Sasakian Geometry:

 Recent Work of Kris Galicki CHARLES BOYER University of New Mexico
Sasaki-Kähler Sandwich

Cone

Sasakian
transverse

Motivation: Einstein Metrics

1. Are Einstein manifolds scarce or numerous?
2. On a given manifold are there many or few Einstein metrics?

Sketch Proof: of existence of many positive Einstein metrics on many $2 n+1$ dim'l manifolds ($n>1$).

Main ingredients:

1. Contact geometry
2. Algebraic geometry

Main Reference: C.P.B. and K. Galicki, Sasakian Geometry, Oxford UP, 2008.

The metric g is Einstein if $\mathrm{Ric}_{g}=\lambda g, \quad \lambda$ constant Three cases $\lambda>0, \lambda<0, \lambda=$ 0 . Here positive only $\lambda>0$.

- Contact Manifold(compact)

A contact 1-form η such that

$$
\eta \wedge(d \eta)^{n} \neq 0 .
$$

defines a contact structure

$$
\eta^{\prime} \sim \eta \Longleftrightarrow \eta^{\prime}=f \eta
$$

for some $f \neq 0$, take $f>0$. or equivalently a codimension 1 subbundle $\mathcal{D}=$ Ker η of TM.
($\mathcal{D}, d \eta$) symplectic vector bundle

Unique vector field ξ, called the Reeb vector field, satisfying

$$
\xi\rfloor \eta=1, \quad \xi\rfloor d \eta=0
$$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \Longleftrightarrow quasi-regular, $k=1 \leftrightarrow$ regular, otherwise irregular

Quasi-regularity is strong, most
contact 1-forms are irregular.

Contact bundle $\mathcal{D} \rightarrow$ choose almost complex structure J extend to Φ with $\Phi \xi=0$

Get a compatible metric

$$
g=d \eta \circ(\Phi \otimes 1)+\eta \otimes \eta
$$

Quadruple $\mathcal{S}=(\xi, \eta, \Phi, g)$ called contact metric structure

The pair (\mathcal{D}, J) is a strictly pseudoconvex almost CR structure.

Question: Which contact metrics are Einstein?

Definition: The structure $\mathcal{S}=$ (ξ, η, Φ, g) is K-contact if $£_{\xi} g=$ 0 (or $£_{\xi} \Phi=0$). It is Sasakian if in addition (\mathcal{D}, J) is integrable.

Note: Quasi-regular \Rightarrow K-contact.

Chm: (B-,Galicki) K-contact + Einstein \Rightarrow Sasaki-Einstein with $\lambda>0$.

Remark: The only known contact metric that is Einstein and not Sasakian is the flat metric on 3-D torus T^{3} (or quotient thereof). Blair: this is the only flat contact metric.
orbifold Boothby-Wang: Manifold M compact with (ξ, η, Φ, g)
quasi-regular \Rightarrow quotient $\mathcal{Z}=M / \mathcal{F}_{\xi}$ almost Kähler orbifold

Converse: $\mathcal{Z}=M / \mathcal{F}_{\xi}$ almost Kähler orbifold. ω Kähler form with $[\omega] \in H_{\text {orb }}^{2}(\mathcal{Z}, \mathbb{Z})$. Total space M of S^{1} orbibundle over \mathcal{Z} has K-contact structure. (\mathcal{Z}, ω) is projective algebraic orbifold \Longleftrightarrow (ξ, η, Φ, g) is Sasakian.
(\mathcal{Z}, ω) Kähler-Einstein (KE) with
$\lambda>0 \Longleftrightarrow(\xi, \eta, \Phi, g)$ is SasakiEinstein (SE), $\mathrm{Ric}_{g}=2 n g$.

Question: When do we have SE or KE metrics?

1. $c_{1}^{\text {orb }}(\mathcal{Z})>0$ (easy)
2. solve Monge-Ampère equation (hard, continuity method)

$$
\frac{\operatorname{det}\left(g_{i \bar{j}}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right)}{\operatorname{det}\left(g_{i \bar{j}}\right)}=e^{f-t \phi} .
$$

Tian: uniform boundedness

$$
\int_{\mathcal{Z}} e^{-\gamma t \phi_{t}} \omega_{0}^{n}<+\infty
$$

Many people Yau, Tian, Sin, Nadel, and most recently by Demailly and Kollár in orbifold category. alebraic geometry of orbifolds: local unif covers, ram index: m_{j} branch divisor: \mathbb{Q}-divisor

$$
\Delta:=\sum\left(1-\frac{1}{m_{j}}\right) D_{j}
$$

canonical orbibundle

$$
K_{\mathcal{Z}}^{o r b}=K_{\mathcal{Z}}+\sum\left(1-\frac{1}{m_{j}}\right)\left[D_{j}\right]
$$

Kawamata log terminal (kIt): For every $s \geq 1$ and holomorphic section $\tau_{s} \in H^{0}\left(\mathcal{Z}, \mathcal{O}\left(\left(K_{\mathcal{Z}}^{o r b}\right)^{-s}\right)\right.$ there is $\gamma>\frac{n}{n+1}$ such that $\left|\tau_{s}\right|^{-\gamma / s} \in$ $L^{2}(\mathcal{Z})$.

Theorem 2: $c_{1}^{\text {orb }}(\mathcal{Z})>0, \mathrm{kIt} \Rightarrow$ Sasaki-Einstein metric.

How to find them:

1. Links of weighted homogeneous polynomials. C.B., Galicki, Kollár, Nakamaye

Sasakian Geometry of Links

\mathbb{C}^{n+1} coordinates $\mathrm{z}=\left(z_{0}, \ldots, z_{n}\right)$ weighted \mathbb{C}^{*}-action
$\left(z_{0}, \ldots, z_{n}\right) \mapsto\left(\lambda^{w_{0}} z_{0}, \ldots, \lambda^{w_{n}} z_{n}\right)$,
weight vector $\mathbf{w}=\left(w_{1}, \cdots, w_{n}\right)$
with $w_{j} \in \mathbb{Z}^{+}$and $\operatorname{gcd}\left(w_{0}, \ldots, w_{n}\right)=1$.
f weighted homogeneous polynomial
$f\left(\lambda^{w_{0}} z_{0}, \ldots, \lambda^{w_{n}} z_{n}\right)=\lambda^{d} f\left(z_{0}, \ldots, z_{n}\right)$
$d \in \mathbb{Z}^{+}$is degree of f.
$0 \in \mathbb{C}^{n+1}$ isolated singularity.
link L_{f} defined by

$$
L_{f}=f^{-1}(0) \cap S^{2 n+1}
$$

$S^{2 n+1}$ unit sphere in \mathbb{C}^{n+1}

Special Case: Brieskorn-Pham poly. (BP)

$$
f\left(z_{0}, \ldots, z_{n}\right)=z_{0}^{a_{0}}+\cdots+z_{n}^{a_{n}}
$$

Fact: L_{f} has natural Sasakian structure with commutative diagram: Sasaki, Abe, Takahashi, C.B, Galicki

$$
\begin{array}{ccc}
L_{f} & \rightarrow & S_{\mathrm{w}}^{2 n+1} \\
\mid \pi & & \downarrow \\
\mathcal{Z}_{f} & \rightarrow & \mathbb{P}_{\mathbb{C}}(\mathrm{w}),
\end{array}
$$

horizontal arrows: Sasakian and Kählerian embeddings.
vertical arrows: orbifold Riemannian submersions. $S_{\mathrm{w}}^{2 n+1}$ weighted sphere $\mathbb{P}_{\mathbb{C}}(\mathrm{w})$ weighted projective space

Topology of Links

Milnor Fibration Theorem $\Rightarrow L_{f}$ is ($\mathrm{n}-2$)-connected. So topology is determined by $H_{n-1}\left(L_{f}, \mathbb{Z}\right)$. monodromy map h_{*} induced by S_{W}^{1} action \Rightarrow Alexander polynomial $\Delta(t)=\operatorname{det}\left(t \mathbb{I}-h_{*}\right) \rightarrow b_{n-1}\left(L_{f}\right)$ $=\#$ of factors of $(1-t)$ in $\Delta(t)$ Torsion: Orlik conjecture: Holds for BP's, and generally for dimensions 3 and 5.

BP: spheres- Brieskorn Graph Thm.

Sasaki-Einstein metrics
Positivity $\Rightarrow I=\left(\Sigma w_{i}-d\right)>0$ kIt estimates for L_{f}

$$
d\left(\sum w_{i}-d\right)<\frac{n}{n-1} \min _{i, j} w_{i} w_{j} .
$$

BP polyn: (better)
$1<\sum_{i=0}^{n} \frac{1}{a_{i}}<1+\frac{n}{n-1} \min _{i}\left\{\frac{1}{a_{i}}, \frac{1}{b_{i} b_{j}}\right\}$.
$a_{i} \mathrm{BP}$ exponents and

$$
b_{i}=\operatorname{gcd}\left(a_{i}, \operatorname{Icm}\left(a_{j} \mid j \neq i\right)\right)
$$

\exists other estimates. Positivity plus a kIt estimate \Rightarrow SE metric

SE Moduli: infinitesimal deformations

Chm L_{f} a link with index $I>0$ satisfying any kIt estimate. Then L_{f} admits a $\mu_{S E}$-dimensional famill of SE metrics where $\mu_{S E}$ equals

$$
2\left[h^{0}(\mathbb{C P}(\mathrm{w}), \mathcal{O}(d))-\sum_{i} h^{0}\left(\mathbb{C P}(\mathrm{w}), \mathcal{O}\left(w_{i}\right)\right)\right.
$$

$\left.+\operatorname{dim} \mathfrak{A x t}\left(\mathcal{Z}_{f}\right)\right]$
$N_{S E}=\#$ of deformation classes SE metrics.

Obstructions
Only known topological obstructions to Einstein metrics occur in dimension 4. Hitchin-Thorpe and more LeBrun

There are obstructions to SE metrics: Gauntlett,Martelli,Sparks,Yau Estimate of Lichnerowicz \Rightarrow if $I>n \min _{i} w_{i}$ then \nexists SE metrics. Only applies to KE orbifolds!
Cases when estimate is sharp:
(Ghigi-Kollár) \exists SE metric \Longleftrightarrow $I<n \min _{i} w_{i}$ only homotopy spheres.

The Results

Homotopy Spheres:Kervaire,Milnor

 $b P_{2 n}=$ group of homotopy spheres $S^{2 n-1}$ that bound a parallelizable manifold. $b P_{8}=\mathbb{Z}_{28}, b P_{12}=$ $\mathbb{Z}_{992}, b P_{16}=\mathbb{Z}_{8128}, b P_{4 n+2}=0$ or $\mathbb{Z}_{2} ; b P_{6}=b P_{14}=b P_{30}=0$. (B, Galicki,Kollár)- Each 28 diffeo types of S^{7} admots hundreds of SE metrics. Largest $\mu_{S E}=82$, standard S^{7}.
- All 992 diffeo types in $b P_{12}$ and all 8128 diffeo types in $b P_{16}$ admit SE metrics.
- All elements of $b P_{4 n+2}$ admit SE metrics.

Conjecture: All elements of $b P_{2 n}$ admit SE metrics.

- Both $N_{S E}$ and $\mu_{S E}$ grow double exponentially with dimension. Reason for growth: Sylvester's sequence determined by $c_{k+1}=$ $1+c_{0} \cdots c_{k}$ begins as $2,3,7,43,1807$, 3263443, 10650056950807, ...

Sequences $\mathrm{a}=\left(a_{0}=c_{0}, \ldots, a_{n-1}=\right.$ $\left.c_{n-1}, a_{n}\right)$ with $c_{n-1}<a_{n}<c_{0} \cdots c_{n-1}$ give SE metrics

Examples:

(1) $N_{S E}\left(S^{13}\right)>10^{9}$ and
$\mu_{S E}\left(S^{13}\right)=21300113901610$
(2) $N_{S E}\left(S^{29}\right)>5 \times 10^{1666}$ and $\mu_{S E}\left(S^{29}\right)>2 \times 10^{1667}$

Conjecture: Both $N_{S E}\left(S^{2 n-1}\right)$ and $\mu_{S E}\left(S^{2 n-1}\right)$ are finite.

Sasaki Geometry Dimension 5

Smale-Barden classification: 5manifolds M^{5} with $\pi_{1}\left(M^{5}\right)$ trivrial. Assume spin \Rightarrow Stale BUILDING BLOCKS

$$
M_{\infty}=S^{2} \times S^{3}, M_{1}=S^{5}
$$

$M_{j}, \quad H_{2}\left(M_{j}, \mathbb{Z}\right)=\mathbb{Z}_{j} \oplus \mathbb{Z}_{j}$

$$
M^{5}=M_{k_{1}} \# \cdots \# M_{k_{s}}
$$

k_{i} divides k_{i+1} or $k_{i+1}=\infty$.

Which M^{5} admit Sasakian structures?

Not known generally. However, Kollár: write (p prime)

$$
H_{2}\left(M^{5}, \mathbb{Z}\right)=\mathbb{Z}^{k} \oplus \underset{p, i}{\oplus}\left(\mathbb{Z}_{p^{i}}\right)^{c\left(p^{i}\right)}
$$

Sasakian \Rightarrow
$\#\left\{i \mid c\left(p^{i}\right)>0\right\} \leq k+1$
Example: $M_{p}^{5} \# M_{p^{2}}^{5}$ is not Sasakian,
but both M_{p}^{5} and $M_{p^{2}}^{5}$ are.
M^{5} Sasakian \Rightarrow
$H_{2}\left(M^{5}, \mathbb{Z}\right)=\mathbb{Z}^{k} \oplus \Sigma_{i}\left(\mathbb{Z}_{m_{i}}\right)^{2 g\left(D_{i}\right)}$
where D_{i} branch divisor $=$ Remann surface genus $g\left(D_{i}\right)$ Kollár

Assume positive Sasakian: Kollár: $H_{2}\left(M^{5}, \mathbb{Z}\right)_{\text {tor }}$ must be $\mathbb{Z}_{m}^{2}, \mathbb{Z}_{2}^{2 n}, \mathbb{Z}_{3}^{4}, \mathbb{Z}_{3}^{6}, \mathbb{Z}_{3}^{8}, \mathbb{Z}_{4}^{4}, \mathbb{Z}_{5}^{4}$ Note $m=1 \Rightarrow$ no torsion. All such groups occur, but not all rat'I homology spheres. $M_{\infty} \# M_{30 k}$ admits SE metric, but $M_{30 k}$ does not! All the others do.
(B-,Galicki,Nakamaye; Kollár): $n M_{\infty}$ all admit SE metrics
$N_{S E}\left(n M_{\infty}\right)=\infty \forall n>0$.

Rational homology spheres $\left(\pi_{1}\right.$ trivial) (B-,Galicki; Kollár)
with $c_{1}^{o r b}>0 \Longleftrightarrow$
$n M_{2}, n>0, M_{m}, m \neq 30 k$,
$2 M_{3}, 3 M_{3}, 4 M_{3}, 2 M_{4}, 2 M_{5}$
all known to admit SE except $n M_{2}$ with $n \geq 8$ or $n=4$.
$N_{S E}\left(2 M_{5}\right)=N_{S E}\left(4 M_{3}\right)=1$ $\mu_{S E}\left(2 M_{5}\right)=6, \mu_{S E}\left(4 M_{3}\right)=14$ $N_{S E}\left(2 M_{4}\right)=2$ (Kollár)

Mixed types: $k M_{\infty} \# N, k>0, m>$
1; $N=$ a rat'l homology sphere as above, but now we can have $m=30 l$.
$m \geq 12 \Rightarrow k \leq 8$ GK
$k M_{\infty} \# M_{m}$ where $1 \leq k \leq 8$ and $m \geq 12$ have SE metrics, and
$N_{S E}\left(M_{\infty} \# M_{m}\right)=4 ;$
$N_{S E}\left(2 M_{\infty} \# M_{m}\right)=3$;
$N_{S E}\left(k M_{\infty} \# M_{m}\right)=2, k=3,4$;
$N_{S E}\left(k M_{\infty} \# M_{m}\right)=1, k=5, \ldots, 8$.
$N=4 M_{3}, 2 M_{5} \Rightarrow k=0$.
$N=2 M_{4} \Rightarrow k=0,1$. (Kollár)

- $M_{\infty} \# M_{m}$ has SE metrics for $m=2, \cdots, 7$.
- $M_{\infty} \# n M_{3}$ has SE metrics for $n=2,3$.
- $2 M_{\infty} \# M_{m}$ has SE metrics for $m=2, \cdots, 5$.
- $3 M_{\infty} \# M_{m}$ has SE metrics for $m=2,3,4,7,9,10$.
- $4 M_{\infty} \# M_{m}$ has SE metrics for $4 \neq m \geq 2$.
- $4 M_{\infty} \# 2 M_{2}$ has SE metrics.
- $5 M_{\infty} \# M_{m}$ has SE metrics for $m=2$. (B-,Nakamaye)
- $5 M_{\infty} \# 2 M_{2}$ has SE metrics - $6 M_{\infty} \# M_{m}$ has SE metrics for $m \geq 2$.
- $7 M_{\infty} \# M_{m}$ has SE metrics for $m \geq 3$.
- $8 M_{\infty} \# M_{m}$ has SE metrics for $m \geq 5$. (B-, Galicki)
SE unknown for $k M_{\infty} \# M_{m}$ with $k>8$ and $2 \leq m<12$.

Problem: Completeness of SE moduli. Relate to Einstein moduli (Koiso).

Higher Dimension

- Sasakian with pos Ricci curv on $2 k\left(S^{2 n-1} \times S^{2 n}\right)$ for different diffeo types. E.g. on all 28 diffeo classes for $2\left(S^{3} \times S^{4}\right)$.
SE for $222\left(S^{3} \times S^{4}\right)$ and 480 ($S^{3} \times$ S^{4}) (C.B., Galicki)
- SE metrics on $S^{2} \times S^{5}$ (C.B.,Galicki,Ornea)

