Hilbert series and obstructions to asymptotic Chow semistability

Akito Futaki
Tokyo Institute of Technology

Kähler and Sasakian Geometry in Rome
Rome, June 16th-19th, 2009
In memory of Krzysztof Galicki

1. Obstructions to Asymptotic Chow semistability (background)
2. Obstructions to Asymptotic Chow semistability (background)

Def : (M, L) is a polarized manifold if M is a comapct complex manifold and L a positive line bundle, i.e. $c_{1}(L)>0$.

1. Obstructions to Asymptotic Chow semistability (background)

Def : (M, L) is a polarized manifold if M is a comapct complex manifold and L a positive line bundle, i.e. $c_{1}(L)>0$.
$c_{1}(L)$ is regarded as a Kähler class
(or the space of Kähler forms).

1. Obstructions to Asymptotic Chow semistability (background)

Def : (M, L) is a polarized manifold if M is a comapct complex manifold and L a positive line bundle, i.e. $c_{1}(L)>0$.
$c_{1}(L)$ is regarded as a Kähler class
(or the space of Kähler forms).

We seek a constant scalar curvature Kähler (cscK) metric in $c_{1}(L)$.

Besides the obstructions due to Matsushima and myself, there are obstructions related to GIT stability (Yau, Tian, Donaldson).

Besides the obstructions due to Matsushima and myself, there are obstructions related to GIT stability (Yau, Tian, Donaldson).

Theorem A. (Donaldson, JDG 2001)
Let (M, L) be a polarized manifold with $\operatorname{Aut}(M, L)$ discrete.
If \exists a cscK metric
then (M, L) is asymptotically Chow stable.

Claim of this talk: This is not the case if $\operatorname{Aut}(M, L)$ is not discrete.

Claim of this talk: This is not the case if $\operatorname{Aut}(M, L)$ is not discrete.

Theorem (Ono-Sano-Yotsutani)

There are toric Fano Kähler-Einstein manifolds which are not asymptotically Chow-semistable (polystable).

What is (asymptotic) Chow stability ?

What is (asymptotic) Chow stability ?

$V_{k}:=H^{0}\left(M, \mathcal{O}\left(L^{k}\right)\right)^{*}$
$M_{k} \subset \mathbb{P}\left(V_{k}\right)$ the image of Kodaira embedding by L^{k}

What is (asymptotic) Chow stability ?

$V_{k}:=H^{0}\left(M, \mathcal{O}\left(L^{k}\right)\right)^{*}$
$M_{k} \subset \mathbb{P}\left(V_{k}\right)$ the image of Kodaira embedding by L^{k}
$d_{k}=$ the degree of M_{k} in $\mathbb{P}\left(V_{k}\right)$

Let $m=\operatorname{dim}_{\mathbb{C}} M$.

Let $m=\operatorname{dim}_{\mathbb{C}} M$.

An element of $\mathbb{P}\left(V_{k}^{*}\right) \times \cdots \times \mathbb{P}\left(V_{k}^{*}\right)(m+1$ times $)$ defines $m+1$ hyperplanes H_{1}, \cdots, H_{m+1} in $\mathbb{P}\left(V_{k}\right)$.

Let $m=\operatorname{dim}_{\mathbb{C}} M$.

An element of $\mathbb{P}\left(V_{k}^{*}\right) \times \cdots \times \mathbb{P}\left(V_{k}^{*}\right)(m+1$ times $)$ defines $m+1$ hyperplanes H_{1}, \cdots, H_{m+1} in $\mathbb{P}\left(V_{k}\right)$.
$\left\{\left(H_{1}, \cdots, H_{m+1}\right) \in \mathbb{P}\left(V_{k}^{*}\right) \times \cdots \times \mathbb{P}\left(V_{k}^{*}\right) \mid H_{1} \cap \cdots \cap H_{m+1} \cap M_{k} \neq \emptyset\right\}$ defines a divisor in $\mathbb{P}\left(V_{k}^{*}\right) \times \cdots \times \mathbb{P}\left(V_{k}^{*}\right)$

Let $m=\operatorname{dim}_{\mathbb{C}} M$.

An element of $\mathbb{P}\left(V_{k}^{*}\right) \times \cdots \times \mathbb{P}\left(V_{k}^{*}\right)(m+1$ times $)$ defines $m+1$ hyperplanes H_{1}, \cdots, H_{m+1} in $\mathbb{P}\left(V_{k}\right)$.
$\left\{\left(H_{1}, \cdots, H_{m+1}\right) \in \mathbb{P}\left(V_{k}^{*}\right) \times \cdots \times \mathbb{P}\left(V_{k}^{*}\right) \mid H_{1} \cap \cdots \cap H_{m+1} \cap M_{k} \neq \emptyset\right\}$ defines a divisor in $\mathbb{P}\left(V_{k}^{*}\right) \times \cdots \times \mathbb{P}\left(V_{k}^{*}\right)$
and this divisor is defined by
$\hat{M}_{k} \in\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$.

The point $\left[\hat{M}_{k}\right] \in \mathbb{P}\left(\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}\right)$ is called the Chow point.

The point $\left[\hat{M}_{k}\right] \in \mathbb{P}\left(\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}\right)$ is called the Chow point.

The Chow point determines $M_{k} \subset \mathbb{P}\left(V_{k}\right)$.

The point $\left[\hat{M}_{k}\right] \in \mathbb{P}\left(\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}\right)$ is called the Chow point.

The Chow point determines $M_{k} \subset \mathbb{P}\left(V_{k}\right)$.

Stabilizer of \hat{M}_{k} under $S L\left(V_{k}\right)$-action is $\operatorname{Aut}(M, L)$.

The point $\left[\hat{M}_{k}\right] \in \mathbb{P}\left(\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}\right)$ is called the Chow point.

The Chow point determines $M_{k} \subset \mathbb{P}\left(V_{k}\right)$.

Stabilizer of \hat{M}_{k} under $S L\left(V_{k}\right)$-action is $\operatorname{Aut}(M, L)$.

In Theorem A (Donaldson), "Aut (M, L) is discrete" means "the stabilizer is finite".
M is said to be Chow polystable w.r.t. L^{k} if the orbit of \hat{M}_{k} in $\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$ under the action of $\operatorname{SL}\left(V_{k}\right)$ is closed.
M is said to be Chow polystable w.r.t. L^{k} if the orbit of \hat{M}_{k} in $\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$ under the action of $\mathrm{SL}\left(V_{k}\right)$ is closed.
M is Chow stable w.r.t L^{k} if M is polystable and the stabilizer at \hat{M}_{k} of the action of $\operatorname{SL}\left(V_{k}\right)$ is finite.
M is said to be Chow polystable w.r.t. L^{k} if the orbit of \hat{M}_{k} in $\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$ under the action of $\operatorname{SL}\left(V_{k}\right)$ is closed.
M is Chow stable w.r.t L^{k} if M is polystable and the stabilizer at \hat{M}_{k} of the action of $\operatorname{SL}\left(V_{k}\right)$ is finite.
M is Chow semistable w.r.t. L^{k} if the closure of the orbit of \hat{M}_{k} in $\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$ under the action of $\operatorname{SL}\left(V_{k}\right)$ does not contain $\mathbf{o} \in\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$.
M is said to be Chow polystable w.r.t. L^{k} if the orbit of \hat{M}_{k} in $\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$ under the action of $\operatorname{SL}\left(V_{k}\right)$ is closed.
M is Chow stable w.r.t L^{k} if M is polystable and the stabilizer at \hat{M}_{k} of the action of $\operatorname{SL}\left(V_{k}\right)$ is finite.
M is Chow semistable w.r.t. L^{k} if the closure of the orbit of \hat{M}_{k} in $\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$ under the action of $\operatorname{SL}\left(V_{k}\right)$ does not contain $\mathbf{o} \in\left(\operatorname{Sym}^{d_{k}}\left(V_{k}\right)\right)^{\otimes(m+1)}$.
M is asymptotically Chow polystable (resp. stable or semistable) w.r.t. L if there exists a $k_{0}>0$ such that M is Chow polystable (resp. stable or semistable) w.r.t. L^{k} for all $k \geq k_{0}$.

Theorem B (Mabuchi, Osaka J. Math. 2004)
Let (M, L) be a polarized manifold.
If Aut (M, L) is not discrete then
there is an obstruction to asymptotic Chow semistability.

Theorem B (Mabuchi, Osaka J. Math. 2004)
Let (M, L) be a polarized manifold.
If Aut (M, L) is not discrete then
there is an obstruction to asymptotic Chow semistability.

Theorem C (Mabuchi, Invent. Math. 2005)
Let (M, L) be a polarized manifold, and suppose $\operatorname{Aut}(M, L)$
is not discrete.
If \exists a cscK metric in $c_{1}(L)$ and if the obstruction vanishes then (M, L) is asymptotically Chow polystable.
$\mathfrak{h}_{0}=\{X$ holo vector field $\mid \operatorname{zero}(X) \neq \emptyset\}$
$=\left\{X\right.$ holo vector field $\mid \exists u \in C^{\infty}(M) \otimes \mathbb{C}$

$$
\text { s.t. } \left.X=\operatorname{grad}^{\prime} u=g^{i \bar{j}} \frac{\partial u}{\partial \bar{z}^{j}} \frac{\partial}{\partial z^{i}}\right\}
$$

$=\{X$ holo vector field $\mid \exists$ lift to an infinitesimal action on $L\}$
$=\operatorname{Lie}(\operatorname{Aut}(M, L))$
$\mathfrak{h}_{0}=\{X$ holo vector field $\mid \operatorname{zero}(X) \neq \emptyset\}$
$=\left\{X\right.$ holo vector field $\mid \exists u \in C^{\infty}(M) \otimes \mathbb{C}$

$$
\text { s.t. } \left.X=\operatorname{grad}^{\prime} u=g^{i \bar{j}} \frac{\partial u}{\partial \bar{z}^{j}} \frac{\partial}{\partial z^{i}}\right\}
$$

$=\{X$ holo vector field $\mid \exists$ lift to an infinitesimal action on $L\}$
$=\operatorname{Lie}(\operatorname{Aut}(M, L))$
Theorem D (F, Internat. J. Math. 2004)
Let (M, L) be a polarized manifold with $\operatorname{dim}_{\mathbb{C}} M=m$.
(1) The vanishing of Mabuchi's obstruction is equivalent to the vanishing of Lie algebra characters $\mathcal{F}_{\mathrm{Td}^{i}}: \mathfrak{h}_{0} \rightarrow \mathbb{C}$,
$i=1, \cdots, m$.
$\mathfrak{h}_{0}=\{X$ holo vector field $\mid \operatorname{zero}(X) \neq \emptyset\}$
$=\left\{X\right.$ holo vector field $\exists u \in C^{\infty}(M) \otimes \mathbb{C}$

$$
\text { s.t. } \left.X=\operatorname{grad}^{\prime} u=g^{i \bar{j}} \frac{\partial u}{\partial \bar{z}^{j}} \frac{\partial}{\partial z^{i}}\right\}
$$

$=\{X$ holo vector field $\mid \exists$ lift to an infinitesimal action on $L\}$
$=\operatorname{Lie}(\operatorname{Aut}(M, L))$
Theorem D (F, Internat. J. Math. 2004)
Let (M, L) be a polarized manifold with $\operatorname{dim}_{\mathbb{C}} M=m$.
(1) The vanishing of Mabuchi's obstruction is equivalent to the vanishing of Lie algebra characters $\mathcal{F}_{\mathrm{Td}^{i}}: \mathfrak{h}_{0} \rightarrow \mathbb{C}$,
$i=1, \cdots, m$.
(2) $\mathcal{F}_{\mathrm{Td}^{1}}=$ obstruction to \exists of cscK metric (Futaki invariant).

Question (a) In Theorem C, can't we omit the assumption of the vanishing of the obstruction ?

That is to say, if \exists a cscK metric then doesn't the obstruction necessarily vanish ?

Question (a) In Theorem C, can't we omit the assumption of the vanishing of the obstruction ?

That is to say, if \exists a cscK metric then doesn't the obstruction necessarily vanish ?

Question (b) In Theorem D, if $\mathcal{F}_{T_{d^{1}}}=0$
then $\mathcal{F}_{\mathrm{Td}^{2}}=\cdots=\mathcal{F}_{\mathrm{Td}}=0$?

Question (a) In Theorem C, can't we omit the assumption of the vanishing of the obstruction ?

That is to say, if \exists a cscK metric then doesn't the obstruction necessarily vanish ?

Question (b) In Theorem D, if $\mathcal{F}_{T_{d^{1}}}=0$
then $\mathcal{F}_{\mathrm{Td}^{2}}=\cdots=\mathcal{F}_{\mathrm{Td}}=0$?

Question (c) $\operatorname{dim} \operatorname{span}\left\{\mathcal{F}_{\mathrm{Td} 1}, \cdots, \mathcal{F}_{\mathrm{Td}}\right\}=1$?

Futaki-Ono-Sano, 2008

(1) Question (c) is not true in general.

Futaki-Ono-Sano, 2008

(1) Question (c) is not true in general.
(2) $\mathcal{F}_{\mathrm{Td}^{1}}, \cdots, \mathcal{F}_{\mathrm{Tdm}}$ are obtained as derivatives of the Hilbert series.

Futaki-Ono-Sano, 2008

(1) Question (c) is not true in general.
(2) $\mathcal{F}_{\mathrm{Td}^{1}}, \cdots, \mathcal{F}_{\mathrm{Tdm}}$ are obtained as derivatives of the Hilbert series.
(3) The derivatives of the Hilbert series are computed by imputting toric data into a computer.

Futaki-Ono-Sano, 2008

(1) Question (c) is not true in general.
(2) $\mathcal{F}_{\mathrm{Td}^{1}}, \cdots, \mathcal{F}_{\mathrm{Tdm}}$ are obtained as derivatives of the Hilbert series.
(3) The derivatives of the Hilbert series are computed by imputting toric data into a computer.

Ono-Sano-Yotsutani recently showed the answers to Questions (a) and (b) are No.
2. Lie algebra characters $\mathcal{F}_{\text {Tdi}}$
θ : connection form on L - zero section
X^{\sharp} : horizontal lift of X to L
z : fiber coordinate of L
2. Lie algebra characters $\mathcal{F}_{\text {Tdi}}$
θ : connection form on L - zero section
X^{\sharp} : horizontal lift of X to L
z : fiber coordinate of L

Then the lift \widetilde{X} to L of X is written as

$$
\widetilde{X}=\theta(\widetilde{X}) i z \frac{\partial}{\partial z}+X^{\sharp}
$$

The ambiguity of \widetilde{X} is const $i z \frac{\partial}{\partial z}$.

$$
\begin{aligned}
\widetilde{X}+c i z \frac{\partial}{\partial z} & =\theta\left(\widetilde{X}+c i z \frac{\partial}{\partial z}\right) i z \frac{\partial}{\partial z}+X^{\sharp} \\
& =(\theta(\widetilde{X})+c) i z \frac{\partial}{\partial z}+X^{\sharp} .
\end{aligned}
$$

Given a Kähler form $\omega \in c_{1}(L)$, suppose the connection θ is so chosen that

$$
\frac{1}{2 \pi} \bar{\partial} \theta=\omega .
$$

Given a Kähler form $\omega \in c_{1}(L)$, suppose the connection θ is so chosen that

$$
\frac{1}{2 \pi} \bar{\partial} \theta=\omega
$$

Then

$$
i(X) \omega=\frac{1}{2 \pi} \bar{\partial} \theta(\widetilde{X})
$$

Given a Kähler form $\omega \in c_{1}(L)$, suppose the connection θ is so chosen that

$$
\frac{1}{2 \pi} \bar{\partial} \theta=\omega
$$

Then

$$
i(X) \omega=\frac{1}{2 \pi} \bar{\partial} \theta(\widetilde{X})
$$

If we put

$$
u_{X}=-\frac{1}{2 \pi} \theta(\widetilde{X})
$$

then

$$
i(X) \omega=-\bar{\partial} u_{X}
$$

Given a Kähler form $\omega \in c_{1}(L)$, suppose the connection θ is so chosen that

$$
\frac{1}{2 \pi} \bar{\partial} \theta=\omega
$$

Then

$$
i(X) \omega=\frac{1}{2 \pi} \bar{\partial} \theta(\widetilde{X})
$$

If we put

$$
u_{X}=-\frac{1}{2 \pi} \theta(\widetilde{X})
$$

then

$$
i(X) \omega=-\bar{\partial} u_{X}
$$

Conclusion: Ambiguity of Hamiltonian function \qquad ambiguity of lifting of X to L.

Assume the normalization

$$
\int_{M} u_{X} \omega^{m}=0
$$

Assume the normalization

$$
\int_{M} u_{X} \omega^{m}=0
$$

Choose a type $(1,0)$-connection ∇ in $T^{\prime} M$.

Assume the normalization

$$
\int_{M} u_{X} \omega^{m}=0
$$

Choose a type (1,0)-connection ∇ in $T^{\prime} M$.
Put

$$
L(X)=\nabla_{X}-L_{X} \in \Gamma\left(E \operatorname{nd}\left(T^{\prime} M\right)\right)
$$

and let

$$
\Theta \in \Gamma\left(\Omega^{1,1}(M) \otimes \operatorname{End}\left(T^{\prime} M\right)\right)
$$

be the (1,1)-part of the curvature form of ∇.

Def: For $\phi \in I^{p}(G L(m, \mathbb{C}))$, we define

$$
\begin{align*}
\mathcal{F}_{\phi}(X)= & (m-p+1) \int_{M} \phi(\Theta) \wedge u_{X} \omega^{m-p} \tag{1}\\
& +\int_{M} \phi(L(X)+\Theta) \wedge \omega^{m-p+1}
\end{align*}
$$

Def: For $\phi \in I^{p}(G L(m, \mathbb{C}))$, we define

$$
\begin{align*}
\mathcal{F}_{\phi}(X)= & (m-p+1) \int_{M} \phi(\Theta) \wedge u_{X} \omega^{m-p} \tag{2}\\
& +\int_{M} \phi(L(X)+\Theta) \wedge \omega^{m-p+1}
\end{align*}
$$

Theorem D: Vanishing of Mabuchi's obstruction is equivalent to

$$
\mathcal{F}_{\mathrm{Td}^{1}}(X)=\cdots=\mathcal{F}_{\mathrm{Td}}(X)=0
$$

for all $X \in \mathfrak{h}_{0}$.

3. Hilbert series

M : toric Fano manifold of $\operatorname{dim} M=m$.
$L=K_{M}^{-1}$

3. Hilbert series

M : toric Fano manifold of $\operatorname{dim} M=m$.
$L=K_{M}^{-1}$
T^{m} acts on M.
T^{m+1} acts on K_{M}^{-1}.

3. Hilbert series

M : toric Fano manifold of $\operatorname{dim} M=m$.
$L=K_{M}^{-1}$
T^{m} acts on M.
T^{m+1} acts on K_{M}^{-1}.

For $g \in T^{m+1}$,

$$
L(g):=\sum_{k=0}^{\infty} \operatorname{Tr}\left(\left.g\right|_{H^{0}\left(M, K_{M}^{-k}\right)}\right)
$$

the formal sum of the Lefchetz numbers.

For $\mathrm{x} \in T_{\mathbb{C}}^{m+1}$ we may analytically continue to $L(\mathrm{x})$.

For $\mathrm{x} \in T_{\mathbb{C}}^{m+1}$ we may analytically continue to $L(\mathrm{x})$.

Let $\left\{v_{j} \in \mathbb{Z}^{m}\right\}_{j}$ be the generators of 1-dimensional faces of the fan of M.

For $\mathrm{x} \in T_{\mathbb{C}}^{m+1}$ we may analytically continue to $L(\mathrm{x})$.

Let $\left\{v_{j} \in \mathbb{Z}^{m}\right\}_{j}$ be the generators of 1-dimensional faces of the fan of M.

$$
\begin{aligned}
& \lambda_{j}:=\left(v_{j}, 1\right) \in \mathbb{Z}^{m+1} \\
& C^{*}:=\left\{y \in \mathbb{R}^{m+1} \mid \lambda_{j} \cdot y \geq 0, \forall j\right\} \subset \mathfrak{g}^{*}=\left(\operatorname{Lie}\left(T^{m+1}\right)\right)^{*}, \\
& P^{*}:=\left\{w \in \mathbb{R}^{m} \mid v_{j} \cdot w \geq-1, \forall j\right\}
\end{aligned}
$$

For $\mathrm{x} \in T_{\mathbb{C}}^{m+1}$ we may analytically continue to $L(\mathrm{x})$.

Let $\left\{v_{j} \in \mathbb{Z}^{m}\right\}_{j}$ be the generators of 1-dimensional faces of the fan of M.
$\lambda_{j}:=\left(v_{j}, 1\right) \in \mathbb{Z}^{m+1}$,
$C^{*}:=\left\{y \in \mathbb{R}^{m+1} \mid \lambda_{j} \cdot y \geq 0, \forall j\right\} \subset \mathfrak{g}^{*}=\left(\operatorname{Lie}\left(T^{m+1}\right)\right)^{*}$,
$P^{*}:=\left\{w \in \mathbb{R}^{m} \mid v_{j} \cdot w \geq-1, \forall j\right\}$
C^{*} is a cone over P^{*}.

For $\mathrm{x} \in T_{\mathbb{C}}^{m+1}$ we may analytically continue to $L(\mathrm{x})$.

Let $\left\{v_{j} \in \mathbb{Z}^{m}\right\}_{j}$ be the generators of 1-dimensional faces of the fan of M.
$\lambda_{j}:=\left(v_{j}, 1\right) \in \mathbb{Z}^{m+1}$,
$C^{*}:=\left\{y \in \mathbb{R}^{m+1} \mid \lambda_{j} \cdot y \geq 0, \forall j\right\} \subset \mathfrak{g}^{*}=\left(\operatorname{Lie}\left(T^{m+1}\right)\right)^{*}$,
$P^{*}:=\left\{w \in \mathbb{R}^{m} \mid v_{j} \cdot w \geq-1, \forall j\right\}$
C^{*} is a cone over P^{*}.

Integral points in $C^{*} \longleftrightarrow \cup_{k=1}^{\infty}$ basis of $H^{0}\left(M, K_{M}^{-k}\right)$

For $\mathbf{x} \in T_{\mathbb{C}}^{m+1}$, we put

$$
\mathbf{x}^{\mathbf{a}}=x_{1}^{a_{1}} \cdots x_{m+1}^{a_{m+1}}
$$

For $\mathrm{x} \in T_{\mathbb{C}}^{m+1}$, we put

$$
\mathbf{x}^{\mathbf{a}}=x_{1}^{a_{1}} \cdots x_{m+1}^{a_{m+1}}
$$

Def: $\mathcal{C}\left(\mathrm{x}, C^{*}\right):=\sum_{\mathbf{a} \in C^{*} \cap \mathbb{Z}^{m+1}} \mathrm{x}^{\mathbf{a}} \quad$ Hilbert series

Fact: $\mathcal{C}\left(\mathrm{x}, C^{*}\right)$ is a rational function of x .

For $\mathrm{x} \in T_{\mathbb{C}}^{m+1}$, we put

$$
\mathbf{x}^{\mathbf{a}}=x_{1}^{a_{1}} \cdots x_{m+1}^{a_{m+1}}
$$

Def: $\mathcal{C}\left(\mathbf{x}, C^{*}\right):=\sum_{\mathbf{a} \in C^{*} \cap \mathbb{Z}^{m+1}} \mathbf{x}^{\mathbf{a}} \quad$ Hilbert series

Fact: $\mathcal{C}\left(\mathrm{x}, C^{*}\right)$ is a rational function of x .

Lemma : $\mathcal{C}\left(\mathrm{x}, C^{*}\right)=L(\mathrm{x})$.

For $\mathbf{x} \in T_{\mathbb{C}}^{m+1}$, we put

$$
\mathbf{x}^{\mathbf{a}}=x_{1}^{a_{1}} \cdots x_{m+1}^{a_{m+1}}
$$

Def: $\mathcal{C}\left(\mathrm{x}, C^{*}\right):=\sum_{\mathbf{a} \in C^{*} \cap \mathbb{Z}^{m+1}} \mathrm{x}^{\mathbf{a}} \quad$ Hilbert series

Fact: $\mathcal{C}\left(\mathrm{x}, C^{*}\right)$ is a rational function of x .

Lemma : $\mathcal{C}\left(\mathrm{x}, C^{*}\right)=L(\mathrm{x})$.

For $\mathbf{b} \in \mathbb{R}^{m+1} \cong \mathfrak{g}=\operatorname{Lie}\left(T^{m+1}\right)$,
$e^{-t \mathbf{b}}:=\left(e^{-b_{1} t}, \cdots, e^{-b_{m+1} t}\right)$
$\mathcal{C}\left(e^{-t \mathbf{b}}, C^{*}\right)=\Sigma_{\mathbf{a} \in C^{*} \cap \mathbb{Z}^{m+1}} e^{-t \mathbf{a} \cdot \mathbf{b}}:$ rational function in t
$C_{R}:=\left\{\left(b_{1}, \cdots, b_{m}, m+1\right) \mid\left(b_{1}, \cdots, b_{m}\right) \in(m+1) P\right\} \subset \mathfrak{g}$
where
P is the dual polytope of P^{*}.
$C_{R}:=\left\{\left(b_{1}, \cdots, b_{m}, m+1\right) \mid\left(b_{1}, \cdots, b_{m}\right) \in(m+1) P\right\} \subset \mathfrak{g}$
where
P is the dual polytope of P^{*}.
C_{R} is the space of Reeb vector fields of Sasakian structures on S, the total space of the associated $U(1)$-bundle of K_{M}.
$C_{R}:=\left\{\left(b_{1}, \cdots, b_{m}, m+1\right) \mid\left(b_{1}, \cdots, b_{m}\right) \in(m+1) P\right\} \subset \mathfrak{g}$
where
P is the dual polytope of P^{*}.
C_{R} is the space of Reeb vector fields of Sasakian structures on S, the total space of the associated $U(1)$-bundle of K_{M}.

The tangent space of C_{R} at $(0, \cdots, 0, m+1)$ is
$T_{(0, \cdots, 0, m+1)} C_{R}=\left\{\mathbf{c}=\left(c_{1}, \cdots, c_{m}, 0\right)\right\} \subset \mathfrak{g}$.
This defines another way of lifting of T^{m}-action to L.

Put $b=(0, \cdots, 0, m+1)$.
Comparing the two liftings of T^{m}-action to L we can show

Theorem: (1) The coeffocients of the Laurant series of the rational function $\left.\frac{d}{d s}\right|_{s=0} \mathcal{C}\left(e^{-t(\mathbf{b}+s \mathbf{c})}, C^{*}\right)$ in t span the linear space spanned by $\mathcal{F}_{\mathrm{Td}^{1}}, \cdots, \mathcal{F}_{\mathrm{Td}}{ }^{m}$.

Put $\mathbf{b}=(0, \cdots, 0, m+1)$.
Comparing the two liftings of T^{m}-action to L we can show

Theorem: (1) The coeffocients of the Laurant series of the rational function $\left.\frac{d}{d s}\right|_{s=0} \mathcal{C}\left(e^{-t(\mathbf{b}+s \mathbf{c})}, C^{*}\right)$ in t span the linear space spanned by $\mathcal{F}_{\mathrm{Td}^{1}}, \cdots, \mathcal{F}_{\mathrm{Td}}{ }^{m}$.
(2) In dimension 2, the linear spans are 1-dimensional. In dimension 3 the linear spans are at most 2-dimensional, and there are examples in which the linear spans are 2 dimensional.

Remark Martelli-Sparks-Yau: From t^{-m} term we get the Futaki invariant.

Our computations show that the question is closely related to a question raised by

Batyrev and Selivanova:

Our computations show that the question is closely related to a question raised by

Batyrev and Selivanova:

Is a toric Fano manifold with vanishing $f\left(=\mathcal{F}_{T_{d^{1}}}\right)$ for the anticanonical class necessarily symmetric?

Recall that a toric Fano manifold M is said to be symmetric if the trivial character is the only fixed point of the action of the Weyl group on the space of all algebraic characters of the maximal torus in $\operatorname{Aut}(M)$.

Recall that a toric Fano manifold M is said to be symmetric if the trivial character is the only fixed point of the action of the Weyl group on the space of all algebraic characters of the maximal torus in $\operatorname{Aut}(M)$.

Nill and Paffenholz gave a counterexample to BatyrevSelyvanova.

