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Introduction

By noncompact Calabi-Yau I mean a noncompact Ricci-flat Kähler manifold whose
end is asymptotic to a metric cone.

A metric cone with base S is C(S) = S × R+ with metric g = dr2 + r2gS .

By definition (C(S), g) is Ricci-flat Kähler ⇔ (S, gS) is Sasaki-Einstein.

In other words, I am considering Ricci-flat Kähler manifolds with an end
asymptotic to a cone over a Sasaki-Einstein manifold.

These results are an extension of those of G. Tian and S.-T. Yau, ’90, on the
existence of Ricci-flat Kähler metrics on quasi-projective varieties X \ D, where
D ⊂ X with α[D] = −KX , α > 1 admits a K-E metric.
And also of results of D. Joyce, ’99, on the existence of a Ricci-flat ALE metric on
a crepant resolutions of Cn/G,G ⊂ SL(n,C).

I will consider the following

Conjecture (J. Sparks)

Let π : X̂ → X be a crepant resolution of an isolated singularity X = C(S), where
C(S) admits a Ricci-flat Kähler cone metric. Then X̂ admits a unique Ricci-flat Kähler
metric in each Kähler class in H2(X̂ ,R) that is asymptotic to a cone over the
Sasaki-Einstein manifold (S, g).
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Main Theorem

I will give a partial solution to Conjecture 1.1.
Let H∗

c (X̂ ,R) denote the compactly supported cohomology.

Theorem

Let π : X̂ → X be a crepant resolution of the isolated singularity of X = C(S), where
C(S) admits a Ricci-flat Kähler cone metric. Then X̂ admits a unique Ricci-flat Kähler
metric g in each Kähler class in H2

c (X̂ ,R) ⊂ H2(X̂ ,R) which is asymptotic to the
Kähler cone metric g0 on X as follows. There is an R > 0 such that, for any small
δ > 0 and k ≥ 0,

∇k (π∗g − g0) = O
“

r−2n+δ−k
”

on {x ∈ C(S) : r(x) > R}, (1)

where ∇ is the covariant derivative of g0.
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Main Theorem

It is easy to find examples by considering Sasaki-Einstein manifolds S whose
cone C(S) admits a crepant resolution.

The case of compact Kähler classes, [ω] ∈ H2
c (X̂ ,R), is precisely the case where

there is “fast” convergence as in (1).

If π : X̂ → X is a small resolution, i.e. codimC(E) > 1, where E = π−1(o) is the
exceptional set, then there are no Kähler classes in H2

c (X̂ ,R).
In particular, the conifold X = {z2

0 + z2
1 + z2

2 + z2
3 = 0} ⊂ C4 is the cone over

S2 × S3 with the homogeneous Sasaki-Einstein metric. Then X admits a crepant
resolution π : Y → X , where Y is the total space of O(1) ⊕O(1) → CP1. The
exceptional set is CP1 = π−1(o). But Y admits a complete Ricci-flat Kähler
metric converging to the cone with exponent −2 − k in (1).
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Toric case

There is a (C∗)n-action on X = C(S) which restricts to an isometric T n-action on
S.

X = C(S) is Gorenstein and admits a toric Ricci-flat Kähler cone metric by A.
Futaki, H. Ono, G. Wang.

A crepant resolution π : Y → X is toric, and Y is described by a nonsingular
simplicial fan ∆̃ refining the convex polyhedral cone ∆ defining X .

A Kähler class in H2
c (Y ,R) is given by a strictly convex support function

h ∈ SF(∆̃,R) vanishing on the rays uj ∈ Zn defining ∆.

Corollary

Let π : Y → X be a crepant resolution of a Gorenstein toric Kähler cone X. Suppose
the fan ∆̃ defining Y admits a compact strictly convex support function. Then Y admits
a unique Ricci-flat Kähler metric g, in this Kähler class, asymptotic to (C(S), ḡ) as in
(1). Furthermore, g is invariant under T n.

The space of Ricci-flat Kähler metrics is d = dim H2
c (Y ,R) dimensional, where

d = #P∆ ∩ Zn.
P∆ = ∆ ∩ Hγ , Hγ = {γ = −1} is the hyperplane given by the Gorenstein
condition.
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Motivation

Here are some possible motives for studying asymptotically conical Ricci-flat Kähler
manifolds.

More general Ricci-flat manifolds. If (M, g) is a complete Ricci-flat manifold with
Euclidean volume growth, Vol(Br (p)) ∼ Ωrn, then a pointed sequence
(M, p, r−2

j g), rj → ∞, has a subsequence that Gromov-Hausdorff converges to a
metric cone M∞.

Local mirror symmetry. Many of the examples, such as toric cones C(S), admit
special Lagrangian fibrations. (M. Gross and E. Goldstein)

AdS/CFT. This is a conjectured duality between type IIB string theory on AdS5 ×S
and a superconformal field theory on R1,3 × C(S), where S is Sasaki-Einstein.
The SCFTs are described by certain quiver gauge theores. These gauge theories
describe the worldvolume theory for D3-branes placed at the cone singularity. This
is they dependent on the algebraic geometry of the singularity and its resolutions.
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History
Sasaki-Einstein manifolds
Resolutions

dimC X = 2

The dimension 2 case is well known.
A Ricci-flat Kähler cone is X = C(S) ∪ {o} = C2/G, G ⊂ U(2) with the quotient of
the flat metric.
The singularity o ∈ X is Gorenstein ⇔ G ⊂ SU(2).
And X admits a crepant resolution π : X̂ → X ⇔ G ⊂ SU(2).
A fortiori G ⊂ SU(2) ⇔ o ∈ X is a canonical singularity, i.e. there is a resolution
π : Y → X with KY = π∗KX +

P

i aiEi with ai ≥ 0.

For dimC X = 2 these singularities can be characterized as the

rational Gorenstein singularities,

rational double points,

the canonical singularities.
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C-dimension 2

The classification is as follows.
G |G| f (x, y , z)

Ak
k≥1

q q q q qp p p cyclic k + 1 xk+1 + y2 + z2

Dk
k≥4

q

q

q q q qp p pHH
��

binary dihedral 4(k − 2) xk−1 + xy2 + z2

E6
q q q q q

q

binary tetrahedral 24 x3 + y4 + z2

E7
q q q q q q

q

binary octahedral 48 x3 + xy3 + z2

E8
q q q q q q q

q

binary icosahedral 120 x3 + y5 + z2

It is well known that each singularity X = C2/G, G ⊂ SL(2,C), admits a unique
crepant resolution π : X̂ → X .
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Ricci-flat ALE spaces

The resolution X̂ admits a Ricci-flat Kähler metric, in each Kähler class, asymptotic to
the flat metric g0 on C2/G, i.e. an Asymptotically Locally Euclidean metric (ALE). This
means

∇k (π∗g − g0) = O(r−2n−k ), where r is the radius on X = Cn/G.

Here n = 2, SU(2) = Sp(1) so g is hyper-kähler, i.e. there are parallel complex
structures J1, J2, J3 with Kähler forms ω1, ω2, ω3.
So unlike the n ≥ 3 case considered here, these metrics can be given explicitly by
hyper-kähler reduction.

The case A1, X̂ = T∗CP1, is due to T. Eguchi and A. Hanson, ’78.

Ak , k ≥ 1, gravitational multi-instantons, is due to G. Gibbons and S. Hawking, ’78.

Ak , k ≥ 1, case was also proved by N. Hitchin, ’79, using twistor methods.

The general n = 2 case was proved by P. Kronheimer, ’89, using hyper-Kähler
quotients.

The general n ≥ 3 case was proved by D. Joyce, ’99.
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Ricci-flat Kähler cones

Definition

A Riemannian manifold (S, g) of dimension 2n − 1 is Sasakian if the metric cone
(C(S), ḡ), C(S) = R>0 × S and ḡ = dr2 + r2g, is Kähler.

ξ = J(r ∂
∂r ) is Killing, and ξ− iJξ = ξ+ ir ∂

∂r is a holomorphic vector field on C(S).
Either ξ

generates a free U(1)-action on S and S is regular,
generates a locally free U(1)-action on S and S is quasi-regular, or
the orbits do not close and S is irregular.

η = g(ξ,−) = 2dc log r is a contact form on S with Reeb vector field ξ.

The foliation generated by ξ has a transverse Kähler structure with form
ωT = 1

2 dη.

The Kähler form of ḡ is ω = 1
2 ddc r2.

Proposition

Let (S, g) be a 2n − 1-dimensional Sasaki manifold. Then the following are equivalent.

(i) (S, g) is Sasaki-Einstein with the Einstein constant being necessarily 2n − 2.
(ii) (C(S), ḡ) is a Ricci-flat Kähler.
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Ricci-flat Kähler cones

Given a smooth basic function φ ∈ C∞
B (S), we consider the following deformed

Sasaki-structure.

η̃ = η + 2dc
Bφ, ˜omegaT = ωT + ddc

Bφ, ξ̃ = ξ. (2)

Let r̃ = r expφ. Then ω̃ = 1
2 ddc r̃2 is the new Kähler form on C(S).

Proposition

The following necessary conditions for S to admit a deformation of the transverse
Kälher structure to a Sasaki-Einstein metric are equivalent.

(i) cB
1 = a[dη] for some positive constant a.

(ii) cB
1 > 0, i.e. represented by a positive (1, 1)-form, and c1(D) = 0.

(iii) For some positive integer ℓ > 0, the ℓ-th power of the canonical line bundle
Kℓ

C(S)
admits a nowhere vanishing section Ω with LξΩ = inΩ.

Then X = C(S)∪{o} is ℓ-Gorenstein if Proposition 2.3 is satisfied, Gorenstein if ℓ = 1.
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Toric Sasaki-Einstein manifolds

Definition

A Sasaki manifold (S, g) of dimension 2n − 1 is toric if there is an effective action of an
n-dimensional torus T = T n preserving the Sasaki structure such that the Reeb vector
field ξ is an element of the Lie algebra t of T .
Equivalently, a toric Sasaki manifold is a Sasaki manifold S whose Kähler cone C(S) is
a toric Kähler manifold.

We have an effective holomorphic action of TC
∼= (C∗)n on C(S) whose restriction to

T ⊂ TC preserves the Kähler form ω = d( 1
2 r2η). So there is a moment map

µ : C(S) −→ t
∗

〈µ(x), X〉 =
1

2
r2η(XS (x)),

(3)

We have the moment cone defined by

C(µ) := µ(C(S)) ∪ {0}, (4)

There are vectors ui , i = 1, . . . , d in the integral lattice ZT = ker{exp(2πi ·) : t → T}
such that

C(µ) =
d
\

j=1

{y ∈ t
∗ : 〈uj , y〉 ≥ 0}. (5)
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Toric Sasaki-Einstein manifolds

Each face F ⊂ C(µ) is the intersection of a number of facets
{y ∈ t

∗ : lJk
(y) = 〈ujk , y〉 = 0}, k = 1, . . . , e.

Then S is smooth, and the cone C(µ) is said to be non-singular if and only if

(

a
X

k=1

νk ujk : νk ∈ R

)

∩ ZT =

(

a
X

k=1

νk ujk : νk ∈ Z

)

(6)

for all faces F . The dual cone to C(µ) is

C(µ)∗ = {x̃ ∈ t : 〈x̃ , y〉 ≥ 0 for all y ∈ C(µ)}. (7)

C(µ)∗ is spanned by ui , i = 1, . . . , d and is the cone defining (S) ∪ {o} as an affine
toric variety.

Proposition (J. Sparks, S.-T. Yau)

Let S be a compact toric Sasaki manifold and C(S) its Kähler cone. For any
ξ ∈ Int C(µ)∗ there exists a toric Kähler cone metric, and associated Sasaki structure
on S, with Reeb vector field ξ. And any other such structure is a transverse Kähler
deformation, i.e. η̃ = η + 2dcφ, for a basic function φ.
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Toric Sasaki-Einstein manifolds

The topological necessary condition for a Sasaki-Einstein metric is the following.

Proposition

Let S be a compact toric Sasaki manifold of dimension 2n − 1. Then the conditions of
Proposition 2.3 are equivalent to the existence of γ ∈ t∗ such that

(i) (γ, uk ) = −1, for k = 1, . . . , d,
(ii) (γ, ξ) = −n, and
(iii) there exists ℓ ∈ Z+ such that ℓγ ∈ Z∗

T
∼= Zn

Then there is nowhere vanishing section of Kℓ
C(S)

. And C(S) is ℓ-Gorenstein if and only

if a γ satisfying the above exists.
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Toric Sasaki-Einstein manifolds

Theorem (A. Futaki, H. Ono, G. Wang)

Suppose S is a toric Sasaki manifold satisfying Proposition 2.6. Then we can deform
the Sasaki structure by varying the Reeb vector field and then performing a transverse
Kähler deformation to a Sasaki-Einstein metric. The Reeb vector field and transverse
Kähler deformation are unique up to isomorphism.

One varies the Reeb vector ξ in {x ∈ t : γ(x) = −n} ∩ C(µ)∗ to minimize the volume of

∆ξ := {y ∈ t
∗ : (y , ξ) =

1

2
} ∩ C(µ). (8)

The volume of the Sasaki manifold Sξ with Reeb vector field ξ is

Vol(Sξ) = 2n(2π)n Vol(∆ξ). (9)

This cancels out the Futaki invariant of the tranversal Kähler structure, which is the only
obstruction to a Sasaki-Einstein metric according to Theorem 2.7.
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Resolutions

We consider Kähler cones X = C(S) ∪ {o} which are Gorenstein. So that the
dualizing sheaf ωX

∼= i∗(O(KC(S))), where i : C(S) → X is the inclusion, is trivial. And

we consider resolutions π : X̂ → X which are crepant

π∗ωX = ωX̂ = O(KX̂ ). (10)

From the following result of H. Laufer and D. Burns the singularity of X is rational.

Proposition

Let Ω be a holomorphic n-form defined, and nowhere vanishing, on a deleted
neighborhood of o ∈ X. Then o ∈ X is rational if and only if

Z

U
Ω ∧ Ω̄ <∞, (11)

for U a sufficiently small neighborhood of o ∈ X.

Recall this means Riπ∗OY = 0, for i > 0, for any resolution π : Y → X .
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Some properties of π : X̂ → X

We collect some properties of a crepant resolution π : X̂ → X .
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Approximate metric

Let π : Y → X be a resolution of o ∈ X = C(S) ∪ {o}. Let
Y a = {y ∈ Y : r(y) ≤ a} ⊂ Y , a > 0 with ∂Y a = Sa. Then

H∗
c (Y ,R) = H∗(Y a,Sa,R), and H2

c (Y ,R) ⊂ H2(Y ,R). (12)

Proposition

Let π : Y → X be a resolution of the Kähler cone X = C(S). Let g be a Kähler metric
on Y with Kähler form ω. Suppose

‖π∗g − ḡ‖ḡ = O
`

r−α
´

, (13)

where ḡ is the cone metric on C(S). If α > 2, then [ω] ∈ H2
c (Y ,R).

Let ω̄ = 1
2 ddc r2, and set β = ω − ω̄.

Let C ∈ H2(S,R), then
Z

C
β =

Z

C
|i∗β|ḡ|Cµḡ|C ≤ C

Z

C
r−α+2µgS → 0 (14)

as r → ∞.
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Approximate metric

Lemma

Let ω̃ be a Kähler metric on Y whose cohomology class [ω̃] ∈ H2
c (Y ,R). Then there

exists a Kähler metric ω0 on Y with [ω0] = [ω̃] and for some r0 > 0 on
Yr0 = {y ∈ Y : r(y) ≥ r0} ω0 restricts to π∗ω, the pull-back of the Ricci-flat Kähler
metric.

[ω̃] is Poincarè dual to
P

i ai Di for ai ∈ R where {Di} are the prime divisors in
E = π−1(o). There exists a closed (1, 1)-form β [β] = [ω̃]. Because o ∈ X is a
rational singularity and X is Stein, the Leray spectral sequence implies that
H j (Y ,OY ) = 0 for j > 0. So there is a u ∈ C∞(Y ) with i∂∂̄u = ω̃ − β. Then for a
cut-off function φ : Y → [0, 1] and a convex function ν : Y → R

ω0 = β + i∂∂̄(φu) + Ci∂∂̄(ν(
r2

2
)), for C > 0. (15)
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Let π : Y → X be a crepant resolution of a Ricci-flat Kähler cone X = C(S) ∪ {o}.
There is a holomorphic n-form Ω on X satisfying

cΩ ∧ Ω̄ = ωn. (16)

Let Ω also denote the extension of π∗Ω to a nowhere vanishing n-form on Y .
Define a real valued function

f = log

 

cΩ ∧ Ω̄

ωn
0

!

, (17)

Then f = 0 outside the compact set Ȳr0 = {y ∈ Y : r(y) ≤ r0}, and i∂∂̄f = Ricci(ω0).
A Ricci-flat Kähler metric is equivalent to a solution to the Monge-Ampère equation:

(

`

ω0 + i∂∂̄φ
´n

= efωn
0 ,

ω0 + i∂∂̄φ > 0.
(18)
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The following is due to G. Tian and S.-T. Yau.

Proposition

Let ω0 be the Kähler form defined in Lemma 2.11. Then there is a unique solution φ to
(18) such that φ(y) converges uniformly to zero as y goes to infinity, and there is a
constant c > 1 so that c−1ω0 < ω0 + i∂∂̄φ < cω0. It follows that ω̃ = ω0 + i∂∂̄φ is a
complete Ricci-flat Kähler metric on Y .

Craig van Coevering craig@math.mit.edu Noncompact Calabi-Yau Manifolds



Introduction
Background

Proof of main theorem
Examples

Asymptotics of the metric

Lemma

Let φ be the solution to (18) given in Proposition 3.1. For any δ > 0 there are constants
C,Cδ > 0 so that

− Cδ(1 + r2(y))−n+1(log r(y))δ ≤ φ(y) ≤ C(1 + r2(y))−n+1, for y ∈ Yr0 , (19)

where Yr0 is as in Lemma 2.11.

Set ρ = Kr−2n+2. Then computation shows that

(ω0 + ddcρ)n ≤ ωn
0 , for K > 0 and 2K (n − 1) ≤ r2n (20)

The maximum principle give the upper bound in (19).
For the lower set ρ = Kr−2n+2(log r)δ , and

(ω0 + ddcρ)n ≥ ωn
0 , (21)

for K < 0 and r sufficiently large. An application of the maximum principle gives the
lower bound.
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Proposition

Let φ be as above. Then for 1
2 > δ > 0, there are constants Cδ,k depending only on k

and δ so that
‖∇kφ‖g0(y) ≤ Cδ,k r(y)−2n+2−k+δ , for , y ∈ Yr0 . (22)

Consider the elliptic operator P defined by

(Pu)ωn
0 := i∂∂̄u ∧ (ωn−1 + ωn−2ω0 + · · · + ωn−1

0 ). (23)

On Yr0 , g0 = dr2 + r2g, the cone metric, and the Euler vector field r∂r generates an
action of R>0 by homothetic isometries on g0. For a > 1 denote this action by
ψa : Yr0 → Yr0 .

ψ∗
a g0 = a2g0. (24)

Then we have a weighted version of the schauder estimates for P(u) = w

‖u‖
Ck+2,α

β

≤ C
„

‖w‖
Ck,α

β−2
+ ‖u‖C0

β

«

, (25)

where Ck,α
β

is the weighted Hölder space. Apply (25) to P(φ) = ef − 1 with
β = −2n + 2 + δ.
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and δ so that
‖∇kφ‖g0(y) ≤ Cδ,k r(y)−2n+2−k+δ , for , y ∈ Yr0 . (22)

Consider the elliptic operator P defined by

(Pu)ωn
0 := i∂∂̄u ∧ (ωn−1 + ωn−2ω0 + · · · + ωn−1

0 ). (23)

On Yr0 , g0 = dr2 + r2g, the cone metric, and the Euler vector field r∂r generates an
action of R>0 by homothetic isometries on g0. For a > 1 denote this action by
ψa : Yr0 → Yr0 .

ψ∗
a g0 = a2g0. (24)

Then we have a weighted version of the schauder estimates for P(u) = w

‖u‖
Ck+2,α

β

≤ C
„

‖w‖
Ck,α

β−2
+ ‖u‖C0

β

«

, (25)

where Ck,α
β

is the weighted Hölder space. Apply (25) to P(φ) = ef − 1 with
β = −2n + 2 + δ.
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Proposition

Let g be the Ricci-flat Kähler metric on Y of Proposition 3.1. Then curvature of g
satisfies

‖∇k R(g)‖g = O(r−2−k ), for k ≥ 0. (26)

Furthermore, if ‖R(g)‖g = O(r−α), for α > 2, then (Y , g) is asymptotically locally
Euclidean.

The last statement is due to S. Bando, A. Kasue, and H. Nakajima, ’89.
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We consider the uniqueness of the metric in Theorem (1.2).

Proposition

Let g be the Ricci-flat metric of Theorem (1.2) and g1 another Ricci-flat Kähler metric
with [ω1] = [ω] and |g1 − g| ∈ C0,α

β
, β < −n. Then g1 = g.

Note: In Theorem (1.2) |g − g0| ∈ C∞
−2n+δ

.

Lemma

For each f ∈ Ck,α
β

(Y ), −2n < β < −2, there is a unique u ∈ Ck+2,α
β+2 (Y ) with ∆u = f .

It is well known that

∆ : L2
k+2,δ+2(Y ) → L2

k,δ, is Fredholm for δ outside a discrete “exceptional set" (27)

Then the elliptic maximum principle and integration by parts shows that (27) is an
isomorphism for δ non-exceptional. So we have u ∈ L2

k+2,δ+2(Y ) for some
−2 > δ > β.
Applying the maximum priciple to Cρβ , as ∆(ρβ+2) = O(ρβ),≤ 0, and Schauder
estimates shows u ∈ Ck+2,α

β+2 (Y ).
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Lemma (∂∂̄-Lemma)

Suppose η is a smooth exact (1, 1)-form and η ∈ C0,α
β

(Λ1,1(Y )), β < −n. Then there

is a smooth function f ∈ C2,α

β+2(Y ) with η = ddc f .

Proof.

For Proposition 3.5, η = ω1 − ω is exact. So Lemma 3.7 η = ddcu, u ∈ C2,α
β+2(Y ).

Then apply the maximum princlple to the operator

P(u)ωn := ddcu ∧

n−1
X

j=0

ωj
1 ∧ ωn−1−j = 0. (31)
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Toric resolutions

As an algebraic variety X = X∆ where ∆ is the fan in ZT
∼= Zn defined by the dual

cone C(µ)∗, spanned by u1, . . . , ud ∈ ZT .
We assume that X is Gorenstein. Thus there is a γ ∈ Z∗

T so that γ(ui ) = −1 for
i = 1, . . . , d .

P∆ := {x ∈ C(µ)∗ : 〈γ, x〉 = −1} ⊂ Hγ
∼= R

n−1 (32)

A toric crepant resolution
π : X∆̃ → X∆ (33)

is given by a nonsingular subdivision ∆̃ of ∆ with every 1-dimensional cone
τi ∈ ∆̃(1), i = 1, . . . ,N generated by a primitive vector ui := τi ∩ Hγ .
This is equivalent to a basic lattice triangulation of P∆.

Lattice means that the vertices of every simplex are lattice points.

A triangulation is maximal if vertices of simplices are its only lattice points.

basic means that the vertices of every top dimensional simplex generates a basis
of Zn−1.

When n = 3, P∆ is 2-dimensional and every maximal triangulation is basic.
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Kähler structures

A Kähler structure on X∆̃ is given by a strictly convex support function h ∈ SF(∆̃).
For each τj ∈ ∆̃(1) we have a primitive element uj ∈ ZT , j = 1, . . . ,N.
Set λi := h(ui ). Then define the rational convex polyhedral set

Ch :=
N
\

j=1

{y ∈ t
∗ : 〈uj , y〉 ≥ λj}. (34)

We employ a construction originally due to Delzant and extended to the non-compact
and singular cases by D. Burns, V. Guillemin, and E. Lerman which constructs a Kähler
structure on X∆̃ associated to a convex polyhedral set Ch.
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Kähler structures

Let A : ZN → ZT be the Z-linear map with A(ei ) = ui , where ei , i = 1, . . . ,N is the
standard basis of ZN .
A induces a map of Lie algebras A : RN → t. Let k = kerA.
We have an exact sequence

0 → k
B

−→ R
N A
−→ t → 0. (35)

And the dual

0 → t
∗ A∗

−→ (RN)∗
B∗

−→ k
∗ → 0. (36)

Also A induces a surjective map of Lie groups Ā : T N → T n, where T N = RN/2πZN .
If
K = ker Ā, then we have the exact sequence

1 → K −→ T N Ā
−→ T n → 1. (37)
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Kähler structures

The moment map Φ for the action of T N on (CN , i
2

PN
j=1 dzj ∧ dz̄j ) is

Φ(z) =
N
X

j=1

|zj |
2e∗

j . (38)

Then moment map ΦK for the action of K on CN is the composition

ΦK = B∗ ◦ Φ. (39)

Let λ =
PN

j=1 λje∗
j , and ν = B∗(−λ). Then

MCh := Φ−1
K (ν)/K (40)

is smooth provided Ch in non-singular as a polyhedron.
As complex toric varieties MCh

∼= X∆̃.
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Kähler structures

Suppose ∆̃ is a nonsingular subdivision of ∆ giving a crepant resolution.
Then u1, . . . , ud ∈ ZT are vectors spanning the cone C∗(µ), whereas

ud+1, . . . , uN ∈ ZT are the lattice points in
◦
P∆.

We want a Kähler form ω on X∆̃ with [ω] ∈ H2
c (X∆̃,R) so we make the following

definition.

Definition

A strictly convex support function h ∈ SF(∆̃,R) is compact if h(uj ) = 0 for j = 1, . . . , d.
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Kähler structures

The moment map for T n = T N/K acting on MCh is

ΦCh : MCh → t
∗ (41)

If lj(y) = 〈uj , y〉 − λj for j = 1, . . . ,N, and l∞(y) =
PN

j=1〈uj , y〉, we have

Theorem (V. Guilleimin)

The Kähler form ωh on the preimage Φ−1
Ch

(
◦
Ch) of the interior

◦
Ch of the polyhedral set Ch

is

ωh = i∂∂̄Φ∗
Ch

(
N
X

j=1

λj log(lj ) + l∞).

Notice that the potential is singular only on the exceptional set.
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3-dimensional toric varieties

Proposition

Let X = X∆ be a 3-dimensional Gorenstein toric cone variety. Suppose
◦
P∆ contains a

lattice point, i.e. X is not a terminal singularity. Then there is a basic lattice
triangulation of P∆ such that the corresponding subdivision ∆̃ admits a compact strictly
upper convex support function h ∈ SF(∆̃,R).

This follows by making generalized blow-ups at points, and along curves, at each

lattice point in
◦
P∆. The support function h is defined inductively. It ends with a maximal

triangulation of P∆ which is basic because P∆ is 2-dimensional.
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3-dimensional toric varieties

Theorem

Let X be a three dimensional Gorenstein toric Kähler cone with an isolated singularity
which is not the quadric hypersurface, as a variety. Then there is a crepant resolution
π : Y → X such that Y admits a Ricci-flat Kähler metric g which is asymptotic to
(C(S), ḡ) as in (1). Furthermore, g is invariant under the compact torus T 3.

Infinite series of toric Sasaki-Einstein 5-manifolds have been constructed using
Theorem 2.7 by K. Cho, A. Futaki, and H. Ono. Together with the series Sp,q we

Theorem

For each m ≥ 1, exists infinitely many toric asymptotically conical Ricci-flat Kähler
manifolds Y asymptotic to a cone over a Sasaki-Einstein structure on #m(S2 × S3).
For each m ≥ 1, the Betti numbers, b2(Y ) = m + c(X), b4(Y ) = c(X), of the Y
become arbitrarily large.
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3-dimensional toric varieties

Theorem

Let X be a three dimensional Gorenstein toric Kähler cone with an isolated singularity
which is not the quadric hypersurface, as a variety. Then there is a crepant resolution
π : Y → X such that Y admits a Ricci-flat Kähler metric g which is asymptotic to
(C(S), ḡ) as in (1). Furthermore, g is invariant under the compact torus T 3.

Infinite series of toric Sasaki-Einstein 5-manifolds have been constructed using
Theorem 2.7 by K. Cho, A. Futaki, and H. Ono. Together with the series Sp,q we

Theorem

For each m ≥ 1, exists infinitely many toric asymptotically conical Ricci-flat Kähler
manifolds Y asymptotic to a cone over a Sasaki-Einstein structure on #m(S2 × S3).
For each m ≥ 1, the Betti numbers, b2(Y ) = m + c(X), b4(Y ) = c(X), of the Y
become arbitrarily large.
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Resolutions of C(Sp,q)

A series of 5-dimensional Sasaki-Einstein metrics Sp,q , with p, q ∈ N, p > q > 0, and
gcd(p, q) = 1 are due to J. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, 2004.
They contain the first known examples of irregular Sasaki-Einstein, and also are given
explicitly. These examples are toric and are further of cohomogeneity one with an
isometry group of SO(3) × U(1) × U(1) if p, q are both odd, and U(2) × U(1)
otherwise.
The Sasaki structure is quasi-regular precisely when p, q ∈ N as above satisfy the
diophantine equation

4p2 − 3q2 = r2, (42)

for some r ∈ Z.
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We have X∆ = C(Sp,q ) ∪ {o} where the fan ∆ in Z3 is generated by the four vectors

u1 = (0, 0, 1), u2 = (1, 0, 1), u3 = (p, p, 1), u4 = (p − q − 1, p − q, 1). (43)

A basic lattice triangulation of P∆ can be constructed for general p, q as is shown in
Figure 1 for S5,3. It is not difficult to see that the subdivision ∆̃ of ∆ has a compact
strictly convex support function. Thus Corollary 1.3 gives a p − 1-dimensional family of
asymptotically conical Ricci-flat Kähler metrics on X∆̃.

Figure: A resolution of X 5,3
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Hypersurface singularities

We will now consider weighted homogeneous hypersurface singularities. Let
w = (w0, . . . ,wn) ∈ (Z+)n+1 with gcd(w0, . . . ,wn) = 1. We have the weighted
C∗-action C∗(w) on Cn+1 given by (z0, . . . , zn) → (λw0 z0, . . . , λ

wn zn)
A polynomial f ∈ C[z0, . . . , zn] is weighted homogeneous of degree d ∈ Z+ if

f (λw0 z0, · · · , λ
wn zn) = λd f (z0, . . . , zn). (44)

Assume that the origin is an isolated singularity. So the link

Sf = Xf ∩ S2n+1, (45)

is a smooth (2n − 1)-dimensional manifold.
If f ∈ C[z0, . . . , zn] is quasi-homogeneous, then we have the hypersurface in the
weighted projective space

Zf := {[z0 : · · · : zn] : f (z0, . . . , zn) = 0} ⊂ CP(w0, . . . ,wn). (46)
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Hypersurface singularities

We have
Sf −−−−−→ S2n+1

w
?

?

y

π

?

?

y

Zf −−−−−→ CP(w)

And Sf has a Sasakian structure by restricting a weighted structure on S2n+1

Proposition

The orbifold Zf is Fano, i.e. the orbifold canonical bundle KZf
is negative, if and only if

|w| =
Pn

j=0 wj > d.

It follows that the cone C(Sf ) satisfies the condition of Proposition 2.3. In fact, by the
adjunction formula the n-forms

Ωk :=
(−1)k

∂f/∂zk
dz0 ∧ · · · ∧ddzk ∧ · · · ∧ dzn|X , (47)

glue together to a global generator of the canonical bundle KXf
.
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Resolutions of hypersurfaces

The weighted blow-up generalizes the usual blow-up.
Let w = (w0, . . . ,wn) be a weight vector.
Then S(w) = C[z0, . . . , zn] has a corresponding grading. So S(w) =

P

j≥0 S(j),
where S(j) are the homogeneous elements of degree j .
f ∈ S(w) is written in homogeneous components f =

P

j≥0 f (j), then we define the
degree of f to be w(f ) = minj≥0{f (j) 6= 0}.
We have ideals Mw(j) = {f ∈ S(w) : w(f ) ≥ j}.

Definition

Then the weighted blow-up Bw
0 Cn+1 of Cn+1 with weight w is Proj(

P

j≥0 Mw(j)).

Geometrically, Bw
0 Cn+1 is the total space of the tautological line V-bundle over CP(w)

associated to the C∗-action on Cn+1 \ {0}, which has associated rank 1 sheaf O(−1).
For any variety X ⊂ Cn+1 the weighted blow-up X ′ = Bw

0 X is the birational transform of
X in Bw

0 Cn+1.
We have the adjunction formula, E is the exceptional divisor,

KX ′ = π∗KX + (w(z0 · · · zn) − w(f ) − 1)E|X ′ . (48)
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Examples with b3 6= 0

X S S-E crepant Y c(X) b3(Y ) H2(S)

x3
0 + x3

1 + x3
2 + xk

3 = 0
k = 3,
k > 6

0 yes ⌊ k
3 ⌋ 2(⌊ k

3 ⌋ − 1) Z6 ⊕ Z2
k
3

1 yes ⌊ k
3 ⌋ 2⌊ k

3 ⌋ Z2
k

2 no Z2
k

x2
0 + x4

1 + x4
2 + xk

3 = 0
k = 4,
k > 10

0 yes ⌊ k
4 ⌋ 2(⌊ k

4 ⌋ − 1) Z7 ⊕ Z2
k
4

1 yes ⌊ k
4 ⌋ 2⌊ k

4 ⌋ Z2
k

2 unknown Z3 ⊕ Z2
k
2

3 no Z2
k

x2
0 + x3

1 + x6
2 + xk

3 = 0
k = 6,
k > 12

0 yes ⌊ k
6 ⌋ 2(⌊ k

6 ⌋ − 1) Z8 ⊕ Z2
k
6

1 yes ⌊ k
6 ⌋ 2⌊ k

6 ⌋ Z2
k

2 unknown Z2 ⊕ Z2
k
2

3 unknown Z4 ⊕ Z2
k
3

4 unknown Z2 ⊕ Z2
k
2

5 no Z2
k

x3
0 + x4

1 + x4
2 + x4

3 = 0 yes yes 3 12 Z6
3
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The 3 series are resolved by succesively blowing up with weights
(1, 1, 1, 1), (2, 1, 1, 1), (3, 2, 1, 1) respectively.

The exceptional divisors are elliptic ruled surfaces.

The existence of the Sasaki-Einstein metric on the link S is due to C. Boyer, K.
Galicki, and J. Kollár, 2003.

For values k = 3, 4, 6 in the second column Zf is just the del Pezzo surface of
degree 3, 2 and 1, respectively.

The last example is a (4, 3, 3, 3) blow-up, then a blow-up along a genus 3 curve.
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Higher diminsional example

X S S-E k mod n c(X)

xn
0 + xn

1 + · · · + xn
n−1 + xk

n = 0 k > n(n − 1), k = n
0 ⌊ k

n ⌋

1 ⌊ k
n ⌋

The exceptional divisors of the resolution π : Yk → Xk are ruled varieties
Ej = P(OF (1) ⊕OF ), j = 1, . . . , c(X) − 1, besides the last which for k = 0 mod n is
the Fano hypersurface Ec = {xn

0 + xn
1 + · · · + xn

n−1 + xn
n = 0} ⊂ CPn and for k = 1

mod n is the cone over F Ec = {xn
0 + xn

1 + · · · + xn
n−1 = 0} ⊂ CPn.

F = {xn
0 + · · · + xn

n−1 = 0} ⊂ CPn−1, the Calabi-Yau Fermat hypersurface.
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Question

Question

Do there exist any examples which are asymptotic to a cone over a topological sphere,
S ∼=

homeo
S2n−1.
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