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Basic setup in Kahler Geometry

(M, [w]) is a polarized Kahler manifold where

n
w = — Z gagdwa /\d@5>0 on M.
a,f=1

In some local coordinate U C M, there is a local
potential function p such that

5= VaB=12---n.

A Kahler class

[w] = {wy | wp = w + V—109p > 0 on M}

where ¢ is a real valued function.



Ricci form:

Ric(w) —+/—100 log w™

—+/—100 log det (ga5> .

Scalar curvature;

_  ___af H2 3
R= =9 50w, 09 98t (905)

= —Aglogdet (gaB) :

The first Chern class is positive definite (resp:
negative definite) if

[Ric(w)] > (resp. <) O on M.



Calabi’s program

Calwy) = [ (R(wy) = B)? Wl

e Mininmize this functional in each Kahler
class.

e Critical points

aﬁ (9R iS

— Extremal Kahler metric: 8%8%

holomorphic.

— Constant Scalar curvature metric: R(wy) =

const.

— Kahler-Einstein metric: Ric(w) = \w;
where A = 1,0, —1.



Conjecture on KE metrics

E. Calabi: Does every Fano manifold with van-
ishing holomorphic vector fields admits KE met-
rics.

Yau: The existence of KE metrics in Fano
manifold is related to the stability of the un-
derlying polarization.

Yau-Tian-Donaldson conjecture: In algebraic
manifold (M, [w]), the existence of cscK met-
ric is equivalent to the K stability of (M, [w]).

An algebraic polarization is called K stable
if the generalized futaki invariant in the cen-
tral fiber in any non-trivial test configuration
IS negative.

This is first introduced by G. Tian in 1997 in
terms of special degeneration and extended for
more general setting by Donaldson.



T he existence of KE metrics

e 1976
— (1 =0,S. T. Yau, Calabi-Yau metric.

— (1 < 0, Existence of Kahler-Einstein
metric,
S. T. Yau and T. Aubin independently.

e 1988, C1 > 0 and n = 2, G. Tian, Kahler-
Einstein metric exists if and only if the Fu-
taki invariant vanishes.

e 2004, X. Zhu + X. J. Wang, Fano toric
manifold, Kahler-Einstein metric exists if
and only if the Futaki invariant vanishes.

e 2007, X. Chen, C. LeBrun and B. Weber:
There is a conformal Einstein metric in ev-
ery Fano surface.



e 2008, S. K. Donaldson, In Toric Kahler sur-
face, the existence of cscK metric if and
only if it is K stable among toric invariant
Kahler metrics.



Ricci flow

In 1982, R. Hamilton introduced the so called
Ricci flow:

I O]
He subsequently proved that any 3 manifold
with positive Ricci curvature can be deformed
into a standard S3 via Ricci flow.




On the Kahler Ricci flow

In canonical Kahler class with 1 > 0O, define

ofrp
J — 4 _ R _ 4 =
at - gz] Rz]? \v/ 7’7 ._7 17 27 7n

Evolution equation on curvatures:
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Brief remark on the Kahler Ricci flow

e H. D. Cao proved the flow exists globally

e S. Bando (dimension n = 3), N. Mok (gen-
eral dimension) proved that the positive bi-
sectional curvature is preserved under the
Kahler Ricci flow.

e (X.X. Chen + G. Tian, 2000) On any KE
manifold, if the initial metric has positive
bisectional curvature, then the Kahler Ricci
flow will converge exponentially fast to a
KE metric with constant bisectional cur-
vature.

e Perelman announced a proof of the con-
vergence of KR flow on KE manifold. A
written proof appear in JAMS by X. Zhu
+ G. Tian



Conjecture 1 (Hamilton-Tian) For Kdhler Ricci
flow initiated from any Kahler metric, it con-
verge sequentially in Cheeger-Gromov sense to
some KRS, with perhaps a different complex
structure, except a codimension 4 singularity.

Theorem 1 Hamilton-Tian’s conjecture holds
in dimension 2.

10



Theorem 2 Suppose {(M™,g(t)),0 <t < oo}
s a solution. If for every sequence t; — oo, by
passing to subsequence, we have (M, g(t;))(M,q),
where (M, g) is a KRS with codimension 4 sin-

gularities and the singularities is “nice”. Then
this flow is tamed.
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Theorem 3 Suppose {(M™,g(t)),0 <t < oo}
is a tamed Kahler Ricci flow solution. If o, 1 >
(n++)u' then o is uniformly bounded along this
flow. In particular, this flow converges to a KE
metric exponentially fast.

A well known fact (for comparison)

Theorem 4 If Tian's a— invariant > % then

the Kahler Ricci flow converges to KE metric
exponentially fast.



In view of these theorems, we need to check
the following two conditions:

e Whether the Kahler Ricci flow is a tamed
flow;

e \Whether the local a-invariants are big enough.

The second condition can be checked by purely
algebraic geometry method. The first condi-
tion is much weaker and we conjecture it al-
ways hold.



Theorem 5 In Fano surface, the Kahler Ricci
flow converges to a KRS.
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Perelman’s Canonical Neighborhood
theorem

Theorem 6 Suppose {(M3,9(t)),0 <t < T <
oo} is a Ricci flow solution which has a non-
collasping constant . For every e, there is an
ro(e, k) such that if Q = |Rm|(xqg,tg) > 7“62 ,
then the ball B, y(zo,e~1Q2) is diffeomor-

phic (by ¢) to a geodesic ball Bg(o)(y, e_lQ_%)
in a k-solution {(M,g),—oco < t < 0}. More-
over, up to the diffeomorphism ¢, the differ-
ence between g(t+tp) and §(t) in C* topology
is less than e for every k € [%], —2Q < t<0.
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A Ricci flow solution {(M,g(t))| — oo < t < 0}
is called a k solution if it satisfies:

1. Ancient.

2. Curvature operator nonnonegative.

3. k-noncollapsed.

4. M is a complete manifold.

5. R > 0 strictly. (This is the same thing as
nonflat.)
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What is ancient solution of the Kahler
Ricci flow? is its moduli space compact?
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Weak compactness

Theorem 7 Let M(v,6,\,Cgq,n) be the set of
Kahler Einstein metrics (M™, g) with

e Diamy(M) <6,
o [ar|Rmg|2 <A

Then M is precompact in the Gromov-Hausdorff
topology, and is compactified by including KE
orbifolds that satisfy the same conditions.
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Form of the equations

Einstein case: [Anderson], [BKN], [Tian]

ARM = RmxRm

For clarity we will consider mainly the Einstein

equation; in rough form this looks like
Au > —u?

where u = |Rm|.
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Ordinarily one assumes the scale-invariant quan-
tity [ |Rm |2 is bounded.

Consider Au > — fu. If one may use the Sobolev
inequality, then

feli=ucld allg>?2
n
féLp,somep>§:>u€L°O

With Au > —u?2, this theorem can't give us
pointwise bounds on wu.

Anderson (1989), BKN (1989), Tian (1990)
managed to exploit the equation’s non-linearity
to partially recover the L°° bounds.
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e-Regularity

T heorem
There exists numbers ¢g, C so that

/ IRM|2 < ¢
B(o,r)

implies

3N

sup |[Rm| < Cr—2 (/ |Rm|%>
B?”/Q T

The numbers ¢ and C depend on the Sobolev
constant.

Proof: Modified version of Moser iteration.
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What happen to ricci flow?

G. Perelman has the following fundmental the-
orem regarding KRF.

e the scalar curvature functional is uniformly
bounded;

e the volume ratio is uniformly bounded from
below:;

e the Diameter is uniformly bounded from
below:;

With an observation by E. Calabi, we have: L2
norm of Riem curvature is uniformly bounded
from above along the Kahler Ricci flow.
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Mimicing the Einstein metrics’ case, we study
the moduli sapce of space-time {(X™,g(t)),—1 <
t < 1} satisfying the following conditions.

o a%—(tt) = —Ricyp) + cpg(t) where cg is a con-
stant satisfying 0 < c¢g < c.

e sup |R] <o.
xxlo11] 9®

Vol (B
o Vol Byy(®r)) o X, t €

rm _

[—1,1], » € (O, 1].

° [y |Rm|97(t)d,ug(t) < E for all t € [-1,1].
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We denote such a moduli space as M(m,c,o,k, F).
Similar to the case of Einstein metrics, we are
able to show the following weak compactness
theorem.

Theorem 8 If {(X;,xz;,9:;(t)),—1 < t < 1} €
M(m,c,o,k, E) for every i, by passing to sub-
sequence, we have (X;, z;,9;(0))(X,z,g) for
some CO-orbifold X in Cheeger-Gromov sense.
If m is odd, then X is a smooth manifold.



In order to obtain Theorem 8, we need two
essential estimates: local volume ratio upper
bound and e-regularity, i.e.,

: 3 12
P8y 0)(p.5) IVEm|p™ < CU B, ) () HEml g0y 1™

m

whenever [p o (p.,) |Rm|g7(o) <e.



A sequence of spacetime {(X",g;(t)),—1 <t <
1} is called a refined sequence if the following
properties are satisfied for every z.

8 .
1. 2% = _Ricg, + cjg; and lim ¢; = 0.
ot 1—00

2. Scalar curvature norm tends to zero:

lim sup R\ . = 0.
1—00 (g.t)eX; x[—1,1] l |gZ(t)(x)

3. For every r, there exists N(r) such that
(X;, g;(t)) is k-noncollapsed on scale r for
every t € [—1,1] whenever i > N(r).

4. Energy uniformly bounded by E:

[x; 1Bm|2 gy < E, Vie[-1,1].



A refined sequence {(X;,g;(t)),—1 <t < 1} is
called an E-refined sequence if there exists a
constant H such that

J 1 [Rm| 2 \dpg 1) > €
Bl Rm| 2@y o

whenever (z,t) € X;x[—3,0] and |Rm|, i (z) >
H.

In short, an E-refined sequence is a refined se-
quence whose center-part-solutions satisfy en-
ergy concentration property.



An E-refined sequence {(X;,g,(t)),—1 <t <1}
is called an EV-refined sequence if there is a
constant K such that

VOlgi(t) fn%(t)(il?;r) < K

for every ¢ and (x,t) € X; X [—%,O], r € (0, 1].

In short, an EV-refined sequence is an E-refined
sequence whose center-part-solutions have bounded
volume ratios (from both sides).



Lemma 1 Every refined sequence is an E-refined
sequence.

Lemma 2 Every E- refined sequence is an EV-
refined sequence.



Lemma 3 Weak Compactness of an EV-
refined Sequence in C17-topology Suppose
{(X;,2;,9:(t)),—1 <t <1} is an EV-refined se-
quence, t; € [—%,O]. Then (X;,x;,9;,(t;)) con-
verges to a Ricci-flat multifold (X, x,g) in Gromov-

Hausdorff topology. Furthermore, there are
L

L(< Ng) pointspl,---,pl € X such that X\{ |} p®}
s=1
iIs smooth and the convergence is in Clﬁ-topo/ogy

away from {p°};_, for any v € (0,1). For

brevity, we denote this convergence as (X;, x;, g;(t;)) — i
(X,z,9).

The limit multifold (X, g) satisfies the following
estimates

e For every point p°(1 < s < L), the number
of cone-like ends at p 28
i.e., rank(HO(X,X\{pS})) < QTZK.

o [x|Rm|§dug < E.



In particular, (X, g) is a k-noncollapsed, Ricci-
flat ALE multifold.



