tensor, which lets

us control ∇2 Ric.

Curvature tensors of various “Canonical met-

rics,” minimizers of some energy functional∫
|Rm |2,

∫
|W |2,

∫
R2, etc.,

tend to satisfy additional elliptic inequalities.
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Form of the equations

Equations on an Extremal Kähler manifold:

4Rm = Rm ∗Rm +∇2 Ric

4Ric = Rm ∗Ric +∇2R

4∇R = Ric ∗∇R

Previously studied Einstein case:

4Rm = Rm ∗Rm

Also CSC-Kähler, CSC-Bach Flat:

4Rm = Rm ∗Rm +∇2 Ric

4Ric = Rm ∗Ric .

The analytic technique is clearest in the Ein-

stein case, where

4u ≥ −u2

where u = |Rm |.
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Ordinarily one assumes the scale-invariant quan-

tity
∫
|Rm |

n
2 is bounded.

Consider

4u ≥ −fu.

If the Sobolev inequality is available, then

f ∈ L
n
2 ⇒ u ∈ Lqloc, all q > 2

f ∈ Lp, some p >
n

2
⇒ u ∈ L∞

With 4u ≥ −u2, this theorem can’t give us

pointwise bounds on u.

Anderson (1989), BKN (1989), Tian (1990)

managed to exploit the equation’s non-linearity

to partially recover the L∞ bounds.
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ε-Regularity

Theorem

There exists numbers ε0, C so that∫
B(o,r)

|Rm |
n
2 ≤ ε0

implies

sup
Br/2

|Rm | ≤ C r−2
(∫
Br
|Rm |

n
2

)2
n
.

The numbers ε and C depend on the Sobolev

constant.

Proof: Modified version of Moser iteration.
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C0-orbifold compactness

Theorem

Assume Mi is a sequence of Riemannian man-

ifolds that satisfy

* A sufficiently strong elliptic system for cur-

vature

* Bounded energies:
∫
Mi
|Rm |

n
2 ≤ Λ

* Bounded diameters: Diam(Mi) ≤ δ
* Bounded volumes: Vol(Mi) ≥ ν
** A Sobolev constant bound: CMi

≤ CS
*** A local volume growth bound:

VolB(o, r) ≤ vrn when r < 1

Then a subsequence of Mi converges in the

GH-topology to a manifold-with-singularities

M̃ .

The singularities are isolated, the number of

singularities is bounded, and each is an orb-

ifold point with a C0 orbifold metric.
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Sketch of Proof I: Weak Compactness

Let badr,i be the set of points p ∈Mi so that∫
B(p,r) |Rm |

n
2 ≥ ε0.

Cover badr,i by balls B(pij,2r) with p ∈ Ωr,i

and so the B(p, r) are disjoint. There are at

most Λ/ε0 balls in any such covering.

Outside of these balls curvature is bounded

by Cr−2, so the manifolds Mi−
(⋃

j B(pij,2r)
)

(sub)converge to a limit M̃r.

That M̃r is nonempty is guaranteed by ***.

Define

M̃ =
⋃
r>0

M̃r

S = M̃ −
⋃
r>0

M̃r.

Then M̃ is a complete length space with sin-

gular set S.
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Sketch of proof II: S consists of C0

Riemannian orbifold points

Let p ∈ S, and let r denote distance from p.

Then |Rm | = o(r−2) near p, so any tangent

cone at p is flat.

Also, p has a unique tangent cone; topolog-

ically it is a (one-point union of) standard

cone(s) over Sn−1/Γ.

The metric on the tangent cone is flat; if

n > 2 it is therefore C∞.

Thus the original metric is a C0 orbifold met-

ric (possibly nonreduced).
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C∞-Riemannian orbifold points, n ≥ 5.

Lift to an orbifold cover B of p ∈ S.

We have seen that the metric can be com-

pleted on B to a C0 metric.

We know |Rm | = o(r−2) near the singular

point. If the regularity of Rm can be im-

proved, so can the regularity of g.

Dimension 5 and higher: equations of the

type 4u ≥ −fu yield removable singularity

theorems; proof is entirely analytic.

Dimension n = 4 is the critical case. No

purely analytic removable singularity theorem

is possible.
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C∞-Riemannian orbifold points, n = 4.

The geometry itself must provide some help

if we are to improve regularity in the n = 4

case.

One attempts to find an improved Kato in-

equality: for some α > 0,

(1 + α)|∇|T ||2 ≤ |∇T |2.

From this one can derive an improved elliptic

inequality,

|T |4|T |1−δ ≥ −(1− δ)|T |1−δ|4T |

when δ is small enough.

Metrics for which such an improved Kato in-

equality is possible include the Einstein, Yang-

Mills, harmonic curvature, CSC-Kähler, and

CSC-Bach flat metrics.

(ref: [Branson 2000], [Calderbank-Gouduchon-

Herzlich 2000])
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C∞ orbifold regularity

In higher dimensions the removable singular-

ity result goes through as before.

In dimension 4 we remove the singularity by

using a new Kato inequality.

Letting
◦

Ricīj = Ricīj −
1
mδījR denote the trace-

free Ricci tensor, we find that

2
∣∣∣∇∣∣∣∇ ◦

Ric
∣∣∣∣∣∣2 ≤ η

∣∣∣∇2
◦

Ric
∣∣∣2 +

∣∣∣∇∇ ◦
Ric

∣∣∣2.
With knowledge about X = ∇R coming from

the theory of extremal metrics, we boost |∇Ric |
into a higher Lp space.

This is sufficient for Uhlenbeck’s removable

singularity result to go through.

14



Orbifold compactness for extremal

Kähler mertics

Theorem

If (Mi, gi) is a sequence of extremal Kähler

manifolds with:

Bounded energy:
∫
|Rm |

n
2 < Λ

Bounded diameters: Diam(Mi) < δ

Bounded volumes: Vol(Mi) > ν

Bounded Sobolev constants: CMi
< CS

Then a subsequence converges to a extremal

Kähler orbifold.
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Application: Finding extremal Kähler

metric on C P2]2C P2

(Joint work with C. LeBrun and X. Chen)

Let −H be the hyperplane class, and E1, E2

the classes of the exceptional divisors.

A typical symmetric Kähler class:

[ωα,β] = sH + t (E1 + E2)

Put, say, s = 1 and

[ωt] = H + t (E1 + E2) .

When t = 0, one has the Fubini-Study metric

on C P2. We want to show that given any t,

[ωt] possesses an Extremal representative.
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By Arezzo-Pacard-Singer (2006), when t is

sufficiently small, [ωt] has an extremal repre-

sentative

By LeBrun-Simanca (1994), the set of classes

with extremal representatives is open.

The Chen-Weber result can be used to show

closedness.

Justification of the Sobolev inequality is re-

quired.

One must show that curvature concentration

does not occur.
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We can recover the Sobolev inequality if the

Yamabe constant is uniformly positive.

Idea of Tian’s, modified by Chen-Weber:

Y 2 ≥ C2
1 −

2

3

([ω] · C1)2

[ω · [ω]
+ ‖F‖2

 .

It is known that the Yamabe constant is pos-

itive. We have information on the Futaki in-

variant.

Thus we get a lower bound on Y .

This yields a Sobolev inequality of the form(∫
u4
)1

2 ≤
6

Y

∫
|∇u|2 +

max s

Y

∫
u2
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Lastly we show that the singularities cannot

possibly form, essentially for energy reasons.

On Compact Kähler manifolds,

|Rm |2 =
5

24

∫
R2 + 2

∫
|
◦

Ric |2 +
∫
|W−|2

8π2χ =
1

12

∫
R2 −

1

2

∫
|
◦

Ric |2 +
∫
|W−|2

12π2τ =
1

24

∫
R2 −

∫
|W−|2.

On ALE ZSC-Kähler manifolds,

|Rm |2 = 2
∫
|
◦

Ric |2 +
∫
|W−|2

8π2χ = −
1

2

∫
|
◦

Ric |2 +
∫
|W−|2 +

8π2

|Γ|

12π2τ = −
∫
|W−|2 + η.
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Using
∫
R2 < 9 · 32π2 and that τ = −1 on

C P2]2C P2, we get∫
C P2]2C P2

|W−|2 < 24π2.

On any bubble, b1 = b3 = 0, and b2 = 1,2.

Only one bubble can possibly form, and it

has Z2 symmetry.

Neither possibility for b2 leads to a realizable

bubble.
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