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Motivation (Leitmotiv)

Question:

Is there a theory of solitary waves on networks?

In particular:

Can one split a solitary wave into several solitary waves at junctions?

Possible applications in

Optical fibres
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Motivation

Example (A desideratum):
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An incoming solitary wave from the left approaching a node
and then being split into 3 outgoing solitary waves

one of which is a reflected wave
and two of which are transmitted waves
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Metric graphs

Definition: A metric graph G is a finite collection of half lines and
intervals of given lengths with an identification of some of its
endpoints (=vertices)
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A graph with n = 6 external lines and m = 8 internal lines
G is a metric space:

There is the unique notion of a distance between two points
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Analysis

It makes sense to speak of

1 Functions on the graph

2 Measureable functions

3 Lebesgue integration

4 Continuous functions

5 Contiouous functions away from the vertices

6 Differentiation

7 Differentiable functions on the graph

8 Differentiable functions away from the vertices

9 Infinitely differentiable functions away from the vertices and with
compact support

Call the last set of functions (a linear space) Cc .
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Dirac Operator

Forms on G :

f = f0 + f1dx =

(
f0
f1

)
, f0, f1 ∈ Cc

Differentiation d and Codifferentiation δ

f ′ =
d

dx
f , f ∈ Cc

d f = 0 + f ′0dx =

(
0
f ′0

)
δf = −f ′1 + 0dx =

(
−f ′1
0

)
Properties: d2 = 0, δ2 = 0

Call the linear space of such f’s Ωc = Cc ⊕ Cc
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Dirac Operator

The Dirac operator is

D = d + δ

which reads as

Df =

(
−f ′1
f ′0

)
and hence the Dirac-Laplace operator is

D2f = (dδ + δd)f = −
(

f ′′0
f ′′1

)
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Dirac Operator

On metric graphs the Dirac operator will play the role of

d
dx

Recall:
On the real line this is the infinitesimal generator of translations

associated to a

conserved quantity

namely the

momentum
in

integrable systems
.
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Boundary conditions

For any f ∈ Ωc define

[f] =

(
[f0]
[f1]

)
∈ C2(n+2m)

to be the set of boundary values at the vertices of the graph G. n is the
number of external lines (= half lines), m is the number of internal lines
(=finite intervals). Consider boundary conditions of the form

A[f0] + B[f1] = 0

where A and B are (n + 2m)× (n + 2m) matrices. Call the resulting set of
f’s satisfying these linear conditions Ωc(A,B). Based on results by
Kostrykin, Schrader on Laplace operators on G there is
Theorem[Bolte, Harrison]: If the (n + 2m)× 2(n + 2m) matrix (A,B)

1 has maximal rank =n + 2m
2 and AB† is hermitean,

then D restricted to Ωc(A,B) is essentially selfadjoint on the Hilbert space
of square integrable forms.
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Boundary conditions: An interpretation

Consider the map

τ : Ωc → Cc ⊕ Cc

f 7→ τ(f) = (f0 + if1, f0 − if1)

such that
τ(Df) = τ(D)τ(f)

holds with
τ(D) = i

d

dx
⊕−i

d

dx

According to von Neumann’s theory of selfadjoint
extensions involving the concept of deficiency indices

1 i d
dx has deficiency indices (m, n + m)

2 −i d
dx has deficiency indices (n + m,m) and hence

3 i d
dx ⊕−i d

dx has deficiency indices (n + 2m, n + 2m)
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Differential algebra

Consider 2× 2 matrices of the form

a =

(
a0 −a1

a1 a0

)
, a0, a1 ∈ Cc

This set is isomorphic to the set Ωc of smooth forms and constitutes a
commutative ring Rc under matrix multiplication (with complex multiples
of a unit added).
Also Ωc is a module of this ring via

af =

(
a0 −a1

a1 a0

) (
f0
f1

)
=

(
a0f0 − a1f1
a1f0 + a0f1

)
The Dirac operator defines a map on this ring also denoted by D

Da =

(
−a′1 −a′0
a′0 −a′1

)
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Differential algebra

The following Leibniz rules are satisfied

D(af) = (Da)f + a(Df), D(ab) = (Da)b + a(Db)

Following the approach to integrable systems initiated by Gel’fand, Dikii
we therefore introduce the following ring of differential operators

Rc [D] =

{
X =

∑
n=0

d
xnD

n
∣∣∣ xn ∈ Rc

}
.

and the ring of pseudo-differential operators

Rc{D} =

{
X =

∑
n=−∞

d
xnD

n
∣∣∣ xn ∈ Rc

}
,

objects first introduced by Schur (1904). d is called the order of X.
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Differential algebra

The composition rules are such that the following relations involving D−1

are valid
Dk ◦ D l = Dk+l , k, l ∈ Z

D−1 ◦ a =
∞∑

k=0

(−1)k(Dk a)D−k−1.
(1)

Properties

1 The kernel KerD = {a | Da = 0} of D consists of those a whose
entries are piecewise constant functions on G

2 The set

Ker D{D} =

{
n∑

k=−∞
akDk | ak ∈ Ker D

}
is a commutative subring of Rc{D}.

3 The center Z(Rc{D}) of Rc{D} equals Ker D

Kostrykin, Schmidt, Schrader (FU-Berlin) Integrable systems on metric graphs Rome, October 29, 2007 14 / 21



Differential algebra

Definition: A Lax operator L is a differential operator, for which the
coefficient of the leading order equals 1.

Example: L = D2 + q (KdV)

The following result in its classical form goes back to Schur
Theorem: Consider any pseudo differential operator X, whose order
equals d and whose coefficient of the leading order equals one. Then X
has a unique dth root of the form

X
1
d = D + b0 + b1D

−1 + · · ·

The commutator ZRc{D}(X) of X in Rc{D} is the commutative ring of
formal Laurent series

m∑
k=−∞

ukX
k/d , uk ∈ Ker D.
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Commuting flows

The discussion of Wilson on commuting flows can be taken over almost
verbatim.
Definition : An evolutionary derivation ∂ is a map on Rc , which
commutes with D:

∂Da = D∂a

By setting ∂D = 0 this map ∂ extends to Rc{D} such that with
adDX = [D, X ] the relation [∂, adD ] = 0 is valid.

Definition: For given X =
∑d

−∞ xnD
n

RKer D,X = Ker D[xd , xd−1, · · · ,D xd ,D xd−1, · · · ,D2 xd ,D2 xd−1, · · · ]

is the polynomial algebra over Ker D generated by the xk and their
derivatives.
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Commuting flows

Theorem: If the coefficient of the leading term of X equals one, then

ZRKer D,X{D}(X) = ZRc{D}(X).

Definition: For given X =
∑d

−∞ xnD
n the expression X+ =

∑d
0 xnD

n is
called its differential operator part.

For any P ∈ ZRc{D}(X), define the evolutionary derivation ∂P on the ring

RKer D,X by ∂Pxk = coefficient of Dk in [P+,X].
The following is an almost verbatim transcription of a result by Wilson

Theorem: Let a Lax operator L be given. For any P,Q ∈ ZRc{D}(L) the
derivations ∂P and ∂Q on RKer D,L{D} commute, [∂P, ∂Q] = 0. Any ∂P

commutes with the derivation adD .
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KdV flow

The

Lax pair

for the KdV flow is given by the Lax operator itself and a special choice
of the evolutionary derivation

L = LM,q = D2
M + q

B = BM,q = 4[L]
3/2
+ = 4D3

M + 3 (DM q + q DM)

DM denotes the self adjoint Dirac operator given by the boundary
condition M = M(A,B) discussed above.
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KdV flow

Theorem: If q ∈ Rc is hermitian, then both LM,q and BM,q are
selfadjoint on the Hilbert space of square integrable forms. If LM(t),q(t) is
a solution to the Lax equation

i∂tLM(t),q(t) =
[
BM(t),q(t),LM(t),q(t)

]
then the isospectral property

LM(t),q(t) = VM(·),q(·)(t)LM(t=0),q(t=0)VM(·),q(·)(t)
−1

holds where the unitary VM(·),q(·)(t) satisfies

i∂tVM(·),q(·)(t) = BM(t),q(t)VM(·),q(·)(t)

with initial condition VM(·),q(·)(t = 0) = I.
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Outlook

Things to be done (Desiderata)
1 Improved understanding of the role of boundary conditions. In

particular in the KdV case: In analogy to the flow of the potential
q(t), is there a flow M(t) in the space of boundary conditions?

2 A construction of a symplectic structure 1

3 A discussion of the conserved quantities
4 Can one use inverse methods from quantum scattering theory to

solve the evolution equations?
5 Discuss further examples: Nonlinear Schrödinger equation (NLS)
6 Find explicit solitary wave solutions
7 Find explicit kink solutions

1The gate from the Gel’fand-Dikii formulation to the sympectic formulation of the
standard KdV equations was given by M. Adler. In the present context we have so far
not been able to find the corresponding key.
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