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Aim: Establish a systematic way to find Sasaki-Einstein metrics.

1. Sasakian Geometry: Introduction

2. Sasakian-Ricci flow

(with K. Smoczyk (Hanover), Yongbing Zhang (Hefei) 2006)

3. Sasakian-Einstein metrics on Sasakian toric manifolds

(with A. Futaki, H. Ono (Tokyo)) arXiv:math/0607586, JDG

4. Sasakian-Ricci flow on 3-dimensional Sasakian manifolds

(with Yongbing Zhang (Hefei) 2009)



Contact manifolds

• Contact manifold: (M2n+1, η), a 1-form η (contact form)

η ∧ (dη)n 6= 0.

• Characteristic vector field or Reeb vector field: ξ

η(ξ) = 1 and dη(ξ, X) = 0

• Almost contact manifold: (M, η,Φ), Φ − (1,1) tensor,

Φ2 = −I + η ⊗ ξ.

• Metric contact manifold: (M, η, g,Φ), g − (compatible) metric,

g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y )



Sasakian Manifolds

• Sasakian Manifold: (M, g, η, ξ,Φ), a metric contact manifold with

[Φ,Φ] = −2dη ⊗ ξ,

where the Nijenhuis bracket is defined by

[Φ,Φ](X, Y ) := [ΦX,ΦY ] + Φ2[X, Y ]−Φ[ΦX, Y ]−Φ[X,ΦY ]

A Riemannian manifold (M, g) is Sasakian if and only if one of the
following equivalent statements holds:

• (C(M), ḡ) = (R+ ×M, dr2 + r2g) is Kähler.

• ∃ a Killing field ξ of |ξ| = 1 with R(X, ξ)Y = g(ξ, Y )X − g(X, Y )ξ.

• · · · .



Examples

S2n+1 ⊂ Cn+1 has a standard Sasakian structure (ξ, η,Φ, g)

η =
n∑

i=0

(xidyi − yidxi), ξ =
n∑

i=0

(xi
∂

∂yi
− yi

∂

∂xi
)

Φ is a “restriction” of J0 and g the standard metric.

Other Sasakian structures (ξw, ηw,Φw, gw) on S2n+1:

for w = (w0, w1, · · · , wn) ∈ Rn+1
+

ηw =

∑n
i=0(xidyi − yidxi)∑n
i=0 wi(x

2
i + y2

i )
, ξw =

n∑
i=0

wi(xi
∂

∂yi
− yi

∂

∂xi
),

Φw = Φ−Φξw ⊗ ηw and gw.



Characteristic Foliation

Reeb field ξ generates a foliation Fξ. Let Z be the space of leaves.

A foliation Fξ is quasi-regular if there is integer k such that in a

foliated chart U each leaf passing U at most k times. Otherwise Fξ is

irregular. When k = 1, Fξ is regular.

When Fξ is regular, Z is a (Kähler) manifold.

(The standard Sasakian Structure on S2n+1 is regular, and Z = CPn.)

When Fξ is quasi-regular, Z is an (Kähler) orbifold.

(If wi are integers, then (S2n+1, ξw, ηw,Φw, gw) is quasi-regular. Z is a

weighted complex projective space.)

Other cases are irregular.



Sasaki-Einstein manifolds

A Sasaki-Einstein manifold is a Sasakian manifold with

Ric = λg.

• λ is always positive, since Ric(ξ, ξ) = 2n.

(M, g) is SE ⇔ C(M) = (R+ ×M, dr2 + r2gM) is Calabi-Yau.

Boyer, Galicki, Kollár, · · · constructed many new Einstein metrics on

S2n+1, #k(S2 × S3). Quasi-regular examples. (Kähler case: Yau,

Aubin-Yau, Tian, Tian-Yau, · · · , )

Gauntlett, Martelli, Sparks, Waldram, · · · new Einstein metrics on

S2 × S3, inspired by supergravity theory. Irregular examples.



η-Einstein Manifolds

Sasakian η-Einstein manifold: A Sasakian manifold M2n+1 with
(constants λ,ν)

Ric = λg + νη ⊗ η.

M2n+1 is a Sasakian manifold with Ric = λ(x)g + ν(x)η⊗ η and n ≥ 2,
then λ, ν are constants (this is not true for n = 1) and λ + ν = 2n.

• λ < −2.

• λ = −2.

• λ > −2. ⇒ a Sasakian-Einstein manifold by D-homothety:
D-homothety(Tanno): (a−1ξ, aη,Φ, ag + a(a− 1)η ⊗ η)

Ricg′ = λ′g′ + ν′η′ ⊗ η′, ν′ = 2n−
λ + 2− 2a

a
.



Transverse Geometry

Reeb vector field: ξ, η(ξ) = 1 and dη(ξ, X) = 0.

D := ker η, rank 2n vector bundle, contact bundle (contact
distribution)

TM = D ⊕ Lξ,

where Lξ is the line bundle generated by ξ.
• Fξ: characteristic foliation generated by ξ.
• transverse metric: gT : gT (X, Y ) = dη(X, JY ) for X, Y ∈ D
(g = gT ⊕ (η ⊗ η)).
• transverse Levi-Civita connection ∇T w.r.t. gT

∇T
XV =

{
[ξ, V ]p if X = ξ

(∇XV )p if X ∈ Γ(D).

and the transverse Ricci tensor RicT of ∇T .
Transverse Einstein metric: RicT = (λ + 2)gT .

On a Sasakian manifold, η-Einstein ⇔ transverse Einstein.



Transverse Kähler Geometry

Reeb vector field: ξ, η(ξ) = 1 and dη(ξ, X) = 0.

D := ker η, rank 2n vector bundle, contact bundle (contact
distribution, contact strcture)

TM = D ⊕ Lξ,

where Lξ is the line bundle generated by ξ.

• Fξ: characteristic foliation generated by ξ.
• D ∼ the normal bundle of Fξ, ν(Fξ) = TM\Lξ

0 → Lξ → TM → ν(Fξ) → 0

• J = Φ|D a complex structure on D, J2 = −I.
• dη|D a symplectic form.

• gT : gT (X, Y ) = dη(X, JY ) for X, Y ∈ D (g = gT ⊕ (η ⊗ η))
• (Fξ,D, J, dηD, gT ) gives Fξ a transverse Kähler structure.



Basic forms

p-form α is called basic if

iξα = Lξα = 0.

Examples: dη is basic, η is not basic. (η(ξ) = 1, dη(ξ, X) = 0.)

basic function: ξ(f) = 0.

Λp
B: Sheaf of germs of basic p-forms

Ωp
B: Set of section of Λp

B. C∞
B (M) = Ω0

B.

d preserves the basic forms ⇒
Basic cohomology of (M,Fξ), H∗

B(Fξ) = Kerd/Imd.

By transverse Kähler structure of (M,Fξ), one consider the
complexifaction DC of D and decompose it w.r.t J, DC = D1,0 ⊕D0,1.
Similarly, we have Λ1

B ⊗ C = Λ1,0
B ⊕ Λ0,1

B



Basic Chern forms

Basic first Chern Form: cB
1 = c1(D1,0). cB

1 can be represented by a

basic real closed (1,1) form ρB .

A Sasakian structure (M, ξ, η,Φ, g) is cB
1 > 0 (cB

1 < 0, cB
1 = 0), if ρB is

positive (negative, null).

transverse Ricci form: ρT
g (X, Y ) = RicT (X,ΦY ). It is closed

cB
1 = [ρT ]B ∈ H

1,1
B (Fξ)

RicT = λgT ⇔ ρT
g = λdη (transverse Kähler-Einstein)



Deformations of Sasakian structures

Decompose d = ∂B + ∂̄B by ∂B : Λp,q
B → Λp+1,q

B , ∂̄B : Λp,q
B → Λp,q+1

B and

dc
B =

√
−1
2 (∂̄B − ∂B). We have dBdc

B =
√
−1∂B∂̄B.

• Deformations preserving ξ: Fix a Sasakian structure (ξ, η,Φ, g).
∀ basic function ϕ, Then (ξ, η̄, Φ̄, ḡ) is also a Sasakian structure,
where η̄ = η + 2dc

Bϕ, Φ̄ = Φ− ξ ⊗ (2dc
Bϕ) ◦Φ and

ḡ = dη̄ ◦ (Φ̄⊗ Ī) + η̄ ⊗ η̄. (Boyer-Galicki)

dη̄ = dη + 2ddc
Bϕ

[dη]B = [dη̄]B and cB
1 is invariant under such deformations.

• D-homothetic deformation: (a−1ξ, aη,Φ, ag + a(a− 1)η ⊗ η)

• (−ξ,−η,−Φ, g).

• Deformations preserving the contact structure {D}: η̃ = fη
with f > 0 & other conditions.



Sasakian Calabi Problem

Sasakian Calabi Problem (Boyer-Galicki): Give a manifold M with

Sasakian structure (ξ, η,Φ, g) and cB
1 is positive, negative or null, can

one deform it to another Sasakian structure (ξ, η′,Φ′, g′) with an

η-Einstein metric g′?

Recall Ricg = λg + νη ⊗ η. RicT = Ric + 2g. Hence, η-Einstein ⇔
transverse Einstein metric

RicT = (λ + 2)gT , or ρT
g = (λ + 2)dη

cB
1 > 0 (cB

1 < 0 and cB
1 = 0) ⇔ λ > −2 (λ < −2 and λ = −2).

The existence of η-Einstein metric implies cB
1 = κ[dη]B.



Local coordinates and Deformations

One can choose local coordinates (x, z1, z2, · · · , zn) on a small
neighborhood U such that
• ξ = ∂

∂x,
• η = dx +

√
−1

∑n
j=1 hjdzj −

√
−1

∑n
j=1 hj̄dz̄j,

• Φ =
√
−1{

∑n
j=1{(

∂
∂zj −

√
−1hj

∂
∂x} ⊗ dzj − c.c

• g = η ⊗ η + 2
∑n

j,l=1 hj,̄ldzjdz̄l =: η ⊗ η + gT ,

• dη = 2
√
−1

∑n
j,l=1 hjl̄dzj ∧ dz̄l,

where h : U → R is a (local) basic function, i.e. ∂
∂xh = 0 and

hj = ∂
∂zjh and hjl̄ = ∂2

∂zj∂z̄lh.

• DC is spanned by Xj := ∂
∂zj −

√
−1hj

∂
∂x, Xj̄ := ∂

∂z̄j +
√
−1hj̄

∂
∂x.

JXj =
√
−1Xj and JXj̄ = −

√
−1Xj̄.

Deformation. If (ξ, η,Φ, g) is Sasakian, so is (ξ, η + dc
Bϕ,Φϕ, gϕ) for a

basic function φ, i.e., ξ(ϕ) = 0. Locally, h ⇒ h + ϕ.

RT
jl̄ = −

∂2

∂zj∂z l̄
log det(gT

mn̄) = −
∂2

∂zj∂z l̄
log det(hmn̄)



Transverse Monge-Ampere equation

Assuming cB
1 = κ[dη]B, there is a basic function F (El Kacimi-Alaoui)

ρT − κdη =
√
−1∂B∂̄BF.

Transverse Kähler-Einstein equation

det(gT
īj

+ φīj)

det(gT
īj
)

= e−κφ+F , gT
īj + φīj > 0.

Here φ is basic, i.e., ξ(φ) = 0.

• It is not elliptic, but transversal elliptic.



Sasakian Ricci flow

Sasakian Ricci flow:(Smoczyk, W., Y. Zhang (2006)) On a
compact manifold with Sasakian structure (M, ξ, η,Φ, g), cB

1 = κ[dη]B.
There is a smooth family of Sasakian structures (ξ, η(t),Φ(t), g(t))
satisfying (ξ, η(0),Φ(0), g(0)) = (ξ, η,Φ, g) and

d

dt
gT (t) = −(RicT

g(t) − κgT (t)).

d

dt
ϕ = logdet(gT

īj + ϕīj)− log(det gT
īj) + κϕ− F.

(Transverse Ricci flow for Riemannian foliations studied by Lovric,
Min-Oo, Ruh)

• When cB
1 is negative or null, then the flow converges to η-Einstein

metric. (El Kacimi-Alaoui, Boyer-Galicki) (Cao, Kähler case)
Maximum principle holds.

• When cB
1 is positive, it is a difficult problem. ⇒ Sasaki-Ricci solitons



Sasakian Ricci solitons

Let (ξ, η,Φ, g) be a Sasakian manifold. If there is a transverse

(Hamiltonian) holomorphic vector field X on M with

RicT
g − gT = LX(gT ),

then (ξ, η,Φ, g, X) is called Sasakian Ricci soliton.

A transverse (Hamiltonian) holomorphic vector field X on M can be

local expressed as

X = η(X)
∂

∂x
+

m∑
i=1

Xi ∂

∂zi
− η(

m∑
i=1

Xi ∂

∂zi
)

∂

∂x
,

where Xi are local holomorphic and uX :=
√
−1η(X) satisfies

∂̄BuX = −
√
−1

2
i(X)dη.



Existence of Solitons

Assume cB
1 = [dη]B (c1(D) = 0 and cB

1 > 0) ∃ a basic function h such
that ρT − dη =

√
−1∂B∂̄Bh.

Sasaki Futaki invariant: (Boyer-Galicki-Simanca, Futaki-Ono-W.)

SF (X) =
∫

X(h)η ∧ (dη)n.

This is an invariant.

Obstruction. If SF does not vanish, then there is no η-Einstein
metrics.

• (Futaki, Ono, W.(2006)) Let M be a compact toric Sasaki manifold
with cB

1 > 0 and c1(D) = 0. Then there exists a Sasaki metric which
is a Sasaki-Ricci soliton. In particular M admits a Sasaki-Einstein
metric if and only if the Sasaki Futaki invariant vanishes.

(X.-J. Wang and X. Zhu, Kähler)



Sasakian-Einstein metrics

• (Futaki, Ono, W.(2006)) Let M be a compact toric Sasakian

manifold with cB
1 > 0. Then by deforming the Sasakian structure

varying the contact structure we get a Sasakian structure with

vanishing SF invariant. Hence, there is a Sasaki-Einstein metric.

S2 × S3 admits irregular Sasaki-Einstein metrics (Gauntlett, Martelli,

Sparks and Waldrum (2004)).

2#S2 × S3 (k = 2) is a toric Sasakian manifold, there is a

Sasakian-Einstein structure, which is irregular



Toric Sasakian manifolds

M is Sasakian toric ⇐⇒ C(M) is Kähler toric, ie, the product metric

ḡ is invariant under a holomorphic action of the n + 1-torus Tn+1.

• Momemt map µ : C(M) → Rn+1 ∼= t∗, 〈µ, X〉 = r2η(X) and

• its image C := µ(C(M)) is a strictly convex rational polyhedral cone

of the form

C = {y ∈ Rn+1 = t∗ | 〈 y, va 〉 ≥ 0, a = 1,2, · · · d}.

ξ = b ∈ C∗ := {x ∈ Rn+1 ∼= t | 〈x, y〉 ≥ 0, ∀y ∈ C} dual cone of C.

µ(M) = C ∩Hξ, where Hξ := {y ∈ Rn+1 = t∗ | 〈y, b〉 = 1}, the

charateristic plane. C ∩Hξ is a compact polytope.

• C ∩Hξ is rational iff M is quasi-regular.



A volume functional

• The set of Sasakian structure preserving D ∼= {ξ ∈ C∗}.

(Martelli-Sparks-Yau) Volume functional V : C∗ → R:

V (ξ) = c(n)vol(C ∩Hξ) = c(n)vol(C ∩ {y ∈ Rn+1 | 〈y, b〉 = 1}).

• V is convex and V (ξ) →∞ as ξ → ∂C∗, hence V has a (unique)

minimizer.

• (Martelli-Sparks-Yau, FOW) ξ is a critical points of V iff its

Sasaki-Futaki invariant is 0.



3-dimensional Sasaki Ricci flow

On a 3-dimensional Sasakian manifold, RT
ij = 1

2RTgT
ij

d

dt
gT
ij = (r −RT )gT

ij,
d

dt
dη = (r −RT )dη.

Here r is the average of the transverse scalar curvature.

d
dt

∫
M dη ∧ η = 0.

d
dtR

T = ∆BRT + RT (RT − r)

• Entropy (Hamilton)
∫

RT logRTη ∧ dη is non-increasing.



Convergence

(Zhang-W.) The Sasaki Ricci flow converges to a (gradient) Sasaki
Ricci soliton. The soliton is unique.

X = −1
2∇f with ξ(f) = 0 and ∇T

i ∇
T
j f − 1

2∆BfgT
ij = 0.

• 1. Regular case (Hamilton), 2-sphere
• 2. Quasi-regualr case (Langfang Wu, B. Chow-L.F. Wu) 2-orbifold

Uniqueness: weighted structures on S3 (Gauduchon-Ornea, Belgun).
We find the same ODE as Hamilton and Wu did.

Convergence: Idea of Proof for the irregular case:

Proof 1. Approximated by (2)

Proof 2. Direct proof (using methods in (1))



Comparison Theorem

Transverse distance between x and y

dT (x, y) := inf
γ

∫
γ
|
d

ds
γ(s)|gT ds,

where γ(s) are curves joining x to y

Harnack inquality (with dT ).

On the Sasakian 3-sphere M3 of positive transverse scalar curvature
RT

(1) diamT ≤ c π√
RT

min

(2) V ol(T (p, π√
RT

max/2
)) ≥ C/RT

max,

where T (p, r) := {x ∈ M | dT (x, p) < r}.



Thank You!


