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1. Obstructions to Asymptotic Chow semistability

(background)

Def : (M, L) is a polarized manifold if M is a comapct com-

plex manifold and L a positive line bundle, i.e. c1(L) > 0.

c1(L) is regarded as a Kähler class

(or the space of Kähler forms).

We seek a constant scalar curvature Kähler (cscK) metric

in c1(L).
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Besides the obstructions due to Matsushima and myself,

there are obstructions related to GIT stability (Yau, Tian,

Donaldson).

Theorem A. (Donaldson, JDG 2001)

Let (M, L) be a polarized manifold with Aut(M, L) discrete.

If ∃ a cscK metric

then (M, L) is asymptotically Chow stable.
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Claim of this talk: This is not the case if Aut(M, L) is

not discrete.

Theorem (Ono-Sano-Yotsutani)

There are toric Fano Kähler-Einstein manifolds which are

not asymptotically Chow-semistable.
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What is (asymptotic) Chow stability ?

Vk := H0(M,O(Lk))∗

Mk ⊂ P(Vk) the image of Kodaira embedding by Lk

dk = the degree of Mk in P(Vk)
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Let m = dimCM .

An element of P(V ∗k )× · · · × P(V ∗k ) (m + 1 times)

defines m + 1 hyperplanes H1, · · · , Hm+1 in P(Vk).

{(H1, · · · , Hm+1) ∈ P(V ∗k )×··×P(V ∗k )|H1∩··∩Hm+1∩Mk 6= ∅}
defines a divisor in P(V ∗k )× · · ×P(V ∗k )

and this divisor is defined by

M̂k ∈ (Symdk(Vk))
⊗(m+1).
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The point [M̂k] ∈ P((Symdk(Vk))
⊗(m+1)) is called the Chow

point.

The Chow point determines Mk ⊂ P(Vk).

Stabilizer of M̂k under SL(Vk)-action is Aut(M, L).

In Theorem A (Donaldson), “Aut(M, L) is discrete” means

“the stabilizer is finite”.
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M is said to be Chow polystable w.r.t. Lk if the orbit of M̂k

in (Symdk(Vk))
⊗(m+1) under the action of SL(Vk) is closed.

M is Chow stable w.r.t Lk if M is polystable and the stabilizer

at M̂k of the action of SL(Vk) is finite.

M is Chow semistable w.r.t. Lk if the closure of the orbit

of M̂k in (Symdk(Vk))
⊗(m+1) under the action of SL(Vk)

does not contain o ∈ (Symdk(Vk))
⊗(m+1).

M is asymptotically Chow polystable (resp. stable or semistable)

w.r.t. L if there exists a k0 > 0 such that M is Chow polystable

(resp. stable or semistable) w.r.t. Lk for all k ≥ k0.
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Theorem B (Mabuchi, Osaka J. Math. 2004)

Let (M, L) be a polarized manifold.

If Aut(M, L) is not discrete then

there is an obstruction to asymptotic Chow semistability.

Theorem C (Mabuchi, Invent. Math. 2005)

Let (M, L) be a polarized manifold, and suppose Aut(M, L)

is not discrete.

If ∃ a cscK metric in c1(L) and if the obstruction vanishes

then (M, L) is asymptotically Chow polystable.
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h0 = {X holo vector field| zero(X) 6= ∅}
= {X holo vector field| ∃u ∈ C∞(M)⊗ C

s.t. X = grad′u = gīj ∂u

∂zj

∂

∂zi
}

= {X holo vector field|∃lift to an infinitesimal action on L}
= Lie(Aut(M, L))

Theorem D (F, Internat. J. Math. 2004)

Let (M, L) be a polarized manifold with dimCM = m.

(1) The vanishing of Mabuchi’s obstruction is equivalent to

the vanishing of Lie algebra characters FTdi : h0 → C,

i = 1, · · · , m.

(2) FTd1 = obstruction to ∃ of cscK metric (Futaki invari-

ant).
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Question (a) In Theorem C, can’t we omit the assumption

of the vanishing of the obstruction ?

That is to say, if ∃ a cscK metric then doesn’t the obstruction

necessarily vanish ?

Question (b) In Theorem D, if FTd1 = 0

then FTd2 = · · · = FTdm = 0 ?

Question (c) dim span{FTd1, · · · ,FTdm} = 1 ?
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Futaki-Ono-Sano, 2008

(1) Question (c) is not true in general.

(2) FTd1, · · · ,FTdm are obtained as derivatives of the Hilbert

series.

(3) The derivatives of the Hilbert series are computed by

imputting toric data into a computer.

Ono-Sano-Yotsutani recently showed the answers to Ques-

tions (a) and (b) are No.
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2. Lie algebra characters FTdi

θ : connection form on L− zero section

X] : horizontal lift of X to L

z : fiber coordinate of L

Then the lift X̃ to L of X is written as

X̃ = θ(X̃)iz
∂

∂z
+ X].

The ambiguity of X̃ is const iz ∂
∂z.
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X̃ + ciz
∂

∂z
= θ(X̃ + ciz

∂

∂z
)iz

∂

∂z
+ X]

= (θ(X̃) + c)iz
∂

∂z
+ X].
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Given a Kähler form ω ∈ c1(L), suppose the connection θ is

so chosen that

1

2π
∂θ = ω.

Then

i(X)ω =
1

2π
∂θ(X̃).

If we put

uX = − 1

2π
θ(X̃)

then

i(X)ω = −∂uX.

Conclusion: Ambiguity of Hamiltonian function ⇐⇒
ambiguity of lifting of X to L.
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Assume the normalization

∫

M
uXωm = 0.

Choose a type (1,0)-connection ∇ in T ′M .

Put

L(X) = ∇X − LX ∈ Γ(End(T ′M))

and let

Θ ∈ Γ(Ω1,1(M)⊗ End(T ′M))

be the (1,1)-part of the curvature form of ∇.
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Def: For φ ∈ Ip(GL(m,C)), we define

Fφ(X) = (m− p + 1)
∫

M
φ(Θ) ∧ uX ωm−p (1)

+
∫

M
φ(L(X) + Θ) ∧ ωm−p+1.

Theorem D : Vanishing of Mabuchi’s obstruction is equiva-

lent to

FTd1(X) = · · · = FTdm(X) = 0

for all X ∈ h0.
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3. Hilbert series

M : toric Fano manifold of dimM = m.

L = K−1
M

Tm acts on M .

Tm+1 acts on K−1
M .

For g ∈ Tm+1,

L(g) :=
∞∑

k=0
Tr(g|

H0(M,K−k
M )

)

the formal sum of the Lefchetz numbers.
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For x ∈ Tm+1
C we may analytically continue to L(x).

Let {vj ∈ Zm}j be the generators of 1-dimensional faces of

the fan of M .

λj := (vj,1) ∈ Zm+1,

C∗ := {y ∈ Rm+1|λj · y ≥ 0, ∀j} ⊂ g∗ = (Lie(Tm+1))∗,
P ∗ := {w ∈ Rm|vj · w ≥ −1, ∀j}

C∗ is a cone over P ∗.

Integral points in C∗ ←→ ⋃∞
k=1 basis of H0(M, K−k

M )

a = (w, k) ∈ Zm+1 ∩ C∗
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For x ∈ Tm+1
C , we put

xa = x
a1
1 · · ·xam+1

m+1 .

Def: C(x, C∗) :=
∑

a∈C∗∩Zm+1 xa Hilbert series

Fact: C(x, C∗) is a rational function of x.

Lemma : C(x, C∗) = L(x).

For b ∈ Rm+1 ∼= g = Lie(Tm+1),

e−tb := (e−b1t, · · · , e−bm+1t)

C(e−tb, C∗) =
∑

a∈C∗∩Zm+1 e−ta·b : rational function in t

20



For x ∈ Tm+1
C , we put

xa = x
a1
1 · · ·xam+1

m+1 .

Def: C(x, C∗) :=
∑

a∈C∗∩Zm+1 xa Hilbert series

Fact: C(x, C∗) is a rational function of x.

Lemma : C(x, C∗) = L(x).

For b ∈ Rm+1 ∼= g = Lie(Tm+1),

e−tb := (e−b1t, · · · , e−bm+1t)

C(e−tb, C∗) =
∑

a∈C∗∩Zm+1 e−ta·b : rational function in t

20-a



For x ∈ Tm+1
C , we put

xa = x
a1
1 · · ·xam+1

m+1 .

Def: C(x, C∗) :=
∑

a∈C∗∩Zm+1 xa Hilbert series

Fact: C(x, C∗) is a rational function of x.

Lemma : C(x, C∗) = L(x).

For b ∈ Rm+1 ∼= g = Lie(Tm+1),

e−tb := (e−b1t, · · · , e−bm+1t)

C(e−tb, C∗) =
∑

a∈C∗∩Zm+1 e−ta·b : rational function in t

20-b



For x ∈ Tm+1
C , we put

xa = x
a1
1 · · ·xam+1

m+1 .

Def: C(x, C∗) :=
∑

a∈C∗∩Zm+1 xa Hilbert series

Fact: C(x, C∗) is a rational function of x.

Lemma : C(x, C∗) = L(x).

For b ∈ Rm+1 ∼= g = Lie(Tm+1),

e−tb := (e−b1t, · · · , e−bm+1t)

C(e−tb, C∗) =
∑

a∈C∗∩Zm+1 e−ta·b : rational function in t

20-c



CR := {(b1, · · · , bm, m + 1)|(b1, · · · , bm) ∈ (m + 1)P} ⊂ g

where

P is the dual polytope of P ∗.

CR is the space of Reeb vector fields of Sasakian structures

on S, the total space of the associated U(1)-bundle of KM .

The tangent space of CR at (0, · · · ,0, m + 1) is

T(0,··· ,0,m+1)CR = {c = (c1, · · · , cm,0)} ⊂ g.

This defines another way of lifting of Tm-action to L.
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Put b = (0, · · · ,0, m + 1).

Comparing the two liftings of Tm-action to L we can show

Theorem: (1) The coeffocients of the Laurant series of the

rational function d
ds|s=0C(e−t(b+sc), C∗) in t span the linear

space spanned by FTd1, · · · ,FTdm.

(2) In dimension 2, the linear spans are 1-dimensional.

In dimension 3 the linear spans are at most 2-dimensional,

and there are examples in which the linear spans are 2-

dimensional.

Remark Martelli-Sparks-Yau: From t−m term we get the

Futaki invariant.
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Our computations show that the question is

closely related to a question raised by

Batyrev and Selivanova:

Is a toric Fano manifold with vanishing f(= FTd1) for

the anticanonical class necessarily symmetric?
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Recall that a toric Fano manifold M is said to be symmetric

if the trivial character is the only fixed point of the action of

the Weyl group on the space of all algebraic characters of

the maximal torus in Aut(M).

Nill and Paffenholz gave a counterexample to Batyrev-

Selyvanova.
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