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The bundle TM ⊕ T ∗M → M

A symmetric bilinear form 〈X + α,Y + β〉 = 1
2 (α(Y ) + β(X )).

Courant bracket

[[X + α,Y + β]] = [X ,Y ] + LXβ − LYα−
1

2
d(ιXβ − ιYα).

Remarks:

〈−,−〉 is non-degenerate.

TM and T ∗M are maximally isotropic. 〈X ,Y 〉 = 0, 〈α, β〉 = 0 for all
X ,Y , α, β.

Courant bracket does not satisfy Jacobi identity.

Lemma

If V is a subbundle of (TM ⊕ T ∗M)C such that its space of sections is
closed: [[v0, v1]] ∈ C∞(M,V ), and if V is isotropic: 〈v0, v1〉 = 0, for any
sections v0 and v1 of V , with ρ : V ↪→ (TM ⊕ T ∗M)C → TMC, then the
triple (V , [[−,−]]V , ρ) is a Lie algebroid.
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Lie bialgebroids, Liu-Weinstein-Xu (90’s)

Definition

L and K form a Lie bialgebroid pair in TM ⊕ T ∗M if

L and K are maximally isotropic with respect to 〈−,−〉,
L⊕ K = TM ⊕ T ∗M;

(space of sections of) L and K are closed under [[−,−]].

When dK [[`1, `2]] = [[dK `1, `2]] + [[`1, dK `2]], where

(dK `)(k1, k2) := 2
(
ρ(k1)〈`, k2〉 − ρ(k2)〈`, k1〉 − 〈`, [[k1, k2]]〉

)
.

Treat L as K ∗, dK : ∧mL→ ∧m+1L.
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Deformation of Lie bialgebroids

Suppose that (L,K ) is a Lie bialgebroid. L⊕ K = (TM ⊕ T ∗M)C.
Let Γ ∈ C∞(M,∧2L) ⊂ C∞(M,Hom(L∗, L)) = C∞(M,Hom(K , L)).
Let KΓ be the graph of K with respect to Γ:

KΓ = {k + Γ(k) : k ∈ C∞(M,K )}.

L⊕ KΓ
∼= L⊕ K ∼= L⊕ L∗. KΓ ⊂ L⊕ K .

Theorem (LWX)

(L,KΓ) is a Lie bialgebroid pair if and only if dK Γ + 1
2 [[Γ, Γ]] = 0.

[[−,−]] on ∧•L, dK is C-E differential of [[−,−]] on ∧•K .
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Generalized complex structures

Definition

A generalized almost complex structure on an even-dimensional manifold
M is a bundle automorphism J : TM ⊕ T ∗M → TM ⊕ T ∗M such that
J 2 = −I and J ∗ + J = 0.

J =

(
ϕ π
θ −ϕ∗

)
,

ϕ a (1,1)-tensor, π a bivector field, θ a 2-form.

(TM ⊕ T ∗M)C = L⊕ L = +i eigenspace⊕ -i eigenspace

Equivalent definition: choice of maximally isotropic subspace L in
(TM ⊕ T ∗M)C as (+i) eigenspace. The dual space L∗ as (-i) eigenbundle.

Y. S. Poon, UC Riverside Generalized Contact Structures



Integrability

Definition

J is integrable if C∞(M, L) and/or C∞(M, L) are closed with respect to
[[−,−]].

When (M,J ) is a generalized complex structure,

L⊕ L = (TM ⊕ T ∗M)C, L ∼= L∗.

In particular, the pair (L, L) forms a Lie bialgebroid.
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Examples

(1) When J : TM → TM is a (classical) complex structure. On
TM ⊕ T ∗M, define

J =

(
J 0
0 J

)
,

L = T 1,0 ⊕ T ∗(0,1).

(2) θ is a symplectic form. π Poisson (bi)vector field. Define

J =

(
0 π
θ 0

)
.

L = Span{X − iιX θ : X ∈ C∞(M,TM)}.
Integrability of L and L is equivalent to dθ = 0.
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Generalized Deformation. Gaultieri 04

1 Given (M,J ) a classical complex structure.

2 Treat it as generalized complex structure.

3 Construct the Lie bialgebroid: L⊕ L.

4 Given Γ1 in H2(M,O)⊕ H1(M,T 1,0)⊕ H0(M,∧2T (1,0)), find

Γ ∈ C∞
(
M,∧2(T ∗(0,1) ⊕ T (1,0))

)
such that

Γ1 ≡1 Γ, ∂Γ +
1

2
[[Γ, Γ]] = 0.

5 Use LWX-theory for Γ to get LΓ.

6 Use LWX-theory for Γ to get LΓ.

7 (LΓ, LΓ) is a new generalized complex structure.

8 Sometimes, the deformed object could be a symplectic structure.
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Issue and motivation

Theorem (Moser, 65)

Symplectic structures on compact manifolds are rigid.

Gautieri 04, Poon 06 (Kodaira-Thurston surfaces)

Theorem (Gray, 59)

Contact structures on compact manifolds are rigid.

Problem

Is it possible to enlarge the category of geometry so that contact
structures could be deformation in a non-trivial and controlled manner?

Remarks:

Similarity

Difference

Classical structures: Jacobi, Dirac, conformal Dirac, Lichnerowicz.
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Generalized almost contact structures on M2n+1

Definition (After Vaisman 07)

A generalized almost contact structure is a collection of tensors:
J = (ξ, η, π, θ, ϕ), ξ + η ∈ C∞(M,TM ⊕ T ∗M)

Φ =

(
ϕ π
θ −ϕ∗

)
: TM ⊕ T ∗M → TM ⊕ T ∗M

such that Φ + Φ∗ = 0, η(ξ) = 1, Φ(ξ) = 0, Φ(η) = 0, Φ ◦Φ = −I + ξ � η.
where (ξ � η)(X + α) := η(X )ξ + α(ξ)η.

Φker : ker η ⊕ ker ξ → ker η ⊕ ker ξ, Φker ◦ Φker = −I.

Remark: Focus on tensorial objects only. No equivalence. Formal.
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Subbundles

Φ2
ker = −I.

E 1,0 = {e − iΦ(e) : e ∈ C∞(M, ker η ⊕ ker ξ)}

L := Lξ ⊕ E 1,0, L = Lξ ⊕ E 0,1, L∗ = Lη ⊕ E 0,1, L
∗

= Lη ⊕ E 1,0.

L⊕ L∗ = (TM ⊕ T ∗M)C, L⊕ L
∗

= (TM ⊕ T ∗M)C.

Fact: E 1,0, E 0,1, L, L, L∗, L
∗

are isotropic.
But

L 6= L∗ !!

Y. S. Poon, UC Riverside Generalized Contact Structures



Integrability, or the lack of it

Definition

Given a J = (ξ, η, π, θ, ϕ)-structure, if C∞(M, L) is Courant-closed, (but
C∞(M, L∗) is not necessarily closed,) then J is a generalized contact
structure.

Remember: L 6= L∗ !!

Definition

Given a J = (ξ, η, π, θ, ϕ)-structure, if both C∞(M, L) and C∞(M, L∗)
are Courant-closed, then J is a generalized “complex” structure. (Even
though dim M = 2n + 1.)

Key: (Not) Lie bialgebroid.

Avoiding terminology: ”generalized normal contact structures”.

Y. S. Poon, UC Riverside Generalized Contact Structures



Obstruction

Problem

Assume C∞(M, L) is closed, determine whether or when C∞(M, L∗) is
also closed.

LWX’s obstruction for formation of Lie bialgebroids: For any three sections
v0, v1, v2 of L∗ = Lη ⊕ E 0,1,

Nij(v0, v1, v2) =
1

3
(〈[[v0, v1]], v2〉+ 〈[[v1, v2]], v0〉+ 〈[[v2, v0]], v1〉).

Nij ∈ C∞(M,∧3L), L = Lξ ⊕ E 1,0,∧3L = ∧3E 1,0 ⊕ Lξ ⊗ ∧2E 1,0.

Proposition

Given J = (ξ, η, π, θ, ϕ) and C∞(M, L) closed. Then L∗ is closed if and
only if ξ ∧ (ρ∗dη)2,0 = 0, where ρ : E 1,0 → TMC.
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Odd dimensional analogue of symplectic structures

Definition (Libermann, 1958)

An almost cosymplectic structure on M2n+1 is a reduction from
GL(2n + 1,R) to Sp(n,R). That is the choice of a 1-form η and a 2-form
θ such that η ∧ θn 6= 0 everywhere.

Definition

(η, θ) is a cosymplectic structure if dη = 0 and dθ = 0.

Definition

η is a contact 1-form on M2n+1 if η ∧ (dη)n 6= 0 everywhere.

A contact 1-form determines an almost cosymplectic structure (η, dη), but
it is NEVER a cosymplectic structure without qualification.
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As generalized almost contact structures

Almost cosymplectic (η, θ): (1-form, 2-form). η ∧ θn 6= 0 everywhere.
Define [ : TM → T ∗M by

[(X ) = ιX θ − η(X )η, then π(α, β) := θ([−1(α), [−1(β)).

[ is an isomorphism. There exists a unique ξ such that η(ξ) = 1 and
ιξθ = 0. Choose ϕ = 0.

Φ =

(
0 π
θ 0

)
.

If η is a contact 1-form, choose θ = dη. Then follow the above
construction.
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Odd dimensional analogue of complex structures

Definition (Sasaki (60))

A (ξ, η, ϕ)-structure on M2n+1 consists of ϕ a (1,1)-tensor, a vector field ξ
and a 1-form η such that ϕ2 = −I + η ⊗ ξ, and η(ξ) = 1.

Definition

A (ξ, η, ϕ)-structure on M is “normal” if and only if a naturally defined
almost complex structure on M ×R+ is integrable. Equivalently, Lξϕ = 0,
Lξη = 0, and Nϕ = −ξ ⊗ dη, where
Nϕ(X ,Y ) := [ϕX , ϕY ] + ϕ2[X ,Y ]− ϕ([ϕX ,Y ] + [X , ϕY ]).

A contact 1-form η does not determine a (ξ, η, ϕ)-structure until a
”compatible” metric is chosen. ϕ is metric dependence. Too many choices.
J = (ξ, η, ϕ, π = 0, θ = 0).
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Integrability of classical examples

Theorem (Examples of generalized contact structures)

C∞(M, L) is closed for

Cosymplectic (η, θ). i.e. dη = 0 and dθ = 0.

Contact 1-form η. i.e. θ = dη 6= 0.

Normal (ξ, η, ϕ)-structures. i.e. Nϕ = −ξ ⊗ dη.

Proof: DBH.

Theorem (Examples of generalized complex structures)

Both C∞(M, L) and C∞(M, L∗) are closed for

Cosymplectic (η, θ). (G-structure)

Normal (ξ, η, ϕ)-structure. (Sasaki Cone)

Proof: For the latter, check the ”type” of dη.
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Focus on contact 1-form η

Local picture: (xj , yj , z) on R2n+1.

η = dz −
∑

j

yjdxj . ξ =
∂

∂z
, θ = dη =

∑
j

dxj ∧ dyj .

Xj :=
∂

∂xj
+ yj

∂

∂yj
, Yj =

∂

∂yj
, π =

∑
j

Xj ∧ Yj .

The obstruction (ρ∗dη)2,0 is equal to

1

4

∑
j

(dxj − iYj) ∧ (dyj + iXj).

(ρ∗dη)2,0 + (ρ∗dη)0,2 = 1
4 (dη − π).

Proposition

The obstruction for L∗ being closed is not equal to zero anywhere when J
is due to a contact 1-form.
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New Examples

For generalized complex structures (on odd-dimensional manifolds), use
LWX’s Lie bialgebroid theory.
Deformation of classical cosymplectic structures away from classical objects
e.g. H3 Heisenberg group or cocompact quotient. Co-symplectic structure.
For generalized contact (not complex)?
Deformation theory due to Lie bialgebroid structure fails.
Alternative:

Proposition

Let M be the principal SO(2)-bundle over N with connection η and
curvature dη = p∗ω. Then the family Jt of generalized complex structures
on N is lifted to a family Jt of generalized contact structures on M.

Proof. A Boothby+Wang type theorem. In their 1958 paper: ”On contact
manifolds”. (A backbone)

Y. S. Poon, UC Riverside Generalized Contact Structures



More new examples

On N the Kodaira surface, there exists

a complex structure J = J0,

a symplectic form ω = J1, with ω being type (2,0)+(0,2) w.r.t. J.

a family of generalized complex structures Jt containing J0 and J1.

Use Boothby-Wang construction.
Get a family of generalized contact structures Jt . J1 is contact. Jt are
non-classical objects for t 6= 1.

Remark: No more ”Gray’s Theorem” :-)

Remark: No deformation theory :-(
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Further development

Contact 1-form and Reeb field: ιξη = 0. Lξη = 0.

Theorem

J = (ξ, η, π, θ, ϕ) a generalized contact structure (not necessarily cx),
with Lξη = 0, then

LξJ = 0; and

the pair E 1,0 and E 0,1 forms a transversal Lie bialgebroid over (M, ξ).

Reversing Boothby-Wang construction.
Cohomology theory.
Deformation.
Equivalence.
Another story.

Conclusion: contact vs symplectic.
Non-integrability vs integrability. Difference vs similarity.
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