Analytic Aspects of Sasakian Geometry

Guofang Wang

Uni. Magdeburg, Germany

Kähler and Sasakian Geometry in Rome

June 19, 2009

Aim: Establish a systematic way to find Sasaki-Einstein metrics.

- 1. Sasakian Geometry: Introduction
- 2. Sasakian-Ricci flow

(with K. Smoczyk (Hanover), Yongbing Zhang (Hefei) 2006)

3. Sasakian-Einstein metrics on Sasakian toric manifolds (with A. Futaki, H. Ono (Tokyo)) arXiv:math/0607586, JDG

4. Sasakian-Ricci flow on 3-dimensional Sasakian manifolds (with Yongbing Zhang (Hefei) 2009)

Contact manifolds

• Contact manifold: (M^{2n+1}, η) , a 1-form η (contact form)

 $\eta \wedge (d\eta)^n \neq 0.$

• Characteristic vector field or Reeb vector field: ξ

$$\eta(\xi) = 1$$
 and $d\eta(\xi, X) = 0$

• Almost contact manifold: (M, η, Φ) , $\Phi - (1, 1)$ tensor,

$$\Phi^2 = -I + \eta \otimes \xi.$$

• Metric contact manifold: (M, η, g, Φ) , g - (compatible) metric,

$$g(\Phi X, \Phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

Sasakian Manifolds

• Sasakian Manifold: (M, g, η, ξ, Φ) , a metric contact manifold with

 $[\Phi,\Phi]=-2d\eta\otimes\xi,$

where the *Nijenhuis bracket* is defined by

 $[\Phi,\Phi](X,Y) := [\Phi X,\Phi Y] + \Phi^2[X,Y] - \Phi[\Phi X,Y] - \Phi[X,\Phi Y]$

A Riemannian manifold (M,g) is Sasakian if and only if one of the following equivalent statements holds:

- $(C(M), \overline{g}) = (\mathbb{R}_+ \times M, dr^2 + r^2g)$ is Kähler.
- \exists a Killing field ξ of $|\xi| = 1$ with $R(X,\xi)Y = g(\xi,Y)X g(X,Y)\xi$.

• • • • .

Examples

 $\mathbb{S}^{2n+1} \subset \mathbb{C}^{n+1}$ has a standard Sasakian structure (ξ, η, Φ, g)

$$\eta = \sum_{i=0}^{n} (x_i dy_i - y_i dx_i), \quad \xi = \sum_{i=0}^{n} (x_i \frac{\partial}{\partial y_i} - y_i \frac{\partial}{\partial x_i})$$

 Φ is a "restriction" of J_0 and g the standard metric.

Other Sasakian structures $(\xi_w, \eta_w, \Phi_w, g_w)$ on \mathbb{S}^{2n+1} : for $w = (w_0, w_1, \dots, w_n) \in \mathbb{R}^{n+1}_+$

$$\eta_w = \frac{\sum_{i=0}^n (x_i dy_i - y_i dx_i)}{\sum_{i=0}^n w_i (x_i^2 + y_i^2)}, \quad \xi_w = \sum_{i=0}^n w_i (x_i \frac{\partial}{\partial y_i} - y_i \frac{\partial}{\partial x_i}),$$

 $\Phi_w = \Phi - \Phi \xi_w \otimes \eta_w \text{ and } g_w.$

Characteristic Foliation

Reeb field ξ generates a foliation \mathcal{F}_{ξ} . Let \mathcal{Z} be the space of leaves.

A foliation \mathcal{F}_{ξ} is quasi-regular if there is integer k such that in a foliated chart U each leaf passing U at most k times. Otherwise \mathcal{F}_{ξ} is irregular. When k = 1, \mathcal{F}_{ξ} is regular.

When \mathcal{F}_{ξ} is regular, \mathcal{Z} is a (Kähler) manifold. (The standard Sasakian Structure on \mathbb{S}^{2n+1} is regular, and $\mathcal{Z} = \mathbb{C}P^n$.)

When \mathcal{F}_{ξ} is quasi-regular, \mathcal{Z} is an (Kähler) orbifold. (If w_i are integers, then $(\mathbb{S}^{2n+1}, \xi_w, \eta_w, \Phi_w, g_w)$ is quasi-regular. \mathcal{Z} is a *weighted* complex projective space.)

Other cases are irregular.

Sasaki-Einstein manifolds

A Sasaki-Einstein manifold is a Sasakian manifold with

 $Ric = \lambda g.$

• λ is always positive, since $Ric(\xi,\xi) = 2n$.

(M,g) is SE $\Leftrightarrow C(M) = (\mathbb{R}_+ \times M, dr^2 + r^2 g_M)$ is Calabi-Yau.

Boyer, Galicki, Kollár, · · · constructed many new Einstein metrics on \mathbb{S}^{2n+1} , $\#k(\mathbb{S}^2 \times \mathbb{S}^3)$. Quasi-regular examples. (Kähler case: Yau, Aubin-Yau, Tian, Tian-Yau, · · · ,)

Gauntlett, Martelli, Sparks, Waldram, · · · new Einstein metrics on $\mathbb{S}^2 \times \mathbb{S}^3$, inspired by supergravity theory. **Irregular examples**.

η -Einstein Manifolds

Sasakian η -Einstein manifold: A Sasakian manifold M^{2n+1} with (constants λ, ν)

$$Ric = \lambda g + \nu \eta \otimes \eta.$$

 M^{2n+1} is a Sasakian manifold with $Ric = \lambda(x)g + \nu(x)\eta \otimes \eta$ and $n \ge 2$, then λ , ν are constants (this is not true for n = 1) and $\lambda + \nu = 2n$.

- $\lambda < -2$.
- $\lambda = -2$.

• $\lambda > -2$. \Rightarrow a Sasakian-Einstein manifold by \mathcal{D} -homothety: \mathcal{D} -homothety(Tanno): $(a^{-1}\xi, a\eta, \Phi, ag + a(a-1)\eta \otimes \eta)$

$$Ric_{g'} = \lambda'g' + \nu'\eta' \otimes \eta', \quad \nu' = 2n - \frac{\lambda + 2 - 2a}{a}$$

Transverse Geometry

Reeb vector field: ξ , $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$.

 $\mathcal{D} := \ker \eta$, rank 2n vector bundle, contact bundle (contact distribution)

$$TM = \mathcal{D} \oplus L_{\mathcal{E}},$$

where L_{ξ} is the line bundle generated by ξ .

• \mathcal{F}_{ξ} : characteristic foliation generated by ξ .

• transverse metric: g^T : $g^T(X,Y) = d\eta(X,JY)$ for $X,Y \in \mathcal{D}$ $(g = g^T \oplus (\eta \otimes \eta)).$

• transverse Levi-Civita connection ∇^T w.r.t. g^T

$$\nabla_X^T V = \begin{cases} [\xi, V]^p & \text{if } X = \xi\\ (\nabla_X V)^p & \text{if } X \in \Gamma(\mathcal{D}). \end{cases}$$

and the transverse Ricci tensor Ric^T of ∇^T . Transverse Einstein metric: $Ric^T = (\lambda + 2)g^T$.

On a Sasakian manifold, η -Einstein \Leftrightarrow transverse Einstein.

Transverse Kähler Geometry

Reeb vector field: ξ , $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$.

 $\mathcal{D} := \ker \eta$, rank 2n vector bundle, contact bundle (contact distribution, contact strcture)

 $TM = \mathcal{D} \oplus L_{\xi},$

where L_{ξ} is the line bundle generated by ξ .

- \mathcal{F}_{ξ} : characteristic foliation generated by ξ .
- $\mathcal{D} \sim$ the normal bundle of \mathcal{F}_{ξ} , $\nu(\mathcal{F}_{\xi}) = TM \setminus L_{\xi}$

$$0 \to L_{\xi} \to TM \to \nu(\mathcal{F}_{\xi}) \to 0$$

- $J = \Phi_{|\mathcal{D}}$ a complex structure on \mathcal{D} , $J^2 = -I$.
- $d\eta_{|\mathcal{D}}$ a symplectic form.
- g^T : $g^T(X,Y) = d\eta(X,JY)$ for $X,Y \in \mathcal{D}$ $(g = g^T \oplus (\eta \otimes \eta))$
- $(\mathcal{F}_{\xi}, \mathcal{D}, J, d\eta_{\mathcal{D}}, g^T)$ gives \mathcal{F}_{ξ} a transverse Kähler structure.

Basic forms

p-form α is called **basic** if

$$i_{\xi}\alpha = \mathcal{L}_{\xi}\alpha = 0.$$

Examples: $d\eta$ is basic, η is not basic. $(\eta(\xi) = 1, d\eta(\xi, X) = 0.)$

basic function: $\xi(f) = 0$.

 Λ_B^p : Sheaf of germs of basic *p*-forms Ω_B^p : Set of section of Λ_B^p . $C_B^{\infty}(M) = \Omega_B^0$.

d preserves the basic forms \Rightarrow Basic cohomology of $(M, \mathcal{F}_{\xi}), H_B^*(\mathcal{F}_{\xi}) = \text{Ker}d/\text{Im}d.$

By transverse Kähler structure of (M, \mathcal{F}_{ξ}) , one consider the complexifaction $\mathcal{D}_{\mathbb{C}}$ of \mathcal{D} and decompose it *w.r.t J*, $\mathcal{D}_{\mathbb{C}} = \mathcal{D}^{1,0} \oplus \mathcal{D}^{0,1}$. Similarly, we have $\Lambda_B^1 \otimes \mathbb{C} = \Lambda_B^{1,0} \oplus \Lambda_B^{0,1}$

Basic Chern forms

Basic first Chern Form: $c_1^B = c_1(\mathcal{D}^{1,0})$. c_1^B can be represented by a basic real closed (1,1) form ρ_B .

A Sasakian structure (M, ξ, η, Φ, g) is $c_1^B > 0$ $(c_1^B < 0, c_1^B = 0)$, if ρ_B is **positive (negative, null)**.

transverse Ricci form: $\rho_g^T(X,Y) = Ric^T(X,\Phi Y)$. It is closed

$$c_1^B = [\rho^T]_B \in H^{1,1}_B(\mathcal{F}_\xi)$$

 $Ric^T = \lambda g^T \Leftrightarrow \rho_g^T = \lambda d\eta$ (transverse Kähler-Einstein)

Deformations of Sasakian structures

Decompose $d = \partial_B + \bar{\partial}_B$ by $\partial_B : \Lambda_B^{p,q} \to \Lambda_B^{p+1,q}$, $\bar{\partial}_B : \Lambda_B^{p,q} \to \Lambda_B^{p,q+1}$ and $d_B^c = \frac{\sqrt{-1}}{2}(\bar{\partial}_B - \partial_B)$. We have $d_B d_B^c = \sqrt{-1}\partial_B \bar{\partial}_B$.

• **Deformations preserving** ξ : Fix a Sasakian structure (ξ, η, Φ, g) . \forall basic function φ , Then $(\xi, \overline{\eta}, \overline{\Phi}, \overline{g})$ is also a Sasakian structure, where $\overline{\eta} = \eta + 2d_B^c \varphi$, $\overline{\Phi} = \Phi - \xi \otimes (2d_B^c \varphi) \circ \Phi$ and $\overline{g} = d\overline{\eta} \circ (\overline{\Phi} \otimes \overline{I}) + \overline{\eta} \otimes \overline{\eta}$. (Boyer-Galicki)

 $d\bar{\eta} = d\eta + 2dd_B^c\varphi$

 $[d\eta]_B = [d\bar{\eta}]_B$ and c_1^B is invariant under such deformations.

- *D*-homothetic deformation: $(a^{-1}\xi, a\eta, \Phi, ag + a(a-1)\eta \otimes \eta)$
- $(-\xi, -\eta, -\Phi, g)$.

• Deformations preserving the contact structure $\{\mathcal{D}\}$: $\tilde{\eta} = f\eta$ with f > 0 & other conditions.

Sasakian Calabi Problem

Sasakian Calabi Problem (Boyer-Galicki): Give a manifold M with Sasakian structure (ξ, η, Φ, g) and c_1^B is positive, negative or null, can one deform it to another Sasakian structure (ξ, η', Φ', g') with an η -Einstein metric g'?

Recall $Ric_g = \lambda g + \nu \eta \otimes \eta$. $Ric^T = Ric + 2g$. Hence, η -Einstein \Leftrightarrow transverse Einstein metric

$$Ric^T = (\lambda + 2)g^T$$
, or $\rho_g^T = (\lambda + 2)d\eta$

$$c_1^B > 0$$
 ($c_1^B < 0$ and $c_1^B = 0$) $\Leftrightarrow \lambda > -2$ ($\lambda < -2$ and $\lambda = -2$).

The existence of η -Einstein metric implies $c_1^B = \kappa [d\eta]_B$.

Local coordinates and Deformations

One can choose local coordinates $(x, z^1, z^2, \cdots, z^n)$ on a small neighborhood U such that

•
$$\xi = \frac{\partial}{\partial x}$$
,
• $\eta = dx + \sqrt{-1} \sum_{j=1}^{n} h_j dz^j - \sqrt{-1} \sum_{j=1}^{n} h_{\bar{j}} d\bar{z}^j$,
• $\Phi = \sqrt{-1} \{ \sum_{j=1}^{n} \{ (\frac{\partial}{\partial z^j} - \sqrt{-1}h_j \frac{\partial}{\partial x} \} \otimes dz^j - c.c \}$
• $g = \eta \otimes \eta + 2 \sum_{j,l=1}^{n} h_{j,\bar{l}} dz^j d\bar{z}^l =: \eta \otimes \eta + g^T$,
• $d\eta = 2\sqrt{-1} \sum_{j,l=1}^{n} h_{j\bar{l}} dz^j \wedge d\bar{z}^l$,
where $h: U \to \mathbb{R}$ is a (local) **basic** function, i.e. $\frac{\partial}{\partial x}h = 0$ and
 $h_j = \frac{\partial}{\partial z^j}h$ and $h_{j\bar{l}} = \frac{\partial^2}{\partial z^j \partial \bar{z}^l}h$.
• $\mathcal{D}^{\mathbb{C}}$ is spanned by $X_j := \frac{\partial}{\partial z^j} - \sqrt{-1}h_j \frac{\partial}{\partial x}$, $X_{\bar{j}} := \frac{\partial}{\partial \bar{z}^j} + \sqrt{-1}h_{\bar{j}} \frac{\partial}{\partial x}$.
 $JX_j = \sqrt{-1}X_j$ and $JX_{\bar{j}} = -\sqrt{-1}X_{\bar{j}}$.

Deformation. If (ξ, η, Φ, g) is Sasakian, so is $(\xi, \eta + d_B^c \varphi, \Phi_{\varphi}, g_{\varphi})$ for a **basic** function ϕ , i.e., $\xi(\varphi) = 0$. Locally, $h \Rightarrow h + \varphi$.

$$R_{j\bar{l}}^{T} = -\frac{\partial^{2}}{\partial z^{j}\partial z^{\bar{l}}}\log\det(g_{m\bar{n}}^{T}) = -\frac{\partial^{2}}{\partial z^{j}\partial z^{\bar{l}}}\log\det(h_{m\bar{n}})$$

Transverse Monge-Ampere equation

Assuming $c_1^B = \kappa [d\eta]_B$, there is a basic function F (El Kacimi-Alaoui)

$$\rho^T - \kappa d\eta = \sqrt{-1} \partial_B \bar{\partial}_B F.$$

Transverse Kähler-Einstein equation

$$\frac{\det(g_{i\overline{j}}^T + \phi_{i\overline{j}})}{\det(g_{i\overline{j}}^T)} = e^{-\kappa\phi + F}, \quad g_{i\overline{j}}^T + \phi_{i\overline{j}} > 0$$

Here ϕ is basic, i.e., $\xi(\phi) = 0$.

• It is not elliptic, but transversal elliptic.

Sasakian Ricci flow

Sasakian Ricci flow: (Smoczyk, W., Y. Zhang (2006)) On a compact manifold with Sasakian structure $(M, \xi, \eta, \Phi, g), c_1^B = \kappa [d\eta]_B$. There is a smooth family of Sasakian structures $(\xi, \eta(t), \Phi(t), g(t))$ satisfying $(\xi, \eta(0), \Phi(0), g(0)) = (\xi, \eta, \Phi, g)$ and

$$\frac{d}{dt}g^{T}(t) = -(Ric_{g(t)}^{T} - \kappa g^{T}(t)).$$

$$\frac{d}{dt}\varphi = \log \det(g_{i\overline{j}}^T + \varphi_{i\overline{j}}) - \log(\det g_{i\overline{j}}^T) + \kappa\varphi - F.$$

(Transverse Ricci flow for Riemannian foliations studied by *Lovric*, *Min-Oo*, *Ruh*)

• When c_1^B is negative or null, then the flow converges to η -Einstein metric. (El Kacimi-Alaoui, Boyer-Galicki) (Cao, Kähler case) Maximum principle holds.

• When c_1^B is positive, it is a difficult problem. \Rightarrow Sasaki-Ricci solitons

Sasakian Ricci solitons

Let (ξ, η, Φ, g) be a Sasakian manifold. If there is a transverse (Hamiltonian) holomorphic vector field X on M with

$$Ric_g^T - g^T = \mathcal{L}_X(g^T),$$

then (ξ, η, Φ, g, X) is called **Sasakian Ricci soliton**.

A transverse (Hamiltonian) holomorphic vector field X on M can be local expressed as

$$X = \eta(X)\frac{\partial}{\partial x} + \sum_{i=1}^{m} X^{i}\frac{\partial}{\partial z^{i}} - \eta(\sum_{i=1}^{m} X^{i}\frac{\partial}{\partial z^{i}})\frac{\partial}{\partial x},$$

where X^i are local holomorphic and $u_X := \sqrt{-1}\eta(X)$ satisfies

$$\bar{\partial}_B u_X = -\frac{\sqrt{-1}}{2}i(X)d\eta.$$

Existence of Solitons

Assume $c_1^B = [d\eta]_B (c_1(\mathcal{D}) = 0 \text{ and } c_1^B > 0) \exists a \text{ basic function } h \text{ such that } \rho^T - d\eta = \sqrt{-1}\partial_B \overline{\partial}_B h.$

Sasaki Futaki invariant: (Boyer-Galicki-Simanca, Futaki-Ono-W.) $SF(X) = \int X(h)\eta \wedge (d\eta)^n.$

This is an invariant.

Obstruction. If SF does not vanish, then there is no η -Einstein metrics.

• (Futaki, Ono, W.(2006)) Let M be a compact toric Sasaki manifold with $c_1^B > 0$ and $c_1(\mathcal{D}) = 0$. Then there exists a Sasaki metric which is a Sasaki-Ricci soliton. In particular M admits a Sasaki-Einstein metric if and only if the Sasaki Futaki invariant vanishes.

(X.-J. Wang and X. Zhu, Kähler)

Sasakian-Einstein metrics

• (Futaki, Ono, W.(2006)) Let M be a compact toric Sasakian manifold with $c_1^B > 0$. Then by deforming the Sasakian structure varying the contact structure we get a Sasakian structure with vanishing SF invariant. Hence, there is a Sasaki-Einstein metric.

 $\mathbb{S}^2 \times \mathbb{S}^3$ admits **irregular** Sasaki-Einstein metrics (*Gauntlett*, *Martelli*, *Sparks and Waldrum (2004)*).

 $2\#\mathbb{S}^2 \times \mathbb{S}^3$ (k=2) is a toric Sasakian manifold, there is a Sasakian-Einstein structure, which is irregular

Toric Sasakian manifolds

M is Sasakian toric $\iff C(M)$ is Kähler toric, ie, the product metric \overline{g} is invariant under a holomorphic action of the n + 1-torus \mathbb{T}^{n+1} .

- Moment map $\mu : C(M) \to \mathbb{R}^{n+1} \cong \mathfrak{t}^*$, $\langle \mu, X \rangle = r^2 \eta(X)$ and
- its image $\mathcal{C} := \mu(C(M))$ is a strictly convex rational polyhedral cone of the form

$$\mathcal{C} = \{ y \in \mathbb{R}^{n+1} = \mathfrak{t}^* | \langle y, v_a \rangle \ge 0, a = 1, 2, \cdots d \}.$$

$$\xi = b \in \mathcal{C}^* := \{ x \in \mathbb{R}^{n+1} \cong \mathfrak{t} | \langle x, y \rangle \ge 0, \forall y \in \mathcal{C} \} \text{ dual cone of } \mathcal{C}$$

 $\mu(M) = \mathcal{C} \cap H_{\xi}$, where $H_{\xi} := \{y \in \mathbb{R}^{n+1} = \mathfrak{t}^* | \langle y, b \rangle = 1\}$, the charateristic plane. $\mathcal{C} \cap H_{\xi}$ is a compact polytope.

• $\mathcal{C} \cap H_{\xi}$ is rational iff M is quasi-regular.

A volume functional

• The set of Sasakian structure preserving $\mathcal{D} \cong \{\xi \in \mathcal{C}^*\}$.

(Martelli-Sparks-Yau) Volume functional $V : \mathcal{C}^* \to \mathbb{R}$:

$$V(\xi) = c(n)vol(\mathcal{C} \cap H_{\xi}) = c(n)vol(\mathcal{C} \cap \{y \in \mathbb{R}^{n+1} | \langle y, b \rangle = 1\}).$$

• V is convex and $V(\xi) \to \infty$ as $\xi \to \partial C^*$, hence V has a (unique) minimizer.

• (Martelli-Sparks-Yau, FOW) ξ is a critical points of V iff its Sasaki-Futaki invariant is 0.

3-dimensional Sasaki Ricci flow

On a 3-dimensional Sasakian manifold, $R_{ij}^T = \frac{1}{2}R^T g_{ij}^T$

$$\frac{d}{dt}g_{ij}^T = (r - R^T)g_{ij}^T, \quad \frac{d}{dt}d\eta = (r - R^T)d\eta.$$

Here r is the average of the transverse scalar curvature.

$$\frac{d}{dt} \int_M d\eta \wedge \eta = 0.$$
$$\frac{d}{dt} R^T = \Delta_B R^T + R^T (R^T - r)$$

• Entropy (Hamilton) $\int R^T \log R^T \eta \wedge d\eta$ is non-increasing.

Convergence

(Zhang-W.) The Sasaki Ricci flow converges to a (gradient) Sasaki Ricci soliton. The soliton is unique.

$$X = -\frac{1}{2}\nabla f$$
 with $\xi(f) = 0$ and $\nabla_i^T \nabla_j^T f - \frac{1}{2}\Delta_B f g_{ij}^T = 0$.

- 1. Regular case (Hamilton), 2-sphere
- 2. Quasi-regualr case (Langfang Wu, B. Chow-L.F. Wu) 2-orbifold

Uniqueness: weighted structures on \mathbb{S}^3 (Gauduchon-Ornea, Belgun). We find the same ODE as Hamilton and Wu did.

Convergence: Idea of Proof for the irregular case:

Proof 1. Approximated by (2)

Proof 2. Direct proof (using methods in (1))

Comparison Theorem

Transverse distance between x and y

$$d^{T}(x,y) := \inf_{\gamma} \int_{\gamma} \left| \frac{d}{ds} \gamma(s) \right|_{g^{T}} ds,$$

where $\gamma(s)$ are curves joining x to y

Harnack inquality (with d^T).

On the Sasakian 3-sphere M^3 of positive transverse scalar curvature R^T

(1)
$$diam^T \leq c \frac{\pi}{\sqrt{R_{\min}^T}}$$

(2)
$$Vol(T(p, \frac{\pi}{\sqrt{R_{\max}^T/2}})) \ge C/R_{\max}^T$$
,

where $T(p,r) := \{x \in M | d^T(x,p) < r\}.$

Thank You!