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Main Motivation and Aims

The interaction between charged particles is usually
described by instantaneous pair potentials of Coulomb
type.

This is assumed (and it is an experimentally verified fact) to
be a good approximation if the particles move sufficiently
slowly.

On a more fundamental level, the particles interact through
the electromagnetic field they generate.

The main aim of the talk is to illustrate the derivation of the
Schrödinger equation with Coulomb potentials (and
second order corrections to them) starting from
nonrelativistic quantum electrodynamics.
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Smeared Charges: Ultraviolet Cutoff

Ultraviolet cutoff, no infrared cutoff. The particles have a charge
distribution:

%j = ejϕ(x), j = 1, . . . ,N; x ∈ R3

with form factor

ϕ̂(k) =

{
(2π)−3/2 |k | ≤ Λ ,

0 otherwise .
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Classical Equations of Motion

1
c
∂tB(x , t) = −∇× E(x , t),

1
c
∂tE(x , t) = ∇× B(x , t)−

N∑
j=1

ejϕ
(
x − qj(t)

) q̇j(t)
c

∇ · E(x , t) =
N∑

j=1

ejϕ
(
x − qj(t)

)
, ∇ · B(x , t) = 0,

ml q̈l(t) = el

[
Eϕ(ql(t), t)) +

q̇l(t)
c

× Bϕ(ql(t), t)
]
, l = 1, . . . ,N,

Eϕ(x , t) := (E ∗x ϕ)(x , t)
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Formal Limit c →∞ for the Classical Model

0 = −∇× E(x , t),

0 = ∇× B(x , t)− 0

∇ · E(x , t) =
N∑

j=1

ejϕ
(
x − qj(t)

)
, ∇ · B(x , t) = 0,

ml q̈l(t) = elEϕ(ql(t), t)) + 0, l = 1, . . . ,N

⇒The particles interact through a smeared Coulomb field

L. Tenuta Quasi-static Limits in NRQED



Particles Coupled to the Electromagnetic Field
Main Results

Comparison with the Weak Coupling Limit
Main Ideas of the Proof

Classical Model
Slowly Moving Particles
The quantum model

Two Interpretations of the Limit c →∞

c is a quantity with dimension ⇒ one should actually say
|v |/c → 0, v a typical velocity of the particles.

The limit |v |/c → 0 can be achieved in two ways: v fixed
and c →∞ or c fixed and v → 0.

In the classical equations of motion this is reflected by the
fact that the limit c →∞ is equivalent, up to rescaling of
time, to the limit of heavy particles:

ml → ε−2ml , t → ε−1t
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Quantum Case

Hilbert Space: H = Hp ⊗F
Hp = L2(R3 × Z2)

⊗N ; Z2 : spin of the electron
F = ⊕∞M=0 ⊗M

(s) L2(R3 × Z2); Z2 : helicity of the photon;

Unscaled Hamiltonian:

Hc =
∑N

j=1
1

2mj

[
σj ·

(
− i∇− 1√

c
ejAϕ(xj)

)]2

+Vϕ coul(x)+cHf

σj : Pauli matrix for thej-th electron,

Aϕ : transverse vector potential in the Coulomb gauge,

Vϕ coul : smeared Coulomb potential,

Hf : free field Hamiltonian
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Rescaled Hamiltonian in the Quantum Case

Hc =
∑N

j=1
1

2mj

[
σj ·

(
− i∇− 1√

c
ejAϕ(xj)

)]2

+Vϕ coul(x)+cHf

Scaling mj → ε−2mj , t → ε−1t (units c = 1) the Hamiltonian
becomes

Hε =
∑N

j=1
ε2

2mj

[
σj ·

(
− i∇− ejAϕ(xj)

)]2

+ Vϕ coul(x) + Hf

Since we look at the dynamics for times of order ε−1, the
Schrödinger equation is

iε∂tψ(t) = Hεψ(t)

L. Tenuta Quasi-static Limits in NRQED
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Rough Presentation of the Results

Our goal is to approximate the time evolution of the
reduced density matrix for the particles

ωp(t) := TrFω(t); ω(t) := e−itHε/εωeitHε/ε,

in terms of an effective evolution for the particles alone.

In a weak sense,

ωp(t) ' e−itHε
p /εωp(0)eitHε

p /ε .

Hε
p contains the effective Coulomb interaction between the

particles and second order corrections (Darwin term and
effective mass for the electron).
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Existence of Adiabatically Decoupled Subspaces

Theorem
There exist approximate M-photons dressed projectors which
are almost invariant for the dynamics.∥∥[e−itHε/ε,Pε

M ]χ(Hε)
∥∥
L(H )

≤ C
√

M + 1|t |ε
√

log(ε−1).

The projectors Pε
M are associated to the M-photons

subspaces of the Fock space by a unitary mapping.

To have a uniform decoupling, we choose initial states of
uniformly bounded energy, χ ∈ C∞

0 (R).
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Effective Equation for the Reduced Density Matrix

Theorem

Given an observable for the particles, S ∈ L(Hp), and a density
matrix ω ∈ I1(Pε

Mχ(Hε)H ) whose time evolution is defined by

ω(t) := e−itHε/εωeitHε/ε,

then

TrH

((
S ⊗ 1F

)
ω(t)

)
= TrHp

(
Se−itHε

p /εTrF (ω)eitHε
p /ε

)
+

+O(ε3/2|t |)(1− δM0) +O
(
ε2 log(ε−1)(|t |+ |t |2)

)
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The Effective Hamiltonian

Hε
p =

N∑
j=1

1
2mj

p̂2
j + Vϕ coul + ε2Vdarw,

Vdarw = −
N∑

l,j=1

ejel

mjml

∫
R3

dk
|ϕ̂(k)|2

2|k |2
eik ·xj p̂j · (1− κ⊗ κ)p̂le

−ik ·xl .

Darwin potential: electromagnetic correction to the mass
and velocity dependent term, due to retardation effects.

No spin dependent term. The limit c →∞ gives also a spin
dependent potential Vspin.
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Radiated Energy

The subspaces Pε
M are only approximately invariant. A

system starting in the dressed vacuum will make a
transition emitting a free photon.
The radiated power, for a system starting in the subspace
Pε

0 is given by

Erad(t) = 〈Ψrad(t),HfΨrad(t)〉,

Prad(t) =
d
dt

Erad(t) ∼=
ε3

3π2 〈ψ,OpW
ε

(
|D̈(t)|2

)
ψ〉Hp.

D(s; x ,p) =
∑N

j=1
ej
mj

xcl
j (s; x ,p)

mj ẍcl
j (s; x ,p) = −∇xj Vϕ coul(xcl(s; x ,p)),

xcl
j (0; x ,p) = xj , ẋcl

j (0; x ,p) = pj
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mj ẍcl
j (s; x ,p) = −∇xj Vϕ coul(xcl(s; x ,p)),

xcl
j (0; x ,p) = xj , ẋcl
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The Case c →∞

The limit c →∞ for the unscaled Hamiltonian Hc can be
treated using methods of the weak coupling limit theory.

Theorem (Spohn 2004)

lim
c→∞

‖(e−iHcc2t − e−iHdarwc2t)ψ ⊗ ΩF‖H = 0,

where

Hdarw =
N∑

j=1

1
2mj

p2
j + Vϕ coul + c−2Vdarw + c−2Vspin,

Vspin = −
N∑

j,l=1

ejel

12mlmj
σj · σl

∫
R3

dk |ϕ̂(k)|2eik ·(xj−xl ),
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Operator Valued Symbols

Hε =
∑N

j=1
ε2

2mj

[
σj ·

(
− i∇− ejAϕ(xj)

)]2

+ Vϕ coul(x) + Hf

Hε is the Weyl quantization of an operator valued
semiclassical symbol, acting on the Fock space F .

Hε = OpW
ε (h(p,q))

h(p,q) = h0(p,q) + εh1(p,q) + ε2h2(p,q)

h0(p,q) =
N∑

j=1

1
2mj

p2
j + Vϕ coul(q) + Hf

h1(p,q) = −
N∑

j=1

ej

mj
pj · Aϕ(qj)
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Absence of Spectral Gap

The main problem is that the principal symbol

h0(p,q) =
N∑

j=1

1
2mj

p2
j + Vϕ coul(q) + Hf

has no spectral gap, due to the free field Hamiltonian Hf .
The strategy to cope with this problem is

Introduce an infrared cutoff σ, with plays the role of an
effective gap.
Apply space-adiabatic perturbation theory to the infrared
cutoff Hamiltonian Hε,σ, which depends on two parameters.
Show that one can eliminate the cutoff without destroying
the approximation.
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Unitary Dressing Operator

For Hε,σ one can construct a unitary dressing operator U ,
which can be expanded in powers of ε with σ-dependent
coefficients, which are at most logarithmically divergent.

U =
∞∑

j=0

εjuj(σ)

The dressed Hamiltonian, Hdres := U Hε,σU ∗, can also be
expanded in a convergent power series in ε with
logarithmically divergent coefficients.

The different coefficients correspond to different physical
effects, which are now clearly separated
according to their magnitude in ε.
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