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@ By noncompact Calabi-Yau | mean a noncompact Ricci-flat Kahler manifold whose
end is asymptotic to a metric cone.

@ A metric cone with base S is C(S) = S x Ry with metric g = dr? 4 r?gs.
@ By definition (C(S), g) is Ricci-flat Kéhler < (S, gs) is Sasaki-Einstein.

@ In other words, | am considering Ricci-flat Kéhler manifolds with an end
asymptotic to a cone over a Sasaki-Einstein manifold.

@ These results are an extension of those of G. Tian and S.-T. Yau, '90, on the
existence of Ricci-flat Kahler metrics on quasi-projective varieties X \ D, where
D C X with ¢[D] = —Kx, o > 1 admits a K-E metric.
And also of results of D. Joyce, '99, on the existence of a Ricci-flat ALE metric on
a crepant resolutions of C" /G, G C SL(n, C).
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@ By noncompact Calabi-Yau | mean a noncompact Ricci-flat Kahler manifold whose
end is asymptotic to a metric cone.

@ A metric cone with base S is C(S) = S x Ry with metric g = dr? 4 r?gs.

@ By definition (C(S), g) is Ricci-flat Kéhler < (S, gs) is Sasaki-Einstein.

@ In other words, | am considering Ricci-flat Kéhler manifolds with an end
asymptotic to a cone over a Sasaki-Einstein manifold.

@ These results are an extension of those of G. Tian and S.-T. Yau, '90, on the
existence of Ricci-flat Kahler metrics on quasi-projective varieties X \ D, where
D C X with ¢[D] = —Kx, o > 1 admits a K-E metric.
And also of results of D. Joyce, '99, on the existence of a Ricci-flat ALE metric on
a crepant resolutions of C" /G, G C SL(n, C).

| will consider the following

Conjecture (J. Sparks)

Let 7 : X — X be a crepant resolution of an isolated singularity X = C(S), where
C(S) admits a Ricci-flat Kahler cone metric. Then X admits a unique Ricci-flat Kahler
metric in each Kahler class in H2(>A(, R) that is asymptotic to a cone over the
Sasaki-Einstein manifold (S, g).

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Introduction

Main Theorem

I will give a partial solution to Conjecture 1.1.
Let Hg (X, R) denote the compactly supported cohomology.
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Main Theorem

I will give a partial solution to Conjecture 1.1.
Let Hg (X, R) denote the compactly supported cohomology.

Theorem

Let 7 : X — X be a crepant resolution of the isolated singularity of X = C(S), where
C(S) admits a Ricci-flat Kahler cone metric. Then X admits a unique Ricci-flat Kéhler
metric g in each Kahler class in H2(X,R) c H2(X,R) which is asymptotic to the
Kéhler cone metric gg on X as follows. There is an R > 0 such that, for any small

6 >0andk >0,

VK (749 — go) = O (r*2"+5*k) on {x € C(S) : r(x) > R}, @)

where V is the covariant derivative of gg.
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Main Theorem

@ It is easy to find examples by considering Sasaki-Einstein manifolds S whose
cone C(S) admits a crepant resolution.
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@ The case of compact Kahler classes, [w] € HZ(X,R), is precisely the case where
there is “fast” convergence as in (1).
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Main Theorem

@ It is easy to find examples by considering Sasaki-Einstein manifolds S whose
cone C(S) admits a crepant resolution.

@ The case of compact Kahler classes, [w] € HZ(X,R), is precisely the case where
there is “fast” convergence as in (1).

@ If 7 : X — X is a small resolution, i.e. codimg(E) > 1, where E = =~1(0) is the
exceptional set, then there are no Kahler classes in H2(X, R).
In particular, the conifold X = {z2 + 22 + z2 + 22 = 0} C C* is the cone over
S2 x S3 with the homogeneous Sasaki-Einstein metric. Then X admits a crepant
resolution 7 : Y — X, where Y is the total space of O(1) ® O(1) — CP1. The
exceptional set is CP1 = 7—1(0). But Y admits a complete Ricci-flat Kéhler
metric converging to the cone with exponent —2 — k in (1).
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Toric case

@ There is a (C*)"-action on X = C(S) which restricts to an isometric T"-action on
S.
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Toric case

@ There is a (C*)"-action on X = C(S) which restricts to an isometric T"-action on
S.

@ X = C(S) is Gorenstein and admits a toric Ricci-flat Kahler cone metric by A.
Futaki, H. Ono, G. Wang.
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@ A crepant resolution 7 : Y — X is toric, and Y is described by a nonsingular
simplicial fan A refining the convex polyhedral cone A defining X.

@ A Kahler class in H2(Y,R) is given by a strictly convex support function
h € SF(A, R) vanishing on the rays uj € Z" defining A.
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Toric case

@ There is a (C*)"-action on X = C(S) which restricts to an isometric T"-action on
S.

@ X = C(S) is Gorenstein and admits a toric Ricci-flat Kahler cone metric by A.
Futaki, H. Ono, G. Wang.

@ A crepant resolution 7 : Y — X is toric, and Y is described by a nonsingular
simplicial fan A refining the convex polyhedral cone A defining X.

@ A Kahler class in H2(Y,R) is given by a strictly convex support function
h € SF(A, R) vanishing on the rays uj € Z" defining A.

Let 7 : Y — X be a crepant resolution of a Gorenstein toric Kahler cone X. Suppose
the fan A defining Y admits a compact strictly convex support function. Then Y admits
a unique Ricci-flat K&hler metric g, in this Kahler class, asymptotic to (C(S), §) as in
(1). Furthermore, g is invariant under T".
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Toric case

@ There is a (C*)"-action on X = C(S) which restricts to an isometric T"-action on
S.

@ X = C(S) is Gorenstein and admits a toric Ricci-flat Kahler cone metric by A.
Futaki, H. Ono, G. Wang.

@ A crepant resolution 7 : Y — X is toric, and Y is described by a nonsingular
simplicial fan A refining the convex polyhedral cone A defining X.

@ A Kahler class in H2(Y,R) is given by a strictly convex support function
h € SF(A, R) vanishing on the rays uj € Z" defining A.

Let 7 : Y — X be a crepant resolution of a Gorenstein toric Kahler cone X. Suppose
the fan A defining Y admits a compact strictly convex support function. Then Y admits
a unique Ricci-flat K&hler metric g, in this Kahler class, asymptotic to (C(S), §) as in
(1). Furthermore, g is invariant under T".

@ The space of Ricci-flat Kahler metrics is d = dim H2(Y, R) dimensional, where

d = #P NZ".
Pa = AN Hy, H, = {y = —1} is the hyperplane given by the Gorenstein
condition.
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Motivation

Here are some possible motives for studying asymptotically conical Ricci-flat K&hler
manifolds.
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Motivation

Here are some possible motives for studying asymptotically conical Ricci-flat K&hler
manifolds.

@ More general Ricci-flat manifolds. If (M, g) is a complete Ricci-flat manifold with
Euclidean volume growth, Vol(Br (p)) ~ Qr", then a pointed sequence
M, p, rj‘zg), I — oo, has a subsequence that Gromov-Hausdorff converges to a
metric cone M.
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Introduction

Motivation

Here are some possible motives for studying asymptotically conical Ricci-flat K&hler
manifolds.
@ More general Ricci-flat manifolds. If (M, g) is a complete Ricci-flat manifold with
Euclidean volume growth, Vol(Br (p)) ~ Qr", then a pointed sequence
M, p, rj‘zg), I — oo, has a subsequence that Gromov-Hausdorff converges to a
metric cone M.
@ Local mirror symmetry. Many of the examples, such as toric cones C(S), admit
special Lagrangian fibrations. (M. Gross and E. Goldstein)
© AdS/CFT. This is a conjectured duality between type IIB string theory on AdS® xS
and a superconformal field theory on RY:3 x C(S), where S is Sasaki-Einstein.
The SCFTs are described by certain quiver gauge theores. These gauge theories
describe the worldvolume theory for D3-branes placed at the cone singularity. This
is they dependent on the algebraic geometry of the singularity and its resolutions.
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History

Background

n manifolds

The dimension 2 case is well known.

A Ricci-flat K&hler cone is X = C(S) U {0} = C?2/G, G C U(2) with the quotient of
the flat metric.

The singularity o € X is Gorenstein < G C SU(2).

And X admits a crepant resolution 7 : X — X < G C SU(2).

A fortiori G C SU(2) < 0 € X is a canonical singularity, i.e. there is a resolution
m:Y — X with Ky = 7m*Ky +Z| aEj with a; > 0.
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Background

The dimension 2 case is well known.

A Ricci-flat K&hler cone is X = C(S) U {0} = C?2/G, G C U(2) with the quotient of
the flat metric.

The singularity o € X is Gorenstein < G C SU(2).

And X admits a crepant resolution 7 : X — X < G C SU(2).

A fortiori G C SU(2) < 0 € X is a canonical singularity, i.e. there is a resolution
m:Y — X with Ky = 7m*Ky +Z| aEj with a; > 0.

For dim¢ X = 2 these singularities can be characterized as the
@ rational Gorenstein singularities,
@ rational double points,
@ the canonical singularities.
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Background

C-dimension 2

The classification is as follows.

Ax

K>1
Dy
k>4
Ee
E7

Eg

G

e cyclic

manifolds

G|
k+1

binary dihedral 4(k —2)
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— ] " binary tetrahedral 24

binary octahedral 48

binary icosahedral 120

f(x,y,2)
Xk+l +y2 +22

Xk—1+xy2+z2
x3+y4+22
x3+xy3+22

x3+y5+22
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Background manifolds

C-dimension 2

The classification is as follows.

G G| f(x,y,2)
Ax [P — cyclic k+1 XK+l 4 y2 4 72
K>1
Dy S binary dihedral 4(k —2) xk=1 4 xy2 4 22
k>4
Eg binary tetrahedral 24 x3 4 y4 4 22
E, I binary octahedral 48 x3 4+ xy3 4 z2
Eg I binary icosahedral 120 x3 4 y5 4 22

It is well known that each singularity X = C2/G, G C SL(2,C), admits a unique
crepant resolution 7 : X — X.
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Background

Ricci-flat ALE spaces

The resolution X admits a Ricci-flat Kahler metric, in each Kahler class, asymptotic to
the flat metric gg on C2/G, i.e. an Asymptotically Locally Euclidean metric (ALE). This
means

VK(reg —go) = O(r—2"%), wherer is the radius on X = C"/G.

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Background [ty P
n manifolds

Ricci-flat ALE spaces

The resolution X admits a Ricci-flat Kahler metric, in each Kahler class, asymptotic to
the flat metric gg on C2/G, i.e. an Asymptotically Locally Euclidean metric (ALE). This
means

VK(reg —go) = O(r—2"%), wherer is the radius on X = C"/G.

Here n = 2, SU(2) = Sp(1) so g is hyper-kéhler, i.e. there are parallel complex
structures Jq, J,, J3 with K&hler forms wq, wo, w3.

So unlike the n > 3 case considered here, these metrics can be given explicitly by
hyper-k&hler reduction.
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Background

Ricci-flat ALE spaces

The resolution X admits a Ricci-flat Kahler metric, in each Kahler class, asymptotic to
the flat metric gg on C2/G, i.e. an Asymptotically Locally Euclidean metric (ALE). This
means

VK(reg —go) = O(r—2"%), wherer is the radius on X = C"/G.

Here n = 2, SU(2) = Sp(1) so g is hyper-kéhler, i.e. there are parallel complex
structures Jq, J,, J3 with K&hler forms wq, wo, w3.
So unlike the n > 3 case considered here, these metrics can be given explicitly by
hyper-k&hler reduction.
@ The case A;, X = T*CP1, is due to T. Eguchi and A. Hanson, '78.
9 Ay, k > 1, gravitational multi-instantons, is due to G. Gibbons and S. Hawking, '78.
? Ay, k > 1, case was also proved by N. Hitchin, '79, using twistor methods.

@ The general n = 2 case was proved by P. Kronheimer, '89, using hyper-Kéhler
quotients.

@ The general n > 3 case was proved by D. Joyce, '99.
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Background ki-Einstein manifolds

Resolutions

Ricci-flat K&hler cones

Definition

A Riemannian manifold (S, g) of dimension 2n — 1 is Sasakian if the metric cone
(C(S), ), C(S) = Rsg x Sand g = dr? + r?g, is Kahler.
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History
Sas: nstein manifolds
Resolutions

Background

Ricci-flat K&hler cones

Definition

A Riemannian manifold (S, g) of dimension 2n — 1 is Sasakian if the metric cone
(C(S), ), C(S) = Rsg x Sand g = dr? + r?g, is Kahler.

@ ¢ =J(rZ)isKiling, and £ —iJ¢ = & +ir 2 is a holomorphic vector field on C(S).
Either &

@ generates a free U(1)-action on S and S is regular,
@ generates a locally free U(1)-action on S and S is quasi-regular, or
9 the orbits do not close and S is irregular.
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A Riemannian manifold (S, g) of dimension 2n — 1 is Sasakian if the metric cone
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@ ¢ =J(rZ)isKiling, and £ —iJ¢ = & +ir 2 is a holomorphic vector field on C(S).
Either &

@ generates a free U(1)-action on S and S is regular,
@ generates a locally free U(1)-action on S and S is quasi-regular, or
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Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Background ki-Einstein manifolds

Resolutions

Ricci-flat K&hler cones

Definition

A Riemannian manifold (S, g) of dimension 2n — 1 is Sasakian if the metric cone
(C(S), ), C(S) = Rsg x Sand g = dr? + r?g, is Kahler.

@ ¢ =J(rZ)isKiling, and £ —iJ¢ = & +ir 2 is a holomorphic vector field on C(S).
Either &

@ generates a free U(1)-action on S and S is regular,
@ generates a locally free U(1)-action on S and S is quasi-regular, or
9 the orbits do not close and S is irregular.

@ n=g9g(& —) =2dClogr is a contact form on S with Reeb vector field &.

@ The foliation generated by ¢ has a transverse Kéhler structure with form
T_ 1
w' = 3dn.
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Background ki-Einstein manifolds

Resolutions

Ricci-flat K&hler cones

Definition

A Riemannian manifold (S, g) of dimension 2n — 1 is Sasakian if the metric cone
(C(S), ), C(S) = Rsg x Sand g = dr? + r?g, is Kahler.

@ ¢ =J(rZ)isKiling, and £ —iJ¢ = & +ir 2 is a holomorphic vector field on C(S).
Either &

@ generates a free U(1)-action on S and S is regular,
@ generates a locally free U(1)-action on S and S is quasi-regular, or
9 the orbits do not close and S is irregular.

@ n=g9g(& —) =2dClogr is a contact form on S with Reeb vector field &.
@ The foliation generated by ¢ has a transverse Kéhler structure with form
Wl = ldn.
2

@ The Kahler form of § is w = 3dd°r2.
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Background Sasaki-Einstein manifolds

Resolutions

Ricci-flat K&hler cones

Definition
A Riemannian manifold (S, g) of dimension 2n — 1 is Sasakian if the metric cone
(C(S), ), C(S) = Rsg x Sand g = dr? + r?g, is Kahler.

@ ¢ =J(rZ)isKiling, and £ —iJ¢ = & +ir 2 is a holomorphic vector field on C(S).
Either &
@ generates a free U(1)-action on S and S is regular,
@ generates a locally free U(1)-action on S and S is quasi-regular, or
9 the orbits do not close and S is irregular.

@ n=g9g(& —) =2dClogr is a contact form on S with Reeb vector field &.
@ The foliation generated by ¢ has a transverse Kéhler structure with form

@ The Kahler form of § is w = 3dd°r2.

Proposition

Let (S, g) be a 2n — 1-dimensional Sasaki manifold. Then the following are equivalent.

(i) (S,g) is Sasaki-Einstein with the Einstein constant being necessarily 2n — 2.
(i) (C(S),9) is a Ricci-flat Kahler.
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Background Sasaki-Einstein manifolds

Resolutions

Ricci-flat K&hler cones

Given a smooth basic function ¢ € Cg°(S), we consider the following deformed
Sasaki-structure.

fi=n+2d5p, omega' =w' +ddSe, £=c¢. @)

Letf =rexp¢. Thenw = %ddCF2 is the new Kahler form on C(S).
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Background instein manifolds

Ricci-flat K&hler cones

Given a smooth basic function ¢ € Cg°(S), we consider the following deformed
Sasaki-structure.

fi=n+2d5p, omega' =w' +ddSe, £=c¢. @)

Letf =rexp¢. Thenw = %ddCF2 is the new Kahler form on C(S).

Proposition

The following necessary conditions for S to admit a deformation of the transverse
Kalher structure to a Sasaki-Einstein metric are equivalent.
(i) c? = a[dn] for some positive constant a.
(i) c*f > 0, i.e. represented by a positive (1, 1)-form, and c; (D) = O.
(iii) For some positive integer £ > 0, the ¢-th power of the canonical line bundle
Ké(s) admits a nowhere vanishing section Q with £:Q = inQ.

Then X = C(S)U{o} is ¢-Gorenstein if Proposition 2.3 is satisfied, Gorenstein if £ = 1.
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Background instein manifolds

Toric Sasaki-Einstein manifolds

Definition

A Sasaki manifold (S, g) of dimension 2n — 1 is toric if there is an effective action of an
n-dimensional torus T = T" preserving the Sasaki structure such that the Reeb vector
field £ is an element of the Lie algebra tof T.

Equivalently, a toric Sasaki manifold is a Sasaki manifold S whose Kahler cone C(S) is
a toric Kahler manifold.

We have an effective holomorphic action of T¢ 22 (C*)" on C(S) whose restriction to

T C T¢ preserves the Kahler form w = d(%rzn). So there is a moment map

pn:C(S) — t*
1 ©)
(1), X) = Zr%n(Xs (),
We have the moment cone defined by
C(u) == (C(S)) U {0}, @)
There are vectors u;,i = 1,...,d in the integral lattice Zt = ker{exp(2=i-) : t— T}
such that
d
C(u) = My € ¢ : (u,y) > 0}. ®)
j=1
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Background ki-Einstein manifolds

Resolutions

Toric Sasaki-Einstein manifolds

Each face F C C(y) is the intersection of a number of facets
{y et :lh (y) = (u,,y) =0}, k=1,... e
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Background instein manifolds

Toric Sasaki-Einstein manifolds

Each face F C C(y) is the intersection of a number of facets
yet lh(y)=(y,y)=0Lk=1,.. e
Then S is smooth, and the cone C(u) is said to be non-singular if and only if

a a
{lekuj'k T € R} NZt = {Zukujk L € Z} (6)

k=1 k=1

for all faces F.
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Background

Toric Sasaki-Einstein manifolds

Each face F C C(y) is the intersection of a number of facets

{y et g (y) = (u,y) =0} k=1,....e
Then S is smooth, and the cone C(u) is said to be non-singular if and only if

a a
{lekuj'k Dk GR}OZT = {Zukujk .2 EZ} (6)
k=1 k=1
for all faces F. The dual cone to C(u) is

C(p)* = {X € t: (X,y) > Oforally € C(u)}. ©)

C(p)* is spanned by u;,i = 1,...,d and is the cone defining (S) U {0} as an affine
toric variety.

Proposition (J. Sparks, S.-T. Yau)

Let S be a compact toric Sasaki manifold and C(S) its Kahler cone. For any

& € IntC(p)* there exists a toric Kéhler cone metric, and associated Sasaki structure
on S, with Reeb vector field £. And any other such structure is a transverse Kahler
deformation, i.e. 7j = n + 2d¢¢, for a basic function ¢.
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Background

Sasaki-Einstein manifolds
Resolutions

Toric Sasaki-Einstein manifolds

The topological necessary condition for a Sasaki-Einstein metric is the following.

Proposition

Let S be a compact toric Sasaki manifold of dimension 2n — 1. Then the conditions of
Proposition 2.3 are equivalent to the existence of v € t* such that
@) (y,ux)=-1,fork=1,...,d,
(i) (v,€) =—n, and
(iii) there exists £ € Z such that £y € Z3 = 2"
Then there is nowhere vanishing section of Ké(s)' And C(S) is ¢-Gorenstein if and only
if a v satisfying the above exists.
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Background Sasaki-Einstein manifolds

Resolutions

Toric Sasaki-Einstein manifolds

Theorem (A. Futaki, H. Ono, G. Wang)

Suppose S is a toric Sasaki manifold satisfying Proposition 2.6. Then we can deform
the Sasaki structure by varying the Reeb vector field and then performing a transverse
Kahler deformation to a Sasaki-Einstein metric. The Reeb vector field and transverse
Kahler deformation are unique up to isomorphism.
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Background instein manifolds

Toric Sasaki-Einstein manifolds

Theorem (A. Futaki, H. Ono, G. Wang)

Suppose S is a toric Sasaki manifold satisfying Proposition 2.6. Then we can deform
the Sasaki structure by varying the Reeb vector field and then performing a transverse
Kahler deformation to a Sasaki-Einstein metric. The Reeb vector field and transverse
Kahler deformation are unique up to isomorphism.

One varies the Reeb vector £ in {x € t: y(x) = —n} NC(u)* to minimize the volume of

. 1
Ag={y €t (y,§) =5} NC(n) (8)

The volume of the Sasaki manifold S, with Reeb vector field & is
Vol(S¢) = 2n(27)" Vol(Ag). 9)

This cancels out the Futaki invariant of the tranversal Kahler structure, which is the only
obstruction to a Sasaki-Einstein metric according to Theorem 2.7.
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Background

Resolutions

Resolutions

We consider K&hler cones X = C(S) U {o} which are Gorenstein. So that the
dualizing sheaf wyx =i (O(Kc(s))), where i : C(S) — X is the inclusion, is trivial.
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Background Einstein manifolds

Resolutions

Resolutions

We consider K&hler cones X = C(S) U {o} which are Gorenstein. So that the
dualizing sheaf wyx =2 i.(O(Kc(s))), where i : C(S) — X is the inclusion, is trivial. And
we consider resolutions 7 : X — X which are crepant

Trwx = wg = O(Kg). (10)
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Background

Resolutions

We consider K&hler cones X = C(S) U {o} which are Gorenstein. So that the
dualizing sheaf wyx =2 i.(O(Kc(s))), where i : C(S) — X is the inclusion, is trivial. And
we consider resolutions 7 : X — X which are crepant

Trwx = wg = O(Kg). (10)

From the following result of H. Laufer and D. Burns the singularity of X is rational.

Proposition

Let Q be a holomorphic n-form defined, and nowhere vanishing, on a deleted
neighborhood of o € X. Then o € X is rational if and only if

/ms‘z<oo, (11)
U

for U a sufficiently small neighborhood of o € X.

Recall this means Ri7.Oy = 0, fori > 0, for any resolution 7 : Y — X.
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Background i-Einstein manift

Resolutions

Some properties of 7 : X — X

We collect some properties of a crepant resolution 7 : X — X.
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Background i-Einstein manift

Resolutions

Some properties of 7 : X — X

We collect some properties of a crepant resolution 7 : X — X.

@ Since o € X is rational, the Leray spectral sequence shows H‘()A(, 0) =0, for
i >0.
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Background R
tein manifol

Resolutions

Some properties of 7 : X — X

We collect some properties of a crepant resolution 7 : X — X.
@ Since o € X is rational, the Leray spectral sequence shows H‘()A(, 0) =0, for
i >0.
@ Thus PicX = H2(X,Z), by the exponential cohomology sequence.
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Histol
ki-Einstein manifolds
Resolutions

Background

Some properties of 7 : X — X

We collect some properties of a crepant resolution 7 : X — X.
@ Since o € X is rational, the Leray spectral sequence shows H‘()A(, 0) =0, for

i >0.
@ Thus PicX = H2(X,Z), by the exponential cohomology sequence.
Vi — i WDivU
@ The divisor class group CI(X,0) := Iln covy » U 2 0. By H. Flenner

CI(X,0) = H%(S, Z).
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Background

Some properties of 7 : X — X

We collect some properties of a crepant resolution 7 : X — X.
@ Since o € X is rational, the Leray spectral sequence shows H‘()A(, 0) =0, for
i >0.
@ Thus PicX = H2(X,Z), by the exponential cohomology sequence.

@ The divisor class group CI(X,0) := IiLn‘(’:VBii\‘,’t,J ,U 3 0. By H. Flenner

CI(X,0) = H%(S, Z).

@ We define p(X) := rank CI(X, 0). Thus p(X) = b,(S).

@ The number ofAﬂ-exeptional divisors, denoted c(X), is independent of the crepant
resolution 7 : X — X.
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Background

Some properties of 7 : X — X

We collect some properties of a crepant resolution 7 : X — X.
@ Since o € X is rational, the Leray spectral sequence shows H‘()A(, 0) =0, for

i >0.
@ Thus PicX = H2(X,Z), by the exponential cohomology sequence.
Vi — i WDivU
@ The divisor class group CI(X,0) := Iln covy » U 2 0. By H. Flenner

CI(X,0) = H%(S, Z).

@ We define p(X) := rank CI(X, 0). Thus p(X) = b,(S).

@ The number ofAﬂ-exeptional divisors, denoted c(X), is independent of the crepant
resolution 7 : X — X.

Proposition

Let X = C(S) U {0} have a crepant resolution 7 : X — X, then
() by(X) = bzn_1(X) = ban(X) =0,
(i) ban_2(X) = c(X),
(i) ba(X) = p(X) +¢(X) = by(S) + ban_a(Y).

When dim X = 3 two crepant resolutions differ by a finite sequence of birational
modifications called flops.
These preserve H* (X, Z), so it is invariant of the resolution.
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Background

Approximate metric

Let7:Y — X be aresolution of o € X = C(S) U {o}. Let
Ya={yeVY:r(y)<a}CY,a>0withdYa = Sa. Then

HX(Y,R) = H*(Ya,Sa,R), and HZ(Y,R) C H2(Y,R). (12)

Proposition

Let 7 : Y — X be a resolution of the Kahler cone X = C(S). Let g be a Kahler metric
on Y with Kéhler form w. Suppose

[rg —@lg =0 (%), (13)

where @ is the cone metric on C(S). If a > 2, then [w] € HZ(Y, R).

Let® = 1dd°r2, and set 8 = w — @.
Let C € Hy(S,R), then

/’8:/ “*'B|§\c“§\c < C/ r_a+2ﬂgs —0 (14)
C C C

asr — oo.
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Background
9 ki-Einstein mar

Resolutions

Approximate metric

Let & be a Kahler metric on Y whose cohomology class [&] € HZ(Y,R). Then there
exists a Kahler metric wg on Y with [wg] = [@] and for some ry > 0 on
Yo ={Y €Y :r(y) > ro} wp restricts to 7*w, the pull-back of the Ricci-flat Kahler

metric.
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Background ki-Einstein manifolds

Resolutions

Approximate metric

Let & be a Kahler metric on Y whose cohomology class [&] € HZ(Y,R). Then there
exists a Kahler metric wg on Y with [wg] = [@] and for some ry > 0 on

Yo ={Y €Y :r(y) > ro} wp restricts to 7*w, the pull-back of the Ricci-flat Kahler
metric.

[@] is Poincare dual to ), a;D; for a; € R where {D; } are the prime divisors in
E = 7~ 1(0). There exists a closed (1, 1)-form 3 [3] = [&].
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Background ki-Einstein manifolds

Resolutions

Approximate metric

Let & be a Kahler metric on Y whose cohomology class [&] € HZ(Y,R). Then there
exists a Kahler metric wg on Y with [wg] = [@] and for some ry > 0 on

Yo ={Y €Y :r(y) > ro} wp restricts to 7*w, the pull-back of the Ricci-flat Kahler
metric.

[@] is Poincare dual to ), a;D; for a; € R where {D; } are the prime divisors in
E = 7~ 1(0). There exists a closed (1, 1)-form 3 [3] = [&]. Because 0 € X is a
rational singularity and X is Stein, the Leray spectral sequence implies that
HI(Y,Oy) =0forj > 0.
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Background

Approximate metric

Let & be a Kahler metric on Y whose cohomology class [&] € HZ(Y,R). Then there
exists a Kahler metric wg on Y with [wg] = [@] and for some ry > 0 on

Yo ={Y €Y :r(y) > ro} wp restricts to 7*w, the pull-back of the Ricci-flat Kahler
metric.

[@] is Poincare dual to ), a;D; for a; € R where {D; } are the prime divisors in
E = 7~ 1(0). There exists a closed (1, 1)-form 3 [3] = [&]. Because 0 € X is a
rational singularity and X is Stein, the Leray spectral sequence implies that
HI(Y,Oy) =0forj > 0. So there isau € C>(Y) with iddu = & — 8.

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Background

Approximate metric

Let & be a Kahler metric on Y whose cohomology class [&] € HZ(Y,R). Then there
exists a Kahler metric wg on Y with [wg] = [@] and for some ry > 0 on

Yo ={Y €Y :r(y) > ro} wp restricts to 7*w, the pull-back of the Ricci-flat Kahler
metric.

[@] is Poincare dual to ), a;D; for a; € R where {D; } are the prime divisors in

E = 7~ 1(0). There exists a closed (1, 1)-form 3 [3] = [&]. Because 0 € X is a
rational singularity and X is Stein, the Leray spectral sequence implies that
Hi(Y,Oy) =0forj > 0. Sothereisau € C=(Y) with iddu = & — 3. Then for a
cut-off function ¢ : Y — [0, 1] and a convex functionv : Y — R

2
wo = B+ 108(du) + Ciaé(y(%)), for C > 0. (15)
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Proof of main theorem

Monge-Ampére equation

Let 7 : Y — X be a crepant resolution of a Ricci-flat K&hler cone X = C(S) U {o}.
There is a holomorphic n-form Q on X satisfying

cQAQ =" (16)
Let Q also denote the extension of 7*2 to a nowhere vanishing n-form on Y.
Define a real valued function
cQAQ
= log < ) , (17)
wh

Then f = 0 outside the compact set Y, = {y € Y : r(y) < 1o}, and iddf = Ricci(wo).
A Ricci-flat K&hler metric is equivalent to a solution to the Monge-Ampére equation:

{(a}o + |88¢) wo, (18)
wo + |88q5 > 0.

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Proof of main theorem

Existence

The following is due to G. Tian and S.-T. Yau.

Proposition

Let wg be the Kéhler form defined in Lemma 2.11. Then there is a unique solution ¢ to
(18) such that ¢(y) converges uniformly to zero as y goes to infinity, and there is a
constant ¢ > 1 so that c 1wy < wg 4+ 109¢p < cwy. It follows that & = wq + 109¢ is a
complete Ricci-flat Kahler metric on Y .
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Proof of main theorem

Asymptotics of the metric

Let ¢ be the solution to (18) given in Proposition 3.1. For any § > 0 there are constants
C,Cs > 0 so that

— Cs(1+r3(y) ™" (logr(y))® < o(y) < C(L+r3(y))™"*, fory € Yr, (19)

where Yy, is as in Lemma 2.11.

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Proof of main theorem

Asymptotics of the metric

Let ¢ be the solution to (18) given in Proposition 3.1. For any § > 0 there are constants
C,Cs > 0 so that

— Cs(1+r3(y) ™" (logr(y))® < o(y) < C(L+r3(y))™"*, fory € Yr, (19)

where Yy, is as in Lemma 2.11.

Set p = Kr—2"+2, Then computation shows that
(wo +dd®p)" < wh, forK >0and2K(n —1) <r?" (20)

The maximum principle give the upper bound in (19).

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Proof of main theorem

Asymptotics of the metric

Let ¢ be the solution to (18) given in Proposition 3.1. For any § > 0 there are constants
C,Cs > 0 so that

— Cs(1+r3(y) ™" (logr(y))® < o(y) < C(L+r3(y))™"*, fory € Yr, (19)

where Yy, is as in Lemma 2.11.

Set p = Kr—2"+2, Then computation shows that
(wo +dd®p)" < wh, forK >0and2K(n —1) <r?" (20)

The maximum principle give the upper bound in (19).
For the lower set p = Kr =2"2(logr)?, and

(wo +dd®p)" >, (21)

for K < 0 and r sufficiently large. An application of the maximum principle gives the
lower bound.
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Proof of main theorem

Asymptotics of the metric

Let ¢ be the solution to (18) given in Proposition 3.1. For any § > 0 there are constants
C,Cs > 0 so that

— Cs(1+r3(y) ™" (logr(y))® < o(y) < C(L+r3(y))™"*, fory € Yr, (19)

where Yy, is as in Lemma 2.11.

Set p = Kr—2"+2, Then computation shows that
(wo +dd®p)" < wh, forK >0and2K(n —1) <r?" (20)

The maximum principle give the upper bound in (19).
For the lower set p = Kr =2"2(logr)?, and

(wo +dd®p)" >, (21)

for K < 0 and r sufficiently large. An application of the maximum principle gives the
lower bound.
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Proof of main theorem

Asymptotics of the metric

Proposition

Let ¢ be as above. Then for % > 6 > 0, there are constants C; depending only on k
and ¢ so that
[V @llgo(y) < Cokr(y)~2"H27KF2, for,y € Yy, (22
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Proof of main theorem

Asymptotics of the metric

Proposition

Let ¢ be as above. Then for % > 6 > 0, there are constants C; depending only on k
and ¢ so that
[V @llgo(y) < Cokr(y)~2"H27KF2, for,y € Yy, (22

Consider the elliptic operator P defined by

(Pu)w :=i0du A (Wt P+ 4+ wgfl). (23)
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Proof of main theorem

Asymptotics of the metric

Proposition

Let ¢ be as above. Then for % > 6 > 0, there are constants C; depending only on k
and ¢ so that
[V @llgo(y) < Cokr(y)~2"H27KF2, for,y € Yy, (22

Consider the elliptic operator P defined by
(Pu)w :=i0du A (Wt P+ 4+ wgfl). (23)

On Yy, 0o = dr2 4 r2g, the cone metric, and the Euler vector field rd; generates an
action of R+ o by homothetic isometries on go. For a > 1 denote this action by
’l/}a : Yro — Yro.

$30o = a’do- (24)
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Proof of main theorem

Asymptotics of the metric

Proposition

Let ¢ be as above. Then for % > 6 > 0, there are constants C; depending only on k
and ¢ so that
[V @llgo(y) < Cokr(y)~2"H27KF2, for,y € Yy, (22

Consider the elliptic operator P defined by
(Pu)w :=i0du A (Wt P+ 4+ wgfl). (23)

On Yy, 0o = dr2 4 r2g, the cone metric, and the Euler vector field rd; generates an
action of R+ o by homothetic isometries on go. For a > 1 denote this action by
’l/}a : Yro — Yro.

$30o = a’do- (24)

Then we have a weighted version of the schauder estimates for P(u) = w
u o SC W]l k,a + U ) , 25
lullgirn <€ (Wl + lullcg (25)

where C;"’ is the weighted Holder space.
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Proof of main theorem

Asymptotics of the metric

Proposition

Let ¢ be as above. Then for % > 6 > 0, there are constants C; depending only on k
and ¢ so that
[V @llgo(y) < Cokr(y)~2"H27KF2, for,y € Yy, (22

Consider the elliptic operator P defined by
(Pu)w :=i0du A (Wt P+ 4+ wgfl). (23)

On Yy, 0o = dr2 4 r2g, the cone metric, and the Euler vector field rd; generates an
action of R+ o by homothetic isometries on go. For a > 1 denote this action by
’l/}a : Yro — Yro.

$30o = a’do- (24)

Then we have a weighted version of the schauder estimates for P(u) = w
u o SC W]l k,a + U ) , 25
lullgirn <€ (Wl + lullcg (25)

where C;"’ is the weighted Holder space. Apply (25) to P(¢) = ef — 1 with
B=-2n+2+6.
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Proof of main theorem

Asymptotics

Proposition

Let g be the Ricci-flat Kahler metric on Y of Proposition 3.1. Then curvature of g

satisfies

IV¥R(@)llg = O(r27), fork >0. (26)
Furthermore, if |[R(g)|lg = O(r—%), for « > 2, then (Y, g) is asymptotically locally
Euclidean.

The last statement is due to S. Bando, A. Kasue, and H. Nakajima, '89.
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Proof of main theorem

Unigqueness

We consider the uniqueness of the metric in Theorem (1.2).

Proposition

Let g be the Ricci-flat metric of Theorem (1.2) and g; another Ricci-flat K&hler metric
with [w;] = [w] and |g; — g € Cg'a, B < —n. Theng; = g.

Note: In Theorem (1.2) |g — go| € C°%, 5

For each f € C{*(Y), —2n < 8 < —2, there is a unique u € CjjT5*(Y) with Au = .

It is well known that
AL, p5.0(Y) = L s, s Fredholm for § outside a discrete “exceptional set" (27)

Then the elliptic maximum principle and integration by parts shows that (27) is an
isomorphism for § non-exceptional. So we have u € LE+275+2(Y) for some
-2>6>p0.

Applying the maximum priciple to Cp?, as A(p®+2) = O(p?), < 0, and Schauder
estimates shows u € Ck+2 (Y).
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Proof of main theorem

Unigqueness

Lemma (89-Lemma)

Suppose 7 is a smooth exact (1, 1)-form and 1 € Cg’“(Alvl(Y)), B < —n. Then there

. . 2, f
is a smooth function f € CB+2(Y) with n = dd°f.

For Proposition 3.5, n = w; — w is exact. So Lemma 3.7 n = dd®u, u € Cz‘fz(Y).

B
Then apply the maximum princlple to the operator
n—-1 )
P(u)w" :=ddu A ijl AW =0, (31)
j=0
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Toric Examples
Resolutions of hypersurface singularities
Examples

Toric resolutions

As an algebraic variety X = X where A is the fan in Z1 = Z" defined by the dual

cone C(u)*, spanned by uy,...,uq € Zt.
We assume that X is Gorenstein. Thus there is a v € Zj so that y(u;) = —1 for
i=1,...,d.

Pa:={x €C(p)" : (v,x) =1} CH, =R""! (32)

A toric crepant resolution
m: Xz — Xa (33)

is given by a nonsingular subdivision A of A with every 1-dimensional cone
7 € A(1),i =1,...,N generated by a primitive vector u; := 7, N H,.
This is equivalent to a basic lattice triangulation of Px.

9 Lattice means that the vertices of every simplex are lattice points.
@ A triangulation is maximal if vertices of simplices are its only lattice points.

@ basic means that the vertices of every top dimensional simplex generates a basis
of Zn—1,

@ When n = 3, P, is 2-dimensional and every maximal triangulation is basic.
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Toric Examples
Resolutions of hypersurface singularities
Examples

Kahler structures

A Kéhler structure on Xy is given by a strictly convex support function h € SF(A).

For each 7; € A(l) we have a primitive element u; € Zy,j =1,...,N.
Set )\ := h(u;). Then define the rational convex polyhedral set

N
Cni= (Y € € : {u,y) > N} (34)
j=1

We employ a construction originally due to Delzant and extended to the non-compact
and singular cases by D. Burns, V. Guillemin, and E. Lerman which constructs a Kahler
structure on Xz associated to a convex polyhedral set Cy,.
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Toric Examples
Resolutions of hypersurface singularities
Examples

Kahler structures

Let A : ZN — Zt be the Z-linear map with A(e;) = u;, where gj,i = 1,...,N is the
standard basis of ZN.

A induces a map of Lie algebras A : RN — . Let ¢ = ker A.

We have an exact sequence

0—t- B RN A ¢ o (35)
And the dual
*A* N\ * B* *
0—-t"— R")" — ¢ —0. (36)

Also A induces a surjective map of Lie groups A : TN — T", where TN = RN /277N,
If
K = ker A, then we have the exact sequence

1K —TN A 1n (37)
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Examples

Kahler structures

The moment map @ for the action of TN on (CN, 5 3o, dzj A dZj) is
N
®(2) =) [z%;" (38)
i=1

Then moment map &k for the action of K on CN is the composition
S = B* o d. (39)
Let A =3, Aef, and v = B*(—A). Then
Mc, = & *(v)/K (40)

is smooth provided Cy, in non-singular as a polyhedron.
As complex toric varieties M, = Xjx.
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Toric Examples
Resolutions of hypersurface singularities
Examples

Kahler structures

Suppose A is a nonsingular subdivision of A giving a crepant resolution.
Thenug,...,uq € Zt are vectors spanning the cone C*(u), whereas
o

Ugt1,-..,UN € Z7 are the lattice points in Pa.
We want a Kahler form w on Xz with [w] € H2(X 3, R) so we make the following
definition.

Definition

A strictly convex support function h € SF(A, R) is compact if h(u) =0forj=1,...
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Toric Examples
Resolutions of hypersurface singularities
Examples

Kahler structures

The moment map for T" = TN /K acting on Mg, is
®c, : Mc, — t* (41)

Ifl(y) = (u,y) = Aforj=1,...,N,and I (y) = ZjN:l(uj,y>, we have

Theorem (V. Guilleimin)

The Kéhler form wy, on the preimage d>c_h1((,’h) of the interior Cy, of the polyhedral set Cy,

IS
N

wy = i090g, (O Ajlog(l) + lo)-
j=1

Notice that the potential is singular only on the exceptional set.
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Toric Examples
Resolutions of hypersurface singularities
Examples

3-dimensional toric varieties

Proposition

o
Let X = Xa be a 3-dimensional Gorenstein toric cone variety. Suppose P 5 contains a
lattice point, i.e. X is not a terminal singularity. Then there is a basic lattice
triangulation of Pa such that the corresponding subdivision A admits a compact strictly
upper convex support function h € SF(A, R).

This follows by making generalized blow-ups at points, and along curves, at each
e}

lattice point in P o. The support function h is defined inductively. It ends with a maximal
triangulation of P, which is basic because P, is 2-dimensional.

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Toric Examples
Resolutions of hypersurface singularities

Examples

3-dimensional toric varieties

Let X be a three dimensional Gorenstein toric Kéhler cone with an isolated singularity
which is not the quadric hypersurface, as a variety. Then there is a crepant resolution
7 :Y — X such that Y admits a Ricci-flat Kahler metric g which is asymptotic to
(C(S), @) as in (1). Furthermore, g is invariant under the compact torus T3.
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3-dimensional toric varieties

Let X be a three dimensional Gorenstein toric Kéhler cone with an isolated singularity
which is not the quadric hypersurface, as a variety. Then there is a crepant resolution
7 :Y — X such that Y admits a Ricci-flat Kahler metric g which is asymptotic to
(C(S), @) as in (1). Furthermore, g is invariant under the compact torus T3.

Infinite series of toric Sasaki-Einstein 5-manifolds have been constructed using
Theorem 2.7 by K. Cho, A. Futaki, and H. Ono. Together with the series SP-9 we

For each m > 1, exists infinitely many toric asymptotically conical Ricci-flat Kéhler
manifolds Y asymptotic to a cone over a Sasaki-Einstein structure on #m(S? x S8).
For each m > 1, the Betti numbers, b,(Y) = m + c(X), bs(Y) = c(X), of the Y
become arbitrarily large.
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Resolutions of C(SP-9)

A series of 5-dimensional Sasaki-Einstein metrics SP-9, with p,q € N,p > q > 0, and
gcd(p, g) = 1 are due to J. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, 2004.
They contain the first known examples of irregular Sasaki-Einstein, and also are given
explicitly. These examples are toric and are further of conomogeneity one with an
isometry group of SO(3) x U(1) x U(1) if p, g are both odd, and U(2) x U(1)
otherwise.
The Sasaki structure is quasi-regular precisely when p, q € N as above satisfy the
diophantine equation

4p? — 392 =r2, (42)

forsomer € Z.
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We have Xp = C(SP:9) U {0} where the fan A in Z? is generated by the four vectors
up = (07 07 1)7 Uz = (17071)7 Uz = (p7p7 1)7“4 = (p —q- 17p —-q, 1) (43)

A basic lattice triangulation of P can be constructed for general p, q as is shown in
Figure 1 for S5:3. It is not difficult to see that the subdivision A of A has a compact
strictly convex support function. Thus Corollary 1.3 gives a p — 1-dimensional family of
asymptotically conical Ricci-flat Kahler metrics on X .

Figure: A resolution of X%-3
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Hypersurface singularities

We will now consider weighted homogeneous hypersurface singularities. Let
w = (Wg, ..., Wn) € (Z4+)"* with gcd(wp, - . . ,Wn) = 1. We have the weighted
C*-action C*(w) on C™*1 given by (zg, ..., zn) — (\Wozg, ..., \"zp)

A polynomial f € Clzg, ..., zn] is weighted homogeneous of degree d € Z. if

f(A%0zg, -+, A"1zq) = Af(20, ..., Zn). (44)
Assume that the origin is an isolated singularity. So the link
St = X N2+ (45)

is a smooth (2n — 1)-dimensional manifold.
If f € Clzo,...,zn] is quasi-homogeneous, then we have the hypersurface in the
weighted projective space

Zi :={[zg:--+:2zn] : f(z0,...,2n) = 0} C CP(wg,...,Wn). (46)
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Hypersurface singularities

We have

Zi ——— CP(w)

And S; has a Sasakian structure by restricting a weighted structure on S2M+1

Proposition

The orbifold Z; is Fano, i.e. the orbifold canonical bundle Kz, is negative, if and only if
w| = EJ-”ZOWJ- >d.

It follows that the cone C(S;) satisfies the condition of Proposition 2.3. In fact, by the
adjunction formula the n-forms

(=)
of 8Zk

L= dzg A--- Adzg A - Adznlx, (47

glue together to a global generator of the canonical bundle Ky, .

Craig van Coevering cr ai g@mt h. mi t. edu Noncompact Calabi-Yau Manifolds



Toric Examples
Resolutions of hypersurface singularities

Examples

Resolutions of hypersurfaces

The weighted blow-up generalizes the usual blow-up.

Letw = (wp, ..., wn) be a weight vector.

Then S(w) = C[zo, - . ., zn] has a corresponding grading. So S(w) = 374 S(j),
where S(j) are the homogeneous elements of degree j. -

f € S(w) is written in homogeneous components f = 3., f(j), then we define the
degree of f to be w(f) = minj>o{f(j) # 0}. B

We have ideals MY (j) = {f € S(w) : w(f) > j}.

Definition

Then the weighted blow-up By C"** of C"** with weight w is Proj(3=;5.o MY (j))-

Geometrically, Bg’@‘*1 is the total space of the tautological line V-bundle over CP (w)

associated to the C*-action on C"*+1 \ {0}, which has associated rank 1 sheaf O(—1).
For any variety X ¢ C"*?! the weighted blow-up X’ = B{'X is the birational transform of

X in ByC+
We have the adjunction formula, E is the exceptional divisor,

le :W*KX—|—(W(ZO'~~Zn)—W(f)—l)E|X/. (48)
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Examples with bz # 0

| X [ SSE [ crepantY [ c(X) [ b3(Y) [ H(S) |

3031 3 L ok k=3 0| ves 15 |25 -1 [ 280z}

X HX X +xg =0 | g 1 yes 5] 2(%] Z ]
2 no Z

2t e c—a |O| v [LI[2ET-D|7eZ
Xg X[ +x+X3 =0 1\ 19 1 yes EY 2[%] Z

2 | unknown VAKY

3 no Zi i

C—6 0 yes HEEGENIEEEE

XX X3+ x5 =0 | > 12 1 yes 1X] 2[§] Zi :

2 | unknown VYA

3 | unknown VA @Zzz

4| unknown zz @Zi

5 no Z
i =0 | _yes yes 3 12 Z;
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@ The 3 series are resolved by succesively blowing up with weights
(1,1,1,1),(2,1,1,1),(3,2,1, 1) respectively.

@ The exceptional divisors are elliptic ruled surfaces.

@ The existence of the Sasaki-Einstein metric on the link S is due to C. Boyer, K.
Galicki, and J. Kollar, 2003.

@ Forvalues k = 3,4, 6 in the second column Z; is just the del Pezzo surface of
degree 3,2 and 1, respectively.

@ The last example is a (4, 3, 3, 3) blow-up, then a blow-up along a genus 3 curve.
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Higher diminsional example

X S S-E k modn | c(X)
K

XXM+ x4+ xK=0 | k>n(n—1),k=n 2 M
n

The exceptional divisors of the resolution 7 : Y, — Xy are ruled varieties

Ei =P(Or(1) ® Of),j =1,...,c(X) — 1, besides the last which fork = 0 mod n'is
the Fano hypersurface Ec = {xJ +x{' +---+x[_; +x7 =0} C CP"andfork =1
mod n is the cone over F E¢ = {xJ +x{ +---+x]_, =0} C CP".

F={x+ -+x1_, =0} C CP""1, the Calabi-Yau Fermat hypersurface.
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Question

Do there exist any examples which are asymptotic to a cone over a topological sphere,
§ = gt

homeo
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