Einstein metrics and exotic smooth structures on 4-manifolds

Ioana Suvaina
New York University

Rome, June, 2009

Main question

Question

What is the relation between the existence of Einstein metrics and the differential structure considered on a 4-manifold?

Main ingredients

(M, g) compact, oriented, smooth 4-manifold, g a Riemannian metric

Main ingredients

(M, g) compact, oriented, smooth 4-manifold, g a Riemannian metric

Topological invariants

- fundamental group: $\pi_{1}(M)$
- Second Stiefel-Whitney class: $w_{2}(M) \in H^{2}\left(M, \mathbb{Z}_{2}\right)$
- Signature: $\tau(M)=b^{+}-b^{-}$
- Euler Characteristic: $\chi(M)$
- Freedman, Donaldson: Compact, smooth, simply connected

4-manifolds are classified, up to homeomorphism, by their topological invariants: $\chi(M), \tau(M)$, and the parity of the
intersection form (i.e $w_{2}=0$ or $\neq 0$).

- Consequence: Any simply connected, non-spin $\left(w_{2} \neq 0\right)$ manifold is homeomorphic to $a \mathbb{C P}^{2} \# b \overline{\mathbb{C P}^{2}}$
We call this the non-spin canonical smooth structure.

Topological invariants

- fundamental group: $\pi_{1}(M)$
- Second Stiefel-Whitney class: $w_{2}(M) \in H^{2}\left(M, \mathbb{Z}_{2}\right)$
- Signature: $\tau(M)=b^{+}-b^{-}$
- Euler Characteristic: $\chi(M)$
- Freedman, Donaldson: Compact, smooth, simply connected 4-manifolds are classified, up to homeomorphism, by their topological invariants: $\chi(M), \tau(M)$, and the parity of the intersection form (i.e $w_{2}=0$ or $\neq 0$).
- Consequence: Any simply connected, non-spin ($w_{2} \neq 0$) manifold is homeomorphic to $a \mathbb{C P}^{2} \# b \mathbb{C P}^{2}$.
We call this the non-snin canonical smooth structure.

Topological invariants

- fundamental group: $\pi_{1}(M)$
- Second Stiefel-Whitney class: $w_{2}(M) \in H^{2}\left(M, \mathbb{Z}_{2}\right)$
- Signature: $\tau(M)=b^{+}-b^{-}$
- Euler Characteristic: $\chi(M)$
- Freedman, Donaldson: Compact, smooth, simply connected 4-manifolds are classified, up to homeomorphism, by their topological invariants: $\chi(M), \tau(M)$, and the parity of the intersection form (i.e $w_{2}=0$ or $\neq 0$).
- Consequence: Any simply connected, non-spin ($w_{2} \neq 0$) manifold is homeomorphic to $a \mathbb{C P}^{2} \# b \overline{\mathbb{C P}}^{2}$.
We call this the non-spin canonical smooth structure.

$$
(2 \chi \pm 3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left[\frac{s^{2}}{24}+2\left|W^{ \pm}\right|^{2}-\frac{|\stackrel{\circ}{r}|^{2}}{2}\right] d \mu_{g}
$$

where $s, W^{ \pm}, \stackrel{\circ}{r}$ are the scalar, Weyl, trace free Ricci curvatures and μ_{g} the volume form

Theorem (Hitchin-Thorpe Inequality)

If the smooth compact oriented 4-manifold M admits an Einstein
metric g, then

$$
(2 \chi \pm 3 \tau)(M) \geq 0,
$$

with equality if (M, g) is finitely covered by a flat 4-torus T^{4} or by the K3 surface with a hyper-Kähler metric or by the orientation-reversed version of K3 with a hyper-Kähler metric.

$$
(2 \chi \pm 3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left[\frac{s^{2}}{24}+2\left|W^{ \pm}\right|^{2}-\frac{|\stackrel{\circ}{r}|^{2}}{2}\right] d \mu_{g}
$$

where $s, W^{ \pm}, \stackrel{\circ}{r}$ are the scalar, Weyl, trace free Ricci curvatures and μ_{g} the volume form

Theorem (Hitchin-Thorpe Inequality)

If the smooth compact oriented 4-manifold M admits an Einstein metric g, then

$$
(2 \chi \pm 3 \tau)(M) \geq 0
$$

with equality if (M, g) is finitely covered by a flat 4-torus T^{4} or by the K3 surface with a hyper-Kähler metric or by the orientation-reversed version of K3 with a hyper-Kähler metric.

Seiberg-Witten Theory

Given (M, g) and let $\mathbb{V}_{ \pm}$be the spin^{c} structure associated to the Hermitian line bundle $L,\left(c_{1}(L) \equiv w_{2}(M) \bmod 2\right)$. The Seiberg-Witten Equations:

$$
\begin{align*}
D_{A} \Phi & =0 \tag{1}\\
F_{A}^{+} & =i \sigma(\Phi) . \tag{2}
\end{align*}
$$

where $\Phi \in \Gamma\left(\mathbb{V}_{+}\right), A$ a connection on L, F_{A}^{+}is the self-dual part of the curvature of A, and where $\sigma: \mathbb{V}_{+} \rightarrow \Lambda^{+}$is a natural real-quadratic map satisfying

Seiberg-Witten Theory

Given (M, g) and let $\mathbb{V}_{ \pm}$be the spin^{c} structure associated to the Hermitian line bundle $L,\left(c_{1}(L) \equiv w_{2}(M) \bmod 2\right)$.
The Seiberg-Witten Equations:

$$
\begin{align*}
D_{A} \Phi & =0 \tag{1}\\
F_{A}^{+} & =i \sigma(\Phi) \tag{2}
\end{align*}
$$

where $\Phi \in \Gamma\left(\mathbb{V}_{+}\right), A$ a connection on L, F_{A}^{+}is the self-dual part of the curvature of A, and where $\sigma: \mathbb{V}_{+} \rightarrow \Lambda^{+}$is a natural real-quadratic map satisfying

$$
|\sigma(\Phi)|=\frac{1}{2 \sqrt{2}}|\Phi|^{2}
$$

The Seiberg-Witten Invariant, $\operatorname{SW}_{g}(L)$: the number of solutions, (A, Φ), of a generic perturbation of the Seiberg-Witten monopole equation, modulo gauge transformation and counted with orientations.

- If $b^{+}(M) \geq 2$, the Seiberg-Witten invariant is a diffeomorphism invariant, i.e. independent of the metric g.
- There are large classes of manifolds for which the invariant is non-trivial: symplectic manifolds, manifolds obtained via gluing. (Taubes, Szabó, Morgan, etc.)
- Weitzenböck formula for the Dirac operator D_{A} in relation with the Seiberg-Witten equations:

In particular, there are no positive scalar curvature metrics on manifolds with non-trivial S-W invariant.

- There are large classes of manifolds for which the invariant is non-trivial: symplectic manifolds, manifolds obtained via gluing. (Taubes, Szabó, Morgan, etc.)
- Weitzenböck formula for the Dirac operator D_{A} in relation with the Seiberg-Witten equations:

$$
0=2 \Delta|\Phi|^{2}+4\left|\nabla_{A} \Phi\right|^{2}+s|\Phi|^{2}+|\Phi|^{4}
$$

In particular, there are no positive scalar curvature metrics on manifolds with non-trivial S-W invariant.

A differential obstruction to existence of Einstein metrics

Theorem (LeBrun '01)

Let X be a compact oriented 4-manifold with a non-trivial Seiberg-Witten invariant and with $(2 \chi+3 \tau)(X)>0$. Then

$$
M=X \# k \overline{\mathbb{C P}^{2}} \# I\left(S^{1} \times S^{3}\right)
$$

does not admit Einstein metrics if $k+4 I \geq \frac{1}{3}(2 \chi+3 \tau)(X)$.

Key ingredient: curvature estimates:

where c_{1}^{+}is the self-dual part of $c_{1}(L)$

A differential obstruction to existence of Einstein metrics

Theorem (LeBrun '01)

Let X be a compact oriented 4-manifold with a non-trivial Seiberg-Witten invariant and with $(2 \chi+3 \tau)(X)>0$. Then

$$
M=X \# k \overline{\mathbb{C P}^{2}} \# I\left(S^{1} \times S^{3}\right)
$$

does not admit Einstein metrics if $k+4 I \geq \frac{1}{3}(2 \chi+3 \tau)(X)$.
Key ingredient: curvature estimates:

$$
\left.\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|\right)^{2}\right) d \mu \geq \frac{2}{3}\left(c_{1}^{+}(L)\right)^{2}
$$

where c_{1}^{+}is the self-dual part of $c_{1}(L)$.

Topology of 4-manifolds Main theorems on simply connected 4-manifolds

Small Topology: $\mathbb{C P}^{2} \# k \mathbb{C P}^{2}$
Canonical smooth structures on $a \mathrm{CP}^{2} \# b \overline{\mathrm{CP}^{2}}$
Exotic smooth structure, existence of Einstein of metrics Similar results on spin 4-manifolds

Small Topology: $\mathbb{C P}^{2} \# k \overline{\mathbb{C P}^{2}}$

Question (Besse)

Is the sign of the Einstein determined by the homeomorphism class of the manifold?

Answer: No. Catanese-LeBrun 1997. Example: $\mathbb{C P}^{2} \# 8 \overline{\mathbb{C P}^{2}}$ and the Barlow surface (complex surface of general type, with ample canonical line bundle).

Small Topology: $\mathbb{C P}^{2} \# k \overline{\mathbb{C P}^{2}}$

Question (Besse)

Is the sign of the Einstein determined by the homeomorphism class of the manifold?

Answer: No. Catanese-LeBrun 1997.
Example: $\mathbb{C P}^{2} \# 8 \overline{\mathbb{C P}^{2}}$ and the Barlow surface (complex surface of general type, with ample canonical line bundle).

Theorem (Rasdeaconu, S. '08)

Each of the topological 4-manifolds $\mathbb{C P}^{2} \# k \overline{\mathbb{C P}^{2}}$, for $k=5,6,7,8$ admits a smooth structure which has an Einstein metric of scalar curvature $s>0$, a smooth structure which has an Einstein metric with $s<0$ and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics.

On $\mathbb{C P}^{2} \# k \overline{\mathbb{C P}^{2}}, k=1, \ldots, 8$ with the canonical smooth structures the existence of a positive scalar curvature Einstein metric was proved by Page $(k=1)$, Chen-LeBrun-Weber $(k=2)$, Siu, Tian-Yau $(k \geq 3)$.

- On $M=\mathbb{C P}^{2} \# k \overline{\mathbb{C P}^{2}}, k=5, \ldots, 8$, with Rasdeaconu, we show that the exotic complex structures constructed by Park and collaborators ('07, '08), have ample canonical line bundle. Hence they admit a Kähler-Einstein metrics of negative scalar curvature by Calabi-Yau conjecture.
- One expects to use the same methods to obtain negative curvature Einstein metrics on exotic smooth structures for smaller k.
- Starting with exotic smooth structures on $\mathbb{C P}^{2} \# 3 \mathbb{C P}^{2}$, (due to Akhmedov, Baykur and Park '07), we construct infinitely many exotic smooth structures on M which don't admit an Einstein metric. All these exotic smooth structures have negative Yamabe invariant.
- Due to the nature of the obstruction theorem, this bound can not be lowered.
- On $M=\mathbb{C P}^{2} \# k \overline{\mathbb{C P}^{2}}, k=5, \ldots, 8$, with Rasdeaconu, we show that the exotic complex structures constructed by Park and collaborators ('07, '08), have ample canonical line bundle. Hence they admit a Kähler-Einstein metrics of negative scalar curvature by Calabi-Yau conjecture.
- One expects to use the same methods to obtain negative curvature Einstein metrics on exotic smooth structures for smaller k.
- Starting with exotic smooth structures on $\mathbb{C P}^{2} \# 3 \overline{\mathbb{C P}^{2}}$, (due to Akhmedov, Baykur and Park '07), we construct infinitely many exotic smooth structures on M which don't admit an Einstein metric. All these exotic smooth structures have negative Yamabe invariant.
- Due to the nature of the obstruction theorem, this bound can not be lowered.

Non-existence theorem

Theorem (S.)

For any small $\epsilon>0$ there exists an $N(\epsilon)>0$ such that for any integer $d \geq 2$ and any integer lattice point (n, m), satisfying:

- $n>0$
- $d / n, d / m$
- $n<(6-\epsilon) m-N(\epsilon)$
there exist infinitely many free, non-equivalent smooth $\mathbb{Z} / d \mathbb{Z}$-actions on $M=(2 m-1) \mathbb{C P}^{2} \#(10 m-n-1) \overline{\mathbb{C P}^{2}}($ i.e $\left.(2 \chi+3 \tau)(M)=n, \frac{\chi+\tau}{4}(M)=m\right)$. Moreover, there is no Einstein metric on M invariant under any of the $\mathbb{Z} / d \mathbb{Z}$-actions.
- Hitchin-Thorpe inequality: $n>0$
- Admissibility condition: $d / n, d / m$

Region: $n<(6-\epsilon) m-N(\epsilon)$ determined by the geography of simply connected, symplectic manifolds due to Braungardt, Kotschick (2005).
If we denote by $\Gamma_{i}, i \in \mathbb{N}$, the actions of $\mathbb{Z} / d \mathbb{Z}$ on M, then the quotient manifolds M / Γ_{i} are homeomorphic but mutually non-diffeomorphic.

$$
M / \Gamma_{i}=Y_{i} \# k \overline{\mathbb{C P}^{2}} \# S_{d}
$$

- Y_{i} are homeomorphic, non-diffeomorphic, simply connected, symplectic 4-manifolds,
- S_{d} a rational homology sphere, $\pi_{1}\left(S_{d}\right)=\mathbb{Z}_{d}$,
$\widetilde{S_{d}}=\#(d-1)\left(S^{2} \times S^{2}\right)$.

Region: $n<(6-\epsilon) m-N(\epsilon)$ determined by the geography of simply connected, symplectic manifolds due to Braungardt, Kotschick (2005).
If we denote by $\Gamma_{i}, i \in \mathbb{N}$, the actions of $\mathbb{Z} / d \mathbb{Z}$ on M, then the quotient manifolds M / Γ_{i} are homeomorphic but mutually non-diffeomorphic.

$$
M / \Gamma_{i}=Y_{i} \# k \overline{\mathbb{C P}^{2}} \# S_{d}
$$

- Y_{i} are homeomorphic, non-diffeomorphic, simply connected, symplectic 4-manifolds,
- S_{d} a rational homology sphere, $\pi_{1}\left(S_{d}\right)=\mathbb{Z}_{d}$, $\widetilde{S_{d}}=\#(d-1)\left(S^{2} \times S^{2}\right)$.
- M has trivial Seiberg-Witten invariant, but the M / Γ_{i} has non-trivial solutions of the S-W equations.
- The Yamabe invariant of $M\left(=a \mathbb{C P}^{2} \# b \overline{\mathbb{C P}^{2}}\right)$ is positive, while if we consider the Yamabe invariant of the conformal class of a \mathbb{Z}_{d} invariant metric $g, Y_{[g]}<0$.
- Infinitely many other actions can be exhibited on M.
- The results in the above theorem are stated for finite cyclic groups, but they also hold for groups acting freely on the 3-dimensional sphere or for direct sums of the above groups.

Proposition (S.)
On $M=15 \mathbb{C P}^{2} \# 77 \mathbb{C P}^{2}$, there exists an involution σ, acting freely
on the manifold, such that $15 \mathbb{C P}^{2} \# 77 \mathbb{C P}^{2}$ does not admit an
Einstein metric invariant under the involution σ.
See that: $n=(2 \chi+3 \tau)(M)=2, m=\frac{\chi+\tau}{4}(M)=8$,

- M has trivial Seiberg-Witten invariant, but the M / Γ_{i} has non-trivial solutions of the S-W equations.
- The Yamabe invariant of $M\left(=a \mathbb{C P}^{2} \# b \overline{\mathbb{C P}^{2}}\right)$ is positive, while if we consider the Yamabe invariant of the conformal class of a \mathbb{Z}_{d} invariant metric $g, Y_{[g]}<0$.

[^0]See that: $n=(2 \chi$

- M has trivial Seiberg-Witten invariant, but the M / Γ_{i} has non-trivial solutions of the S-W equations.
- The Yamabe invariant of $M\left(=a \mathbb{C P}^{2} \# b \overline{\mathbb{C P}^{2}}\right)$ is positive, while if we consider the Yamabe invariant of the conformal class of a \mathbb{Z}_{d} invariant metric $g, Y_{[g]}<0$.
- Infinitely many other actions can be exhibited on M.

The results in the above theorem are stated for finite cyclic groups, but they also hold for groups acting freely on the 3-dimensional sphere or for direct sums of the above groups.

> Proposition (S.)
> On $M=15 \mathbb{C T} \mathbb{T D}^{2} \neq 77 \mathbb{C P}^{2}$, there exists an involution σ, acting freely
> on the manifold, such that $15 \mathbb{C P}^{2} \# 77 \mathbb{C P}^{2}$ does not admit an
> Einstein metric invariant under the involution σ.

See that: $n=(2 \lambda$

- M has trivial Seiberg-Witten invariant, but the M / Γ_{i} has non-trivial solutions of the S-W equations.
- The Yamabe invariant of $M\left(=a \mathbb{C P}^{2} \# b \overline{\mathbb{C P}^{2}}\right)$ is positive, while if we consider the Yamabe invariant of the conformal class of a \mathbb{Z}_{d} invariant metric $g, Y_{[g]}<0$.
- Infinitely many other actions can be exhibited on M.
- The results in the above theorem are stated for finite cyclic groups, but they also hold for groups acting freely on the 3-dimensional sphere or for direct sums of the above groups.

[^1]- M has trivial Seiberg-Witten invariant, but the M / Γ_{i} has non-trivial solutions of the S-W equations.
- The Yamabe invariant of $M\left(=a \mathbb{C P}^{2} \# b \overline{\mathbb{C P}^{2}}\right)$ is positive, while if we consider the Yamabe invariant of the conformal class of a \mathbb{Z}_{d} invariant metric $g, Y_{[g]}<0$.
- Infinitely many other actions can be exhibited on M.
- The results in the above theorem are stated for finite cyclic groups, but they also hold for groups acting freely on the 3-dimensional sphere or for direct sums of the above groups.

Proposition (S.)

On $M=15 \mathbb{C P}^{2} \# 77 \overline{\mathbb{C P}^{2}}$, there exists an involution σ, acting freely on the manifold, such that $15 \mathbb{C P}^{2} \# 77 \overline{\mathbb{C P}^{2}}$ does not admit an Einstein metric invariant under the involution σ.

See that: $n=(2 \chi+3 \tau)(M)=2, m=\frac{\chi+\tau}{4}(M)=8$.

Existence theorem

Theorem (S.)

There are infinitely many compact, smooth, simply connected, non-spin manifolds $M_{i}, i \in \mathbb{N}$, whose topological invariants verify $\left.(2 \chi+3 \tau)\left(M_{i}\right)=n>0,(2 \chi+3 \tau)\left(M_{i}\right)<5\left(\frac{\chi+\tau}{4}\right)\left(M_{i}\right)\right)$, and satisfy the following conditions:

- There is at least one free, smooth, $\mathbb{Z} / d \mathbb{Z}$ action on M_{i},
- M_{i} admits an Einstein metric which is invariant under the above $\mathbb{Z} / d \mathbb{Z}$ action,
- M_{i} is not diffeomorphic to
$M_{\text {can }}=(2 m-1) \mathbb{C P}^{2} \#(10 m-n-1) \overline{\mathbb{C P}^{2}}$, but $M_{i} \# \mathbb{C P}^{2}$ and $M_{\text {can }} \# \mathbb{C P}^{2}$ are diffeomorphic.
- M_{i} are complex surfaces with ample canonical line bundle, and admit Kähler-Einstein metrics.
- Construct $M_{i}=M$ as an iterated cyclic branched cover:

$$
M \xrightarrow{\pi_{2}} N \xrightarrow{\pi_{1}} \mathbb{C P}^{1} \times \mathbb{C P}^{1}
$$

π_{1} is a $d-1$ cover, branched along D, s.t $\mathcal{O}(D)=\mathcal{O}(d a, d b)$ π_{2} is a $p-1$ cover, branched along $\pi_{1}^{-1}(C)$, s.t $\mathcal{O}(C)=\mathcal{O}(p m, p n)$
$M \subset \mathcal{O}_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}(a, b) \oplus \mathcal{O}_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}(m, n)$

- The \mathbb{Z}_{d} action on $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ extends to M if the defining polynomials for D, C are \mathbb{Z}_{d}-invariant
- M_{i} are complex surfaces with ample canonical line bundle, and admit Kähler-Einstein metrics.
- Construct $M_{i}=M$ as an iterated cyclic branched cover:

$$
M \xrightarrow{\pi_{2}} N \xrightarrow{\pi_{1}} \mathbb{C P}^{1} \times \mathbb{C P}^{1}
$$

π_{1} is a $d-1$ cover, branched along D, s.t $\mathcal{O}(D)=\mathcal{O}(d a, d b)$ π_{2} is a $p-1$ cover, branched along $\pi_{1}^{-1}(C)$, s.t
$\mathcal{O}(C)=\mathcal{O}(p m, p n)$

$$
M \subset \mathcal{O}_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}(a, b) \oplus \mathcal{O}_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}(m, n)
$$

- M_{i} are complex surfaces with ample canonical line bundle, and admit Kähler-Einstein metrics.
- Construct $M_{i}=M$ as an iterated cyclic branched cover:

$$
M \xrightarrow{\pi_{2}} N \xrightarrow{\pi_{1}} \mathbb{C P}^{1} \times \mathbb{C P}^{1}
$$

π_{1} is a $d-1$ cover, branched along D, s.t $\mathcal{O}(D)=\mathcal{O}(d a, d b)$ π_{2} is a $p-1$ cover, branched along $\pi_{1}^{-1}(C)$, s.t
$\mathcal{O}(C)=\mathcal{O}(p m, p n)$

$$
M \subset \mathcal{O}_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}(a, b) \oplus \mathcal{O}_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}(m, n)
$$

- The \mathbb{Z}_{d} action on $\mathbb{C P}^{1} \times \mathbb{C P}^{1}: \rho^{d}=1, \rho\left(\left[z_{1}: z_{2}\right]\right)=\left[\rho z_{1}: z_{2}\right]$ extends to M if the defining polynomials for D, C are \mathbb{Z}_{d}-invariant

There is a dictionary between the properties of M and the numerical data: a, b, m, n.

- $D^{2} \neq 0, C^{2} \neq 0 \Longrightarrow M$ simply connected
$(d-1) a+(p-1) m-2>0$
$(d-1) b+(p-1) n-2>0$
$0 a+1, b+1, a+b+1$ relatively prime to $d \Longrightarrow$ there exists a free holomorphic \mathbb{Z}_{d} action on M

There is a dictionary between the properties of M and the numerical data: a, b, m, n.

- $D^{2} \neq 0, C^{2} \neq 0 \Longrightarrow M$ simply connected

$$
(d-1) a+(p-1) m-2>0
$$

- $\quad \Longrightarrow K_{M}$ ample $(d-1) b+(p-1) n-2>0$
- $a+1, b+1, a+b+1$ relatively prime to $d \Longrightarrow$ there exists a free holomorphic \mathbb{Z}_{d} action on M

There is a dictionary between the properties of M and the numerical data: a, b, m, n.

- $D^{2} \neq 0, C^{2} \neq 0 \Longrightarrow M$ simply connected

$$
(d-1) a+(p-1) m-2>0
$$

- $\quad \Longrightarrow K_{M}$ ample

$$
(d-1) b+(p-1) n-2>0
$$

- $a+1, b+1, a+b+1$ relatively prime to $d \Longrightarrow$ there exists a free holomorphic \mathbb{Z}_{d} action on M

Proposition

The iterated branched cover of $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$, branched along pull-backs of positive self-intersection curves, transverse to each other, is almost completely decomposable.

Idea of proof: Use double induction on the number of branched covers and the degree of the last cover, and Mandelbaum Moishezon techniques (1980) on normal crossing degenerations of the manifold.

Spin manifolds: an obstruction theorem

Theorem (S.)

There exists an integer $n_{0}>0$ such that for any integer $d>n_{0}$ the manifolds:
(1) $M_{1, n}=d(n+5)(K 3) \#(d(n+7)-1)\left(S^{2} \times S^{2}\right)$
(2) $M_{2, n}=d(2 n+5)(K 3) \#(d(2 n+6)-1)\left(S^{2} \times S^{2}\right)$
$n \in \mathbb{N}^{*}$, admit infinitely many non-equivalent free $\mathbb{Z} / d \mathbb{Z}$ actions, such that there is no Einstein metric on $M_{1, n}, M_{2, n}$ invariant under any of the $\mathbb{Z} / d \mathbb{Z}$-actions.
$M_{1, n} / \Gamma_{j}=X \# K 3_{(2 j+1)} \# E(2 n) \# S_{d}$
where X is a smooth hypersurface of tridegree $(4,4,2)$ in

Spin manifolds: an obstruction theorem

Theorem (S.)

There exists an integer $n_{0}>0$ such that for any integer $d>n_{0}$ the manifolds:
(1) $M_{1, n}=d(n+5)(K 3) \#(d(n+7)-1)\left(S^{2} \times S^{2}\right)$
(2) $M_{2, n}=d(2 n+5)(K 3) \#(d(2 n+6)-1)\left(S^{2} \times S^{2}\right)$
$n \in \mathbb{N}^{*}$, admit infinitely many non-equivalent free $\mathbb{Z} / d \mathbb{Z}$ actions, such that there is no Einstein metric on $M_{1, n}, M_{2, n}$ invariant under any of the $\mathbb{Z} / d \mathbb{Z}$-actions.

$$
M_{1, n} / \Gamma_{j}=X \# K 3_{(2 j+1)} \# E(2 n) \# S_{d}
$$

where X is a smooth hypersurface of tridegree $(4,4,2)$ in $\mathbb{C P}^{1} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1},\left(c_{1}^{2}(X)=16, c_{2}(X)=104, b_{2}^{+}(X)=19\right)$

Higher dimensional manifolds

Question

Is the sign of the Einstein metric determined by the diffeomorphism class of the manifold?

Proposition
Let $N_{1}=\mathbb{C P}^{2} \# 8 \mathbb{C P}^{2}, N_{2}=\mathbb{C P}^{2} \# 7 \mathbb{C P}^{2}, N_{3}=\mathbb{C P}^{2} \# 6 \mathbb{C P}^{2}$ and
$N_{4}=\mathbb{C P}^{2} \# 5 \mathbb{C P}^{2}$. Then the smooth manifold N obtained by taking the k-fold products, $k \geq 2$, of arbitrary N_{1}, N_{2}, N_{3} or N_{4}, admits two Einstein metrics g_{1}, g_{2} such that the signs of the scalar curvature are $s_{g_{1}}=-1, s_{g_{2}}=+1$. Moreover, these metrics are Kähler-Einstein with respect to two distinct complex structures J_{1}, J_{2}

Remark: g_{1}, g_{2} Kähler metrics $\Longrightarrow \operatorname{Vol}_{g_{1}}(N)=\operatorname{Vol}_{4}(N)$.

Higher dimensional manifolds

Question

Is the sign of the Einstein metric determined by the diffeomorphism class of the manifold?

Proposition

Let $N_{1}=\mathbb{C P}^{2} \# 8 \overline{\mathbb{C P}^{2}}, N_{2}=\mathbb{C P}^{2} \# 7 \overline{\mathbb{C P}^{2}}, N_{3}=\mathbb{C P}^{2} \# 6 \overline{\mathbb{C P}^{2}}$ and $N_{4}=\mathbb{C P}^{2} \# 5 \overline{\mathbb{C P}^{2}}$. Then the smooth manifold N obtained by taking the k-fold products, $k \geq 2$, of arbitrary N_{1}, N_{2}, N_{3} or N_{4}, admits two Einstein metrics g_{1}, g_{2} such that the signs of the scalar curvature are $s_{g_{1}}=-1, s_{g_{2}}=+1$. Moreover, these metrics are Kähler-Einstein with respect to two distinct complex structures J_{1}, J_{2}.

Remark: g_{1}, g_{2} Kähler metrics $\Longrightarrow \operatorname{Vol}_{g_{1}}(N)_{4} \overline{\bar{O}}, V \log _{g_{3}}\left(N_{2}\right)$,

Higher dimensional manifolds

Question

Is the sign of the Einstein metric determined by the diffeomorphism class of the manifold?

Proposition

Let $N_{1}=\mathbb{C P}^{2} \# 8 \overline{\mathbb{C P}^{2}}, N_{2}=\mathbb{C P}^{2} \# 7 \overline{\mathbb{C P}^{2}}, N_{3}=\mathbb{C P}^{2} \# 6 \overline{\mathbb{C P}^{2}}$ and $N_{4}=\mathbb{C P}^{2} \# 5 \overline{\mathbb{C P}^{2}}$. Then the smooth manifold N obtained by taking the k-fold products, $k \geq 2$, of arbitrary N_{1}, N_{2}, N_{3} or N_{4}, admits two Einstein metrics g_{1}, g_{2} such that the signs of the scalar curvature are $s_{g_{1}}=-1, s_{g_{2}}=+1$. Moreover, these metrics are Kähler-Einstein with respect to two distinct complex structures J_{1}, J_{2}.

Remark: g_{1}, g_{2} Kähler metrics $\Longrightarrow \operatorname{Vol}_{g_{1}}(N)=\operatorname{Vol}_{g_{2}}(N)$

```
Higher dimensional case
```

Thank you!

[^0]: Proposition (S.)
 \square on the manifold, such that $15 \mathbb{C P}^{2} \# 77 \mathbb{C P}^{2}$ does not admit an Einstein metric invariant under the involution σ.

[^1]: Proposition (S.)
 On $M 1=15 \mathbb{C D}^{2} \#^{4} 7 \mathbb{C P P}^{2}$, there exists an involution σ, acting freely
 on the manifold, such that $15 \mathbb{C} \mathbb{P}^{2} \# 77 \mathbb{C P}^{2}$ does not admit an
 Einstein metric invariant under the involution σ.

