Generalized Contact Structures

Y. S. Poon, UC Riverside

June 17, 2009

Kähler and Sasakian Geometry in Rome

in collaboration with Aissa Wade

- Lie bialgebroids and Deformations
- ② Generalized complex structures in even dimensions
- Issue and motivation
- Generalized almost contact structures
- Integrability, or the lack of it
- **o** Generalized contact vs complex structures in odd-dimension
- Examples
- Other/Further developments

The bundle $TM \oplus T^*M \to M$

- A symmetric bilinear form $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2}(\alpha(Y) + \beta(X)).$
- Courant bracket

$$\llbracket X + \alpha, Y + \beta \rrbracket = \llbracket X, Y \rrbracket + \mathcal{L}_X \beta - \mathcal{L}_Y \alpha - \frac{1}{2} d(\iota_X \beta - \iota_Y \alpha).$$

Remarks:

- $\langle -, \rangle$ is non-degenerate.
- *TM* and *T***M* are maximally isotropic. $\langle X, Y \rangle = 0$, $\langle \alpha, \beta \rangle = 0$ for all X, Y, α, β .
- Courant bracket does not satisfy Jacobi identity.

Lemma

If V is a subbundle of $(TM \oplus T^*M)_{\mathbb{C}}$ such that its space of sections is closed: $\llbracket v_0, v_1 \rrbracket \in C^{\infty}(M, V)$, and if V is isotropic: $\langle v_0, v_1 \rangle = 0$, for any sections v_0 and v_1 of V, with $\rho : V \hookrightarrow (TM \oplus T^*M)_{\mathbb{C}} \to TM_{\mathbb{C}}$, then the triple $(V, \llbracket -, - \rrbracket_V, \rho)$ is a Lie algebroid.

Definition

L and K form a Lie bialgebroid pair in $TM \oplus T^*M$ if

• L and K are maximally isotropic with respect to $\langle -, -
angle$,

•
$$L \oplus K = TM \oplus T^*M;$$

- (space of sections of) L and K are closed under $\llbracket -, \rrbracket$.
- When $d_{\mathcal{K}}\llbracket \ell_1, \ell_2 \rrbracket = \llbracket d_{\mathcal{K}}\ell_1, \ell_2 \rrbracket + \llbracket \ell_1, d_{\mathcal{K}}\ell_2 \rrbracket$, where $(d_{\mathcal{K}}\ell)(k_1, k_2) := 2\Big(\rho(k_1)\langle \ell, k_2 \rangle - \rho(k_2)\langle \ell, k_1 \rangle - \langle \ell, \llbracket k_1, k_2 \rrbracket \rangle\Big).$

Treat L as K^* , $d_K : \wedge^m L \to \wedge^{m+1} L$.

回 と く ヨ と く ヨ と …

Suppose that (L, K) is a Lie bialgebroid. $L \oplus K = (TM \oplus T^*M)_{\mathbb{C}}$. Let $\Gamma \in C^{\infty}(M, \wedge^2 L) \subset C^{\infty}(M, \operatorname{Hom}(L^*, L)) = C^{\infty}(M, \operatorname{Hom}(K, L))$. Let K_{Γ} be the graph of K with respect to Γ :

 $K_{\Gamma} = \{k + \Gamma(k) : k \in C^{\infty}(M, K)\}.$

 $L \oplus K_{\Gamma} \cong L \oplus K \cong L \oplus L^*$. $K_{\Gamma} \subset L \oplus K$.

Theorem (LWX)

 (L, K_{Γ}) is a Lie bialgebroid pair if and only if $d_{K}\Gamma + \frac{1}{2}\llbracket \Gamma, \Gamma \rrbracket = 0$.

 $\llbracket -, - \rrbracket$ on $\wedge^{\bullet}L$, d_K is C-E differential of $\llbracket -, - \rrbracket$ on $\wedge^{\bullet}K$.

(日) (同) (E) (E) (E)

Definition

A generalized almost complex structure on an even-dimensional manifold M is a bundle automorphism $\mathcal{J}: TM \oplus T^*M \to TM \oplus T^*M$ such that $\mathcal{J}^2 = -\mathbb{I}$ and $\mathcal{J}^* + \mathcal{J} = 0$.

$$\mathcal{J} = \left(egin{array}{cc} arphi & \pi \ heta & -arphi^* \end{array}
ight),$$

 φ a (1,1)-tensor, π a bivector field, θ a 2-form.

 $(TM \oplus T^*M)_{\mathbb{C}} = L \oplus \overline{L} = +i$ eigenspace \oplus -i eigenspace

Equivalent definition: choice of maximally isotropic subspace L in $(TM \oplus T^*M)_{\mathbb{C}}$ as (+i) eigenspace. The dual space L^* as (-i) eigenbundle.

Definition

 \mathcal{J} is integrable if $C^{\infty}(M, L)$ and/or $C^{\infty}(M, \overline{L})$ are closed with respect to $\llbracket -, - \rrbracket$.

When (M, \mathcal{J}) is a generalized complex structure,

$$L \oplus \overline{L} = (TM \oplus T^*M)_{\mathbb{C}}, \quad \overline{L} \cong L^*.$$

In particular, the pair (L, \overline{L}) forms a Lie bialgebroid.

▲ 清戸 (金屋) - -

(1) When $J: TM \to TM$ is a (classical) complex structure. On $TM \oplus T^*M$, define

$$\mathcal{J} = \left(\begin{array}{cc} J & 0 \\ 0 & J \end{array}\right),$$

 $L = T^{1,0} \oplus T^{*(0,1)}.$

(2) θ is a symplectic form. π Poisson (bi)vector field. Define

$$\mathcal{J} = \left(egin{array}{cc} 0 & \pi \ heta & 0 \end{array}
ight)$$

 $L = \text{Span}\{X - i\iota_X\theta : X \in C^{\infty}(M, TM)\}.$ Integrability of L and \overline{L} is equivalent to $d\theta = 0$.

Generalized Deformation. Gaultieri 04

- Given (M, \mathcal{J}) a classical complex structure.
- Ireat it as generalized complex structure.
- Construct the Lie bialgebroid: $L \oplus \overline{L}$.
- Given Γ_1 in $H^2(M, \mathcal{O}) \oplus H^1(M, T^{1,0}) \oplus H^0(M, \wedge^2 T^{(1,0)})$, find $\Gamma \in C^{\infty}\left(M, \wedge^2(T^{*(0,1)} \oplus T^{(1,0)})\right)$ such that

$$\Gamma_1 \equiv_1 \Gamma, \quad \overline{\partial} \Gamma + \frac{1}{2} \llbracket \Gamma, \Gamma \rrbracket = 0.$$

- **Ο** Use LWX-theory for Γ to get \overline{L}_{Γ} .
- **(**) Use LWX-theory for $\overline{\Gamma}$ to get $L_{\overline{\Gamma}}$.
- $(L_{\overline{\Gamma}}, \overline{L}_{\Gamma})$ is a new generalized complex structure.
- Sometimes, the deformed object could be a symplectic structure.

Issue and motivation

Theorem (Moser, 65)

Symplectic structures on compact manifolds are rigid.

Gautieri 04, Poon 06 (Kodaira-Thurston surfaces)

Theorem (Gray, 59)

Contact structures on compact manifolds are rigid.

Problem

Is it possible to enlarge the category of geometry so that contact structures could be deformation in a non-trivial and controlled manner?

Remarks:

- Similarity
- Difference
- Classical structures: Jacobi, Dirac, conformal Dirac, Lichnerowicz.

Definition (After Vaisman 07)

A generalized almost contact structure is a collection of tensors: $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi), \ \xi + \eta \in C^{\infty}(M, TM \oplus T^*M)$

$$\Phi = \begin{pmatrix} \varphi & \pi \\ \theta & -\varphi^* \end{pmatrix} : TM \oplus T^*M \to TM \oplus T^*M$$

such that $\Phi + \Phi^* = 0$, $\eta(\xi) = 1$, $\Phi(\xi) = 0$, $\Phi(\eta) = 0$, $\Phi \circ \Phi = -\mathbb{I} + \xi \odot \eta$. where $(\xi \odot \eta)(X + \alpha) := \eta(X)\xi + \alpha(\xi)\eta$.

 $\Phi_{\mathsf{ker}}: \ker \eta \oplus \ker \xi \to \ker \eta \oplus \ker \xi, \quad \Phi_{\mathsf{ker}} \circ \Phi_{\mathsf{ker}} = -\mathbb{I}.$

Remark: Focus on tensorial objects only. No equivalence. Formal.

(《圖》 《문》 《문》 - 문

$$\Phi^2_{ker} = -\mathbb{I}.$$

$$\begin{split} E^{1,0} &= \{e - i\Phi(e) : e \in C^{\infty}(M, \ker \eta \oplus \ker \xi)\} \\ L &:= L_{\xi} \oplus E^{1,0}, \quad \overline{L} = L_{\xi} \oplus E^{0,1}, \quad L^* = L_{\eta} \oplus E^{0,1}, \quad \overline{L}^* = L_{\eta} \oplus E^{1,0}. \\ L \oplus L^* &= (TM \oplus T^*M)_{\mathbb{C}}, \quad \overline{L} \oplus \overline{L}^* = (TM \oplus T^*M)_{\mathbb{C}}. \end{split}$$
Fact: $E^{1,0}, E^{0,1}, L, \overline{L}, L^*, \overline{L}^*$ are isotropic.

$$\overline{L} \neq L^*$$
 !!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Integrability, or the lack of it

Definition

Given a $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi)$ -structure, if $C^{\infty}(M, L)$ is Courant-closed, (but $C^{\infty}(M, L^*)$ is not necessarily closed,) then \mathcal{J} is a generalized contact structure.

Remember: $\overline{L} \neq L^*$!!

Definition

Given a $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi)$ -structure, if both $C^{\infty}(M, L)$ and $C^{\infty}(M, L^*)$ are Courant-closed, then \mathcal{J} is a generalized "complex" structure. (Even though dim M = 2n + 1.)

Key: (Not) Lie bialgebroid.

Avoiding terminology: "generalized normal contact structures".

Problem

Assume $C^{\infty}(M, L)$ is closed, determine whether or when $C^{\infty}(M, L^*)$ is also closed.

LWX's obstruction for formation of Lie bialgebroids: For any three sections v_0, v_1, v_2 of $L^* = L_\eta \oplus E^{0,1}$,

$$\mathsf{Nij}(v_0, v_1, v_2) = \frac{1}{3} (\langle \llbracket v_0, v_1 \rrbracket, v_2 \rangle + \langle \llbracket v_1, v_2 \rrbracket, v_0 \rangle + \langle \llbracket v_2, v_0 \rrbracket, v_1 \rangle).$$

 $\mathsf{Nij} \in C^\infty(M, \wedge^3 L), L = L_{\xi} \oplus E^{1,0}, \wedge^3 L = \wedge^3 E^{1,0} \oplus L_{\xi} \otimes \wedge^2 E^{1,0}.$

Proposition

Given $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi)$ and $C^{\infty}(M, L)$ closed. Then L^* is closed if and only if $\xi \wedge (\rho^* d\eta)^{2,0} = 0$, where $\rho : E^{1,0} \to TM_{\mathbb{C}}$.

イロン イ部ン イヨン イヨン 三日

Definition (Libermann, 1958)

An almost cosymplectic structure on M^{2n+1} is a reduction from $GL(2n+1,\mathbb{R})$ to $Sp(n,\mathbb{R})$. That is the choice of a 1-form η and a 2-form θ such that $\eta \wedge \theta^n \neq 0$ everywhere.

Definition

 (η, θ) is a cosymplectic structure if $d\eta = 0$ and $d\theta = 0$.

Definition

 η is a contact 1-form on M^{2n+1} if $\eta \wedge (d\eta)^n \neq 0$ everywhere.

A contact 1-form determines an almost cosymplectic structure $(\eta, d\eta)$, but it is NEVER a cosymplectic structure without qualification.

(日) (同) (E) (E) (E)

As generalized almost contact structures

• Almost cosymplectic (η, θ) : (1-form, 2-form). $\eta \land \theta^n \neq 0$ everywhere. Define $\flat : TM \to T^*M$ by

$$\flat(X) = \iota_X \theta - \eta(X)\eta$$
, then $\pi(\alpha, \beta) := \theta(\flat^{-1}(\alpha), \flat^{-1}(\beta))$.

b is an isomorphism. There exists a unique ξ such that $\eta(\xi) = 1$ and $\iota_{\xi}\theta = 0$. Choose $\varphi = 0$.

$$\Phi = \left(\begin{array}{cc} 0 & \pi \\ \theta & 0 \end{array}\right)$$

• If η is a contact 1-form, choose $\theta = d\eta$. Then follow the above construction.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition (Sasaki (60))

A (ξ, η, φ) -structure on M^{2n+1} consists of φ a (1,1)-tensor, a vector field ξ and a 1-form η such that $\varphi^2 = -\mathbb{I} + \eta \otimes \xi$, and $\eta(\xi) = 1$.

Definition

A (ξ, η, φ) -structure on M is "normal" if and only if a naturally defined almost complex structure on $M \times \mathbb{R}^+$ is integrable. Equivalently, $\mathcal{L}_{\xi}\varphi = 0$, $\mathcal{L}_{\xi}\eta = 0$, and $\mathcal{N}_{\varphi} = -\xi \otimes d\eta$, where $\mathcal{N}_{\varphi}(X, Y) := [\varphi X, \varphi Y] + \varphi^2[X, Y] - \varphi([\varphi X, Y] + [X, \varphi Y]).$

A contact 1-form η does not determine a (ξ, η, φ) -structure until a "compatible" metric is chosen. φ is metric dependence. Too many choices. $\mathcal{J} = (\xi, \eta, \varphi, \pi = 0, \theta = 0).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Theorem (Examples of generalized contact structures) $C^{\infty}(M, L)$ is closed for

- Cosymplectic (η, θ) . i.e. $d\eta = 0$ and $d\theta = 0$.
- Contact 1-form η . i.e. $\theta = d\eta \neq 0$.
- Normal (ξ, η, φ) -structures. i.e. $\mathcal{N}_{\varphi} = -\xi \otimes d\eta$.

Proof: DBH.

Theorem (Examples of generalized complex structures)

Both $C^{\infty}(M, L)$ and $C^{\infty}(M, L^*)$ are closed for

- Cosymplectic (η, θ) . (G-structure)
- Normal (ξ, η, φ) -structure. (Sasaki Cone)

Proof: For the latter, check the "type" of $d\eta$.

イロン イヨン イヨン イヨン

Focus on contact 1-form η

Local picture: (x_j, y_j, z) on \mathbb{R}^{2n+1} .

$$\eta = dz - \sum_{j} y_{j} dx_{j}, \quad \xi = \frac{\partial}{\partial z}, \quad \theta = d\eta = \sum_{j} dx_{j} \wedge dy_{j},$$

 $X_{j} := \frac{\partial}{\partial x_{j}} + y_{j} \frac{\partial}{\partial y_{j}}, \quad Y_{j} = \frac{\partial}{\partial y_{j}}, \quad \pi = \sum_{j} X_{j} \wedge Y_{j}.$

The obstruction $(\rho^* d\eta)^{2,0}$ is equal to

$$\frac{1}{4}\sum_{j}(dx_{j}-iY_{j})\wedge(dy_{j}+iX_{j}).$$

 $(
ho^* d\eta)^{2,0} + (
ho^* d\eta)^{0,2} = \frac{1}{4}(d\eta - \pi).$

Proposition

The obstruction for L^* being closed is not equal to zero anywhere when \mathcal{J} is due to a contact 1-form.

For generalized complex structures (on odd-dimensional manifolds), use LWX's Lie bialgebroid theory.

Deformation of classical cosymplectic structures away from classical objects e.g. H_3 Heisenberg group or cocompact quotient. Co-symplectic structure. For generalized contact (not complex)? Deformation theory due to Lie bialgebroid structure fails.

Alternative:

Proposition

Let M be the principal SO(2)-bundle over N with connection η and curvature $d\eta = p^*\omega$. Then the family J_t of generalized complex structures on N is lifted to a family \mathcal{J}_t of generalized contact structures on M.

Proof. A Boothby+Wang type theorem. In their 1958 paper: "On contact manifolds". (A backbone)

(日) (同) (E) (E) (E)

On N the Kodaira surface, there exists

- a complex structure $J = J_0$,
- a symplectic form $\omega = J_1$, with ω being type (2,0)+(0,2) w.r.t. J.
- a family of generalized complex structures J_t containing J_0 and J_1 .

Use Boothby-Wang construction.

Get a family of generalized contact structures \mathcal{J}_t . \mathcal{J}_1 is contact. \mathcal{J}_t are non-classical objects for $t \neq 1$.

Remark: No more "Gray's Theorem" :-)

Remark: No deformation theory :-(

A B K A B K

Further development

Contact 1-form and Reeb field: $\iota_{\xi}\eta = 0$. $\mathcal{L}_{\xi}\eta = 0$.

Theorem

 $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi)$ a generalized contact structure (not necessarily cx), with $\mathcal{L}_{\xi}\eta = 0$, then

- $\mathcal{L}_{\xi}\mathcal{J} = 0$; and
- the pair $E^{1,0}$ and $E^{0,1}$ forms a transversal Lie bialgebroid over (M,ξ) .

Reversing Boothby-Wang construction. Cohomology theory. Deformation. Equivalence. Another story.

Conclusion: contact vs symplectic. Non-integrability vs integrability. Difference vs similarity.