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Plan of the talk

® Review of emergence of Einstein
manifolds in the AdS/CFT
correspondence

® Motivation for a possible relation
between certain kinds of Einstein
manifolds (including Sasaki-Einstein and 3-
Sasaki) and triple systems



Based on:

arXiv:hep-th/9808014
with Bobby Acharya + Chris Hull + Bill Spence

arXiv:0809.1086 [hep-th]

with Paul de Medeiros + Elena Méndez-Escobar
+ Patricia Ritter

and work/dream in progress

with Paul de Medeiros + Elena Méndez-Escobar
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AdSICFT

Gravity H Gauge theory

Maldacena (1997), Gubser+Klebanov+Polyakov (1998), Witten(1998)



AdSICRT

Gravity H Gauge theory

Geometry = Algebra/Analysis

Maldacena (1997), Gubser+Klebanov+Polyakov (1998), Witten(1998)
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M2-branes

Eleven dimensional supergravity admits a two-
parameter family of half-supersymmetric backgrounds:

g = H—Q/Sg (Rl,Q) —|—H1/3 (dT2—|—T29 (517))
F = dvol(R"?) AdH™!
where



For generic a and fxn, this describes a “stack” of n
coincident M2-branes.

For 5=0, the background becomes (11-dimensional)

Minkowski spacetime, whereas for a=0, it becomes

AdS4 X S7 with ZRAdS — RS — 61/6

which is the near-horizon geometry of the n
coincident M2-branes.



The isometry Lie algebra of a supergravity background
extends to a Lie superalgebra: the Killing

superalgebra.

For Minkowski spacetime it is the Poincare
superalgebra, but for the near-horizon limit of the

M2-brane it is 05p (8/2).

The even Lie subalgebra is 50 (8)+50(2,3), which is
the isometry Lie algebra of AdS, x S°.



Generalisations

g = H—Q/Sg(Rl,Z) +H1/3(dT2 +T29(X7))

F = dvol(R2) A dH /

Any Einstein 7-manifold,
admitting real Killing spinors:

Vygp=2V-¢

Interpretation: M2-branes at a conical singularity in a
special holonomy 8-manifold



Real Killing spinors

The cone construction solves the problem of which
riemannian manifolds admit real Killing spinors:

(X, 9) admits real Killing spinors

a7

(R" x X, dr* +r°g) admits parallel spinors




If X is complete, then the cone is either flat or
irreducible.

Holonomy SP;;:(LI:
Spin(7) (1,0)
SU(4) (2,0)
Sp(2) (3,0)
] (8,8)




/-manifolds with real
Killing spinors

/-dimensional Holonomy of

Killing spinors

geometry cone
Weak G2 hol Spin(7) |
Sasaki-Einstein SU(4) 2
3-Sasaki Sp(2) 3
Sphere {1} 8




Killing superalgebras

/-dimensional Killing
geometry superalgebra
Weak G2 hol 0sp (1,2)
Sasaki-Einstein 0SpP(2,2)
3-Sasaki 0P (3,2)
Sphere 05p (8,2)

FO (1999)



Other cases may be obtained by quotienting the sphere.

There are MANY regular quotients of the round 7-
sphere, all of which admit a spin structure and some
even admit real Killing spinors.

In this way one may also obtain 0SP(N, 2), for N<6.



AdS/CFT predicts the existence of a three-
dimensional superconformal field theory, whose

symmetry superalgebra is isomorphic to the
Killing superalgebra, but reinterpreted.

The even subalgebra is isomorphic to

@50

/N

conformal algebra -symmetry



Chern-Simons theories

It took a decade to construct candidate theories realising
these superconformal algebras.

| will not write them down here, but they are
constructed by coupling Chern-Simons theory to matter
hypermultiplets not (necessarily) in the adjoint
representation.

They can be formulated succinctly in terms of certain
triple systems, known as metric 3-Leibniz

algebras.
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Metric Leibniz algebras

A (left) Leibniz algebra is a Lie algebra
without the skewsymmetry of the bracket:

[Xa [Yv ZH — HXv Y],Z] + [Yv [Xv ZH

It is said to be metric if it admits an invariant
symmetric inner product:

<[X7 Y]72> - <Y7 [Xa Z]>



Metric 3-Leibniz algebras

These are ternary versions of metric Leibniz algebras.
They obey a fundamental identity:

X, Y, [Z1, 22, Z3)| = || X, Y, Z1], Za, Z3| + |21, | X, Y, Za], Z3| + |21, Z2, | X, Y, Z3]]

and possess an invariant symmetric inner product:

<[X7 Y7 Zl]v ZQ> - <Zla [Xv Yv ZQ]>



Geometric example

Any compact orientable 3-dimensional manifold defines
one such algebra, albeit infinite-dimensional.

(M,w)  weQ* (M) f,g,h € O (M)

df Adg A dh = [f,g,h]w f,9,h] € C%(M)

(fr9) = /fgw




Triple systems in
AdS/CFT




Faulkner construction

t,(— —) ametric Lie algebra

|/ arepresentation

The transpose of the action gives a map:
R:VxV®—¢

defined by
(R(v,a), X) = a(X - v)



This defines a trilinear map:

VXV XV -V
by

v, a,w| = R(v,a) - w

In the special case when V = V™ one gets a 3-bracket

VxVxV =V

which obeys the fundamental identity of a 3-Leibniz
algebra.



Orthogonal representations

V.{(—,—) areal orthogonal representation

The 3-bracket [x,y,z] = R(x,y) -z given by

(R(z,y), X) = (X -,y

defines on V the structure of a metric 3-Leibniz algebra.



Not all metric 3-Leibniz algebras can be obtained in
this fashion.

The tensor O (x.y. 2. w) := ([z.y. 2], w)

must obey the symmetry condition

Q(.CE, Yy, <, UJ) — Q(Zp w, &, y)

since
Az, y,2z,w) = (R(z,y), R(z,w))

However, this class includes all the ones appearing
in superconformal Chern-Simons theories.
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Unitarity of the quantum field theory requires that the

inner product on V should have positive-definite
sighature.

This gives three types of constructions, depending on
the type of the representation V' :

real orthogonal, complex or quaternionic
unitary representations.
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Real reps

These include two well-known special cases:

® 3-Lie algebras, where /x,y,z/ is totally
skewsymmetric, and

e Lie triple systems, where
[a:,y,z]+[y,z,m]+[z,:v,y]:0
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Metric Lie triple systems are linear approximations to
riemannian symmetric spaces.

g=toV a?2-graded metric Lie algebra

The Lie bracket defines a 3-bracket
z,y, 2| = [z, y], 2
relative to which V becomes a metric Lie triple system.

The map R: A*V — ¢ given by the Lie bracket is the

curvature operator of the symmetric space /K.
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To every metric 3-Lie algebra, Bagger+Lambert and
Gustavsson constructed an /N=8& superconformal Chern-

Simons theory with superalgebra 0sp (8/2).

Unitarity requires the inner product to be positive-
definite. Alas there is a unique (indecomposable,
nontrivial) finite-dimensional positive-definite metric 3-Lie
algebra.

FO+Papadopoulos (2002)

32



The general case of the real construction is a
mixture of these two special cases and corresponds
to 3-algebras introduced by Cherkis+Samann in
their study of superconformal Chern-Simons
theories. (They had appeared earlier in work of

Faulkner’s.)

They generically give rise to N=1 superconformal
Chern-Simons theories.
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Complex reps

For a complex unitary representation V one has
ViV
and the corresponding 3-bracket is sesquibilinear

VxVxV -V

defining a class of hermitian 3-Leibniz algebras.



These include two well-known special cases:

® N=6 triple systems, where /z,y,z/—=-
[z,y,x[,and

¢ hermitian Lie triple systems,
corresponding to hermitian symmetric
spaces



The general case is a mixture of these two special

cases and gives rise generically to N=2
superconformal Chern-Simons theories.

As the name indicates, the V=6 triple systems give

rise to the N=6 Chern-Simons theories of
Aharony, Bergman, Jafferis and Maldacena.
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Embedding Lie (super)algebra

Both extreme cases of the complex Faulkner
construction are characterised by the fact that they
embed in a 3-graded metric complex Lie
(super)algebra:

gc=VotcpV

It is a Lie algebra in the case of the hermitian Lie triple

systems and a Lie superalgebra in the case of the N=6
triple system.



Quaternionic reps

The 3-bracket is now defined using the complex
symplectic structure v on V:

R:S*V — t¢
(R(z,y), X) = w(X -2,9)

[x,y, Z] — R(.Cl?,y) e



Quaternionic reps

The 3-bracket is now defined using the complex
symplectic structure v on V:

R:S*V — &

This is the Hessian of the
(R(z,y), X) = w(X - z,y) complex part of the
z,y,2] = R(z,y) - 2 HKLR moment map

associated to the linear

action of K on V.
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These include two well-known special cases:

® anti-3-Lie algebras, where /z,y,z/ is
totally symmetric, and

e anti-Lie triple systems, where
[w,y,z]+[y,z,w]+[z,a:,y]:0



The anti-3-Lie algebras correspond to quaternionic
Kahler symmetric spaces and embed in a 5-
graded complex metric Lie algebra.

g=CeadVa(lcaCh)aaVaCf

where e,f,h generate a 5p(1,C) Lie subalgebra and h

is the grading element. The rest of the Lie bracket is
given in terms of the complex symplectic form w and

the Faulkner map K.
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The anti-Lie triple systems give rise to N=/ and

N =5 superconformal Chern-Simons theories.

The difference between the N=4 and N=5

theories lies in the representation-theoretic
content of the matter, once the R-symmetry is
taken into account.

They also admit an embedding in a Lie
superalgebra.
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Dictionary

triple system R-symmetry

1 real

2 complex u(1)

3 quaternionic sp(1)

4 quaternionic anti-LTS sp(1)esp(1)
5 quaternionic anti-LTS sp(2)

6 complex BL4 su(4)

8 real 3-Lie 50(8)
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Einstein 7-manifold X admitting real Killing spinors

<

A stack of n coincident M2-branes at apex of C'(X)

<

d=11 SUGRA background AdS, x X with socn /©

Superconformal Chern-Simons+matter theory

<

Metric 3-Leibniz algebra of dimension growing with n



This suggests that to every 7-dimensional
Einstein manifold admitting real Killing spinors,
there is associated a certain triple system;
alternatively a metric Lie algebra and a faithful
unitary representation.

The dimension of the triple system should grow

as the manifold gets flatter.  (cf. geometric
quantisation)

45



