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1. Introduction: Basic Ideas and Scaling

Schrödinger equation on a Riemannian manifold (A, G) with a Potential

V ε : A → R that approximately confines to a submanifold (C, g).
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1. Introduction: Basic Ideas and Scaling

Rescaling to the microscopic variables

y = x/ε and n = N/ε yields
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1. Introduction: Basic Ideas and Scaling

. In the microscopic variables

. -the width of the potential is O(1),

. -derivatives of the solution are O(1),

. -derivatives of the metric are O(ε),

. -derivatives of the potential tangent to C

. are O(ε),
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1. Introduction: Basic Ideas and Scaling

In the microscopic variables (y, n) the Schrödinger equation thus reads

i ∂tΨ = −∆GεΨ + V (εy, n)ΨII .
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1. Introduction: Basic Ideas and Scaling

In the microscopic variables (y, n) the Schrödinger equation thus reads

i ∂tΨ = −∆GεΨ + V (εy, n)ΨII .

Going back to macroscopic variables (x = εy,N = εn) one finds

i ∂tΨ
ε = −ε2∆GΨε + V (x,N/ε)Ψε

II .
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1. Introduction: Basic Ideas and Scaling

In the microscopic variables (y, n) the Schrödinger equation thus reads

i ∂tΨ = −∆GεΨ + V (εy, n)ΨII .

Going back to macroscopic variables (x = εy,N = εn) one finds

i ∂tΨ
ε = −ε2∆GΨε + V (x,N/ε)Ψε

II .

For ε� 1 the solutions of this equation concentrate on the submanifold C.
Our goal is to derive an effective Schrödinger equation on C such that the

solutions ψε(t) of the effective equation approximate the solutions Ψε(t) of

the full equation in a suitable sense.
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1. Introduction: Applications

Applications

Molecular dynamics: In the Born-Oppenheimer approximation the nuclei

move in an effective potential given by the electronic energy surfaces.

Such surfaces often have pronounced valleys of the type considered here.
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1. Introduction: Applications

Applications

Molecular dynamics: In the Born-Oppenheimer approximation the nuclei

move in an effective potential given by the electronic energy surfaces.

Such surfaces often have pronounced valleys of the type considered here.

Quantum wave guides: Wave guides for single atoms with adiabatically va-

rying potentials are considered theoretically and recently also experimen-

tally.
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1. Introduction: Applications

Applications

Molecular dynamics: In the Born-Oppenheimer approximation the nuclei

move in an effective potential given by the electronic energy surfaces.

Such surfaces often have pronounced valleys of the type considered here.

Quantum wave guides: Wave guides for single atoms with adiabatically va-

rying potentials are considered theoretically and recently also experimen-

tally.

...
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2. Precise Formulation and Results

• (A, G) is a Riemannian manifold of dimension dimA = d+ k.

• C ⊂ A is a submanifold without boundary of dimension dim C = d.

• (C, g = G|C) is called the constraint manifold.

Effective dynamics for constrained quantum systems 24. October 2007



2. Precise Formulation and Results
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• (C, g = G|C) is called the constraint manifold.

• Bδ is an open, non-self-intersecting δ-tube around C.
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2. Precise Formulation and Results

• (A, G) is a Riemannian manifold of dimension dimA = d+ k.

• C ⊂ A is a submanifold without boundary of dimension dim C = d.

• (C, g = G|C) is called the constraint manifold.

• Bδ is an open, non-self-intersecting δ-tube around C.

.

. We construct a diffeomorphism

φ : Bδ → NC ,

. which is an isometry on Bδ/2.

. For δ � ε > 0 the solution

. lives in Bδ/2 up to exponentially

. small terms.
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2. Precise Formulation and Results

Problem:

Find approximate solutions of the Schrödinger equation

i ∂tΨ
ε = −ε2∆GΨε + V (x,N/ε)Ψε =: HεΨε

II

on H = L2(NC). Here ∆G is the pushforward of the Laplace-Beltrami ope-

rator on A.
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2. Precise Formulation and Results

Problem:

Find approximate solutions of the Schrödinger equation

i ∂tΨ
ε = −ε2∆GΨε + V (x,N/ε)Ψε =: HεΨε

II

on H = L2(NC). Here ∆G is the pushforward of the Laplace-Beltrami ope-

rator on A.

Assumption 1:

Let V : NC → R satisfy a number of technical conditions.
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2. Precise Formulation and Results

Basic idea: For x ∈ C define the normal/fiber Hamiltonian as

Hf(x) := −∆n + V (x, ·) on D(Hf(x)) ≡ D(Hf) ⊂ L2(Rk)

and let ϕ(x, n) be a normalized eigenfunction,

Hf(x)ϕ(x, ·) = E(x)ϕ(x, ·) .
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2. Precise Formulation and Results

Basic idea: For x ∈ C define the normal/fiber Hamiltonian as

Hf(x) := −∆n + V (x, ·) on D(Hf(x)) ≡ D(Hf) ⊂ L2(Rk)

and let ϕ(x, n) be a normalized eigenfunction,

Hf(x)ϕ(x, ·) = E(x)ϕ(x, ·) .

Then states in the subspace

P0 := {ψ(x)ϕ(x, n) : ψ ∈ L2(C, g)} ⊂ L2(NC)

should be approximately invariant in the sense that for Ψε|t=0 = ψε|t=0ϕ

the solution of the SE satisfies

Ψε(t, x) ≈ ψε(t, x)ϕ(x, n) ,

where ψε(t, x) solves an effective SE on C,

i ∂tψ
ε(t, x) = −ε2∆gψ

ε(t, x) + E(x)ψε(t, x)II .
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2. Precise Formulation and Results

Assumption 2:

Hf(x) has a simple eigenvalue E(x) such that

inf
x∈C

dist(E(x), Spec(Hf(x)) \ E(x) ) ≥ c > 0 .
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2. Precise Formulation and Results

Theorem 1: Let Emax <∞. There exist a Riemannian metric gεeff on C, a

unitary mapping

U0 : P0 → L2(C, gεeff) ,

a self-adjoint operator Hε
eff on L2(C, gεeff), C <∞ and ε0 > 0 such that for

all ε < ε0∥∥∥ (
e−iHεt − U∗0 e−iHε

efft U0

)
P0 χ(−∞,Emax](H

ε)
∥∥∥ < C ε (ε|t|+ 1) .
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2. Precise Formulation and Results

Theorem 1: Let Emax <∞. There exist a Riemannian metric gεeff on C, a

unitary mapping

U0 : P0 → L2(C, gεeff) ,

a self-adjoint operator Hε
eff on L2(C, gεeff), C <∞ and ε0 > 0 such that for

all ε < ε0∥∥∥ (
e−iHεt − U∗0 e−iHε

efft U0

)
P0 χ(−∞,Emax](H

ε)
∥∥∥ < C ε (ε|t|+ 1) .

The effective Hamiltonian is given by the quadratic form

〈ψ, Hε
eff ψ〉 =

∫
C

(
gεeff(pεeff ψ, p

ε
eff ψ) + E|ψ|2

)
dgεeff ,
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2. Precise Formulation and Results

Theorem 1: Let Emax <∞. There exist a Riemannian metric gεeff on C, a

unitary mapping

U0 : P0 → L2(C, gεeff) ,

a self-adjoint operator Hε
eff on L2(C, gεeff), C <∞ and ε0 > 0 such that for

all ε < ε0∥∥∥ (
e−iHεt − U∗0 e−iHε

efft U0

)
P0 χ(−∞,Emax](H

ε)
∥∥∥ < C ε (ε|t|+ 1) .

The effective Hamiltonian is given by the quadratic form

〈ψ, Hε
eff ψ〉 =

∫
C

(
gεeff(pεeff ψ, p

ε
eff ψ) + E|ψ|2

)
dgεeff ,

where
pεeff = iεd + ε 〈ϕ, idhϕ〉 ,
gεeff = g+ ε IIα(〈ϕ, nαϕ〉) ,

U∗0 : L2(C, gεeff) → H , ψ(x) 7→ ψ(x)ϕ(x, n) ·
√
dG/dgεeff
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2. Precise Formulation and Results

Theorem 2: Let Emax <∞. There exist a Riemannian metric gεeff on C, a

unitary mapping

Uε : Pε → L2(C, geff) ,

a self-adjoint operator Hε
eff on L2(C, geff), C <∞ and ε0 > 0 such that for

all ε < ε0 ∥∥∥ (
e−iHεt − Uε∗ e−iHε

efft Uε
)
Pε χ(−∞,Emax](H

ε)
∥∥∥ < C ε3 |t| .
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2. Precise Formulation and Results

Theorem 2: Let Emax <∞. There exist a Riemannian metric gεeff on C, a

unitary mapping

Uε : Pε → L2(C, geff) ,

a self-adjoint operator Hε
eff on L2(C, geff), C <∞ and ε0 > 0 such that for

all ε < ε0 ∥∥∥ (
e−iHεt − Uε∗ e−iHε

efft Uε
)
Pε χ(−∞,Emax](H

ε)
∥∥∥ < C ε3 |t| .

The effective Hamiltonian is given by the quadratic form

〈ψ, Hε
eff ψ〉 =

∫
C

(
gεeff(pεeff ψ, p

ε
eff ψ) + E|ψ|2

+ ε2M(pψ, pψ) + ε2 (VBH + Vgeom) |ψ|2
)
dgeff

where, e.g.,

Vgeom = −1
4|η|

2 + 1
2κC .

Effective dynamics for constrained quantum systems 24. October 2007



3. Comparison with Existing Results

Mitchell (Phys. Rev. A 2001); Froese, Herbst (CMP 2001):

(earlier Jensen, Koppe ’71; da Costa ’81–’86)
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3. Comparison with Existing Results

Mitchell (Phys. Rev. A 2001); Froese, Herbst (CMP 2001):

(earlier Jensen, Koppe ’71; da Costa ’81–’86)

These authors assume that

• the kinetic energy in the tangential direction is small, i.e. that

‖ εdxΨε‖2 = O(ε2) .
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Mitchell (Phys. Rev. A 2001); Froese, Herbst (CMP 2001):

(earlier Jensen, Koppe ’71; da Costa ’81–’86)

These authors assume that

• the kinetic energy in the tangential direction is small, i.e. that

‖ εdxΨε‖2 = O(ε2) .

• up to orthogonal transformations the confining potential is constant

along the manifold, i.e. that

V ε(x,N) = V ε(x0, φ(N)) for some φ ∈ SO(m) ;
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3. Comparison with Existing Results

Mitchell (Phys. Rev. A 2001); Froese, Herbst (CMP 2001):

(earlier Jensen, Koppe ’71; da Costa ’81–’86)

These authors assume that

• the kinetic energy in the tangential direction is small, i.e. that

‖ εdxΨε‖2 = O(ε2) .

• up to orthogonal transformations the confining potential is constant

along the manifold, i.e. that

V ε(x,N) = V ε(x0, φ(N)) for some φ ∈ SO(m) ;

Dell’Antonio, Tenuta (J. Phys. A 2006):

They construct approximate solutions having the form of sharply peaked

Gaussian wave packets for a slightly different scaling.

Effective dynamics for constrained quantum systems 24. October 2007



3. Comparison with Existing Results

Our result for small kinetic energies and constant eigenvalue:

For E ≡ const. and ‖εdψ‖2 = O(ε2) the Hamiltonian

〈ψ, Hε
eff ψ〉 =

∫
C

(
gεeff(pεeff ψ, p

ε
eff ψ) + E|ψ|2

+ ε2M(pεψ, pεψ) + ε2 (VBH + Vgeom) |ψ|2
)
dgeff

is reduced to

〈ψ, Hε
eff ψ〉 = ε2

∫
C

(
g(p1effψ, p

1
effψ) + (VBH + Vgeom) |ψ|2

)
dg+O(ε3) ,

which corresponds to the result of Mitchell.
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4. Comparison with classical mechanics

Rubin and Ungar ’57 find for the effective Hamiltonian function of a classical

particle

Heff(q‖, p‖) = g∗(p‖, p‖) + Veff(q‖)

with

Veff(q‖) =
k∑

j=1

Ij(q0, p0)ωj(q
‖) .

Here ωj(q
‖) are the normal frequencies of the confining harmonic potential

and Ij(q0, p0) is the initial action in this mode,

Ij(q, p) =
1

ωj(q‖)
g∗(p⊥j , p

⊥
j ) +

ωj(q
‖)

ε4
〈q⊥j , q

⊥
j 〉Rk .
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5. Strategy of the Proof

The main steps of the proof are

1. Expand metric locally near C and use exponential decay of normal

eigenfunctions.
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5. Strategy of the Proof

The main steps of the proof are

1. Expand metric locally near C and use exponential decay of normal

eigenfunctions.

2. Apply adiabatic perturbation theory in local coordinates

[ Martinez-Nenciu-Sordoni, Panati-Spohn-Teufel ].
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The main steps of the proof are

1. Expand metric locally near C and use exponential decay of normal

eigenfunctions.

2. Apply adiabatic perturbation theory in local coordinates

[ Martinez-Nenciu-Sordoni, Panati-Spohn-Teufel ].

3. Identify geometric terms in order to patch together local results.
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5. Strategy of the Proof

The main steps of the proof are

1. Expand metric locally near C and use exponential decay of normal

eigenfunctions.

2. Apply adiabatic perturbation theory in local coordinates

[ Martinez-Nenciu-Sordoni, Panati-Spohn-Teufel ].

3. Identify geometric terms in order to patch together local results.

Thank you!
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