The insulating state of matter: A geometrical theory

Raffaele Resta

Dipartimento di Fisica Teorica, Università di Trieste, and CNR-INFM DEMOCRITOS National Simulation Center, Trieste

MAQSA workshop, Rome, October 2007

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction
■ Generalities: "twisted Hamiltonian"
■ Metric vs. longitudinal conductivity
■ Special case: Crystalline system of independent electrons
■ Curvature vs. transverse (Hall) conductivity

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction
■ Generalities: "twisted Hamiltonian"

- Metric vs. longitudinal conductivity
- Special case: Crystalline system of independent electrons
- Curvature vs. transverse (Hall) conductivity

The milestone paper W. Kohn, Phys. Rev. 133, A171 (1964)

Theory of the Insulating State*

Kalder Echy
©
(Rearived SD August. 10in)

Theory of the insulating state before quantum mechanics

Insulator
 (Lorentz, 1909)

Metal
(Drude, 1900)

Theory of the insulating state: Quantum mechanics (Bloch 1928, Wilson 1931)

Insulator

Metal

Theory of the insulating state, revisited [starting with R. Resta and S. Sorella, Phys Rev. Lett. 82, 370 (1999)]

Theory of the Insulating State*

Waltar Echy

(Ryarived SD Ausust. 101ik);

- Kohn's original message:

The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
■ Present formulation:
The "type of organization" is a geometrical property of the
many-electron ground-state wavefunction.

Theory of the insulating state, revisited [starting with R. Resta and S. Sorella, Phys Rev. Lett. 82, 370 (1999)]

Theory of the Insulating State*

Waltar Echy

■ Kohn's original message:
The insulating behavior reflects a certain type of organization of the electrons in the ground state.

- Present formulation:

The "type of organization" is a geometrical property of the many-electron ground-state wavefunction.

Theory of the insulating state, revisited [starting with R. Resta and S. Sorella, Phys Rev. Lett. 82, 370 (1999)]

Theory of the Insulating State*

Waltar Echy

Abstract

■ Kohn's original message:

The insulating behavior reflects a certain type of organization of the electrons in the ground state.
■ Present formulation:
The "type of organization" is a geometrical property of the many-electron ground-state wavefunction.

1992 onwards: The "Modern theory of polarization"

A genuine change of paradigm, based on a geometric phase (Berry phase)

■ Phenomenologically:
■ Metal: Has a finite dc conductivity

- Insulator: Has a vanishing dc conductivity (at zero temperature!).

■ But also....
■ Metal: Macroscopic electrical polarization is trivial: It is not a bulk effect.

- Insulator: Macroscopic polarization is nontrivial: It is a bulk effect, material dependent.

In this talk:
Focus on conductivity, not on polarization.

1992 onwards: The "Modern theory of polarization"

A genuine change of paradigm, based on a geometric phase (Berry phase)

■ Phenomenologically:
■ Metal: Has a finite dc conductivity
■ Insulator: Has a vanishing dc conductivity

■ But also....
■ Metal: Macroscopic electrical polarization is trivial: It is not a bulk effect.
■ Insulator: Macroscopic polarization is nontrivial: It is a bulk effect, material dependent.

In this talk:
Focus on conductivity, not on polarization.

1992 onwards: The "Modern theory of polarization"
 A genuine change of paradigm, based on a geometric phase (Berry phase)

■ Phenomenologically:
■ Metal: Has a finite dc conductivity
■ Insulator: Has a vanishing dc conductivity (at zero temperature!).

■ But also....
■ Metal: Macroscopic electrical polarization is trivial: It is not a bulk effect.
■ Insulator: Macroscopic polarization is nontrivial: It is a bulk effect, material dependent.

In this talk:
Focus on conductivity, not on polarization.

1992 onwards: The "Modern theory of polarization"
 A genuine change of paradigm, based on a geometric phase (Berry phase)

■ Phenomenologically:
■ Metal: Has a finite dc conductivity
■ Insulator: Has a vanishing dc conductivity (at zero temperature!).

■ But also....

- Metal: Macroscopic electrical polarization is trivial: It is not a bulk effect.
■ Insulator: Macroscopic polarization is nontrivial: It is a bulk effect, material dependent.

In this talk:
Focus on conductivity, not on polarization.

1992 onwards: The "Modern theory of polarization" A genuine change of paradigm, based on a geometric phase (Berry phase)

■ Phenomenologically:
■ Metal: Has a finite dc conductivity
■ Insulator: Has a vanishing dc conductivity (at zero temperature!).

■ But also....
■ Metal: Macroscopic electrical polarization is trivial: It is not a bulk effect.
■ Insulator: Macroscopic polarization is nontrivial: It is a bulk effect, material dependent.

In this talk:
Focus on conductivity, not on polarization.

1992 onwards: The "Modern theory of polarization" A genuine change of paradigm, based on a geometric phase (Berry phase)

■ Phenomenologically:
■ Metal: Has a finite dc conductivity
■ Insulator: Has a vanishing dc conductivity (at zero temperature!).

■ But also....
■ Metal: Macroscopic electrical polarization is trivial: It is not a bulk effect.
■ Insulator: Macroscopic polarization is nontrivial: It is a bulk effect, material dependent.

In this talk:
Focus on conductivity, not on polarization.

The old paradigm: Before 1992 (Feynman Lectures in Physics, Vol. 2)

Fig. 11-8. A complex crystal lattice con have a permonent intrinsic polarization P .

The old paradigm: Before 1992 (Feynman Lectures in Physics, Vol. 2)

Fig. 11-8. A complex crystal lattice con have a permonent intrinsic polarization P.

The old paradigm: Before 1992 (Feynman Lectures in Physics, Vol. 2)

Fig. 11-8. A complex crystal lattice eon hove a permonent intrinsic polarization P .

The "Modern theory of polarization"

■ Macroscopic polarization has nothing to do with the periodic charge of a polarized dielectric (contrary to common statements in most textbooks).

- Polarization can be expressed as a geometric phase (Berry phase) of the electronic wavefunction.

■ Nowadays, the Berry phase is computed as a standard option within all the electronic-structure codes on the market.

- This gives an idea of how, when, and why geometrical concepts entered electronic-structure theory in condensed matter.

The "Modern theory of polarization"

■ Macroscopic polarization has nothing to do with the periodic charge of a polarized dielectric
(contrary to common statements in most textbooks).

- Polarization can be expressed as a geometric phase (Berry phase) of the electronic wavefunction.

■ Nowadays, the Berry phase is computed as a standard option within all the electronic-structure codes on the market.

- This gives an idea of how, when, and why geometrical concepts entered electronic-structure theory in condensed matter.

The "Modern theory of polarization"

■ Macroscopic polarization has nothing to do with the periodic charge of a polarized dielectric (contrary to common statements in most textbooks).

- Polarization can be expressed as a geometric phase (Berry phase) of the electronic wavefunction.

■ Nowadays, the Berry phase is computed as a standard option within all the electronic-structure codes on the market.
\square This gives an idea of how, when, and why geometrical concepts entered electronic-structure theory in condensed matter.

The "Modern theory of polarization"

■ Macroscopic polarization has nothing to do with the periodic charge of a polarized dielectric (contrary to common statements in most textbooks).

- Polarization can be expressed as a geometric phase (Berry phase) of the electronic wavefunction.
- Nowadays, the Berry phase is computed as a standard option within all the electronic-structure codes on the market.
- This gives an idea of how, when, and why geometrical concepts entered electronic-structure theory in condensed matter.

The "Modern theory of polarization"

■ Macroscopic polarization has nothing to do with the periodic charge of a polarized dielectric (contrary to common statements in most textbooks).

- Polarization can be expressed as a geometric phase (Berry phase) of the electronic wavefunction.

■ Nowadays, the Berry phase is computed as a standard option within all the electronic-structure codes on the market.

- This gives an idea of how, when, and why geometrical concepts entered electronic-structure theory in condensed matter.

The "Modern theory of polarization"

■ Macroscopic polarization has nothing to do with the periodic charge of a polarized dielectric (contrary to common statements in most textbooks).

- Polarization can be expressed as a geometric phase (Berry phase) of the electronic wavefunction.

■ Nowadays, the Berry phase is computed as a standard option within all the electronic-structure codes on the market.

■ This gives an idea of how, when, and why geometrical concepts entered electronic-structure theory in condensed matter.

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction
■ Generalities: "twisted Hamiltonian"

- Metric vs. longitudinal conductivity
- Special case: Crystalline system of independent electrons
- Curvature vs. transverse (Hall) conductivity

Bures distance

D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

- A parametric quantum Hamiltonian: $H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle$
- Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;

■ Arbitrary phase factor $\mathrm{e}^{i \theta(\mathbf{k})}$: "gauge" freedom.

- Distance between quantum states
$D_{12}^{2}=\inf { }_{\theta_{1} \theta_{2}}\left\|\psi_{0}\left(\mathbf{k}_{1}\right) \mathrm{e}^{i \theta_{1}}-\psi_{0}\left(\mathbf{k}_{2}\right) \mathrm{e}^{i \theta_{2}}\right\|$
$D_{12}^{2}=2-2\left|\left\langle\psi_{0}\left(\mathbf{k}_{1}\right) \mid \psi_{0}\left(\mathbf{k}_{2}\right)\right\rangle\right|^{2}$
■ Manifestly gauge invariant.
- Projectors:
$P(\mathbf{k})=\left|\Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k})\right|, \quad Q(\mathbf{k})=1-P(\mathbf{k})$
■ Distance between projectors:
$D_{12}^{2}=2-2 \operatorname{tr}\left\{P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)\right\}$.

Bures distance

D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

- A parametric quantum Hamiltonian: $H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle$
$■$ Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;
- Arbitrary phase factor $\mathrm{e}^{i \theta(\mathrm{k})}$: "gauge" freedom.
- Distance between quantum states

■ Manifestly gauge invariant.

- Projectors:
$P(\mathbf{k})=\left|\Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k})\right|, \quad Q(\mathbf{k})=1-P(\mathbf{k})$
■ Distance between projectors:
$D_{12}^{2}=2-2 \operatorname{tr}\left\{P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)\right\}$.

Bures distance

D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

- A parametric quantum Hamiltonian:

$$
H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle
$$

$■$ Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;
■ Arbitrary phase factor $\mathrm{e}^{i \theta(\mathbf{k})}$: "gauge" freedom.

- Distance between quantum states

■ Manifestly gauge invariant.

- Projectors:

■ Distance between projectors: $D_{12}^{2}=2-2 \operatorname{tr}\left\{P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)\right\}$.

Bures distance

D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

- A parametric quantum Hamiltonian:

$$
H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle
$$

$■$ Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;
■ Arbitrary phase factor $\mathrm{e}^{i \theta(\mathbf{k})}$: "gauge" freedom.

- Distance between quantum states $D_{12}^{2}=\inf _{\theta_{1} \theta_{2}}\left\|\psi_{0}\left(\mathbf{k}_{1}\right) \mathrm{e}^{i \theta_{1}}-\psi_{0}\left(\mathbf{k}_{2}\right) \mathrm{e}^{i \theta_{2}}\right\|$

■ Manifestly gauge invariant.

- Projectors:
$P(\mathbf{k})=\left|\Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k})\right|$
$Q(\mathbf{k})=1-P(\mathbf{k})$
- Distance between projectors
$D_{12}^{2}=2-2 \operatorname{tr}\left\{P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)\right\}$.

Bures distance

D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

- A parametric quantum Hamiltonian:

$$
H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle
$$

$■$ Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;
■ Arbitrary phase factor $\mathrm{e}^{i \theta(\mathbf{k})}$: "gauge" freedom.

- Distance between quantum states
$D_{12}^{2}=\inf _{\theta_{1} \theta_{2}}\left\|\psi_{0}\left(\mathbf{k}_{1}\right) \mathrm{e}^{i \theta_{1}}-\psi_{0}\left(\mathbf{k}_{2}\right) \mathrm{e}^{i \theta_{2}}\right\|$
$D_{12}^{2}=2-2\left|\left\langle\psi_{0}\left(\mathbf{k}_{1}\right) \mid \psi_{0}\left(\mathbf{k}_{2}\right)\right\rangle\right|^{2}$
- Manifestly gauge invariant.
- Projectors:
$P(\mathbf{k})=\left|\Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathrm{k})\right|, \quad Q(\mathrm{k})=1-P(\mathrm{k})$
- Distance between projectors:
$D_{12}^{2}=2-2 \operatorname{tr}\left\{P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)\right\}$.

Bures distance

D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

- A parametric quantum Hamiltonian:

$$
H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle
$$

$■$ Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;
■ Arbitrary phase factor $\mathrm{e}^{i \theta(\mathbf{k})}$: "gauge" freedom.
■ Distance between quantum states
$D_{12}^{2}=\inf _{\theta_{1} \theta_{2}}\left\|\psi_{0}\left(\mathbf{k}_{1}\right) \mathrm{e}^{i \theta_{1}}-\psi_{0}\left(\mathbf{k}_{2}\right) \mathrm{e}^{i \theta_{2}}\right\|$ $D_{12}^{2}=2-2\left|\left\langle\psi_{0}\left(\mathbf{k}_{1}\right) \mid \psi_{0}\left(\mathbf{k}_{2}\right)\right\rangle\right|^{2}$
■ Manifestly gauge invariant.

- Projectors:

- Distance between projectors: $D_{12}^{2}=2-2 \operatorname{tr}\left\{P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)\right\}$.

Bures distance
 D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

- A parametric quantum Hamiltonian:

$$
H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle
$$

$■$ Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;
■ Arbitrary phase factor $\mathrm{e}^{i \theta(\mathbf{k})}$: "gauge" freedom.
■ Distance between quantum states
$D_{12}^{2}=\inf _{\theta_{1} \theta_{2}}\left\|\psi_{0}\left(\mathbf{k}_{1}\right) \mathrm{e}^{i \theta_{1}}-\psi_{0}\left(\mathbf{k}_{2}\right) \mathrm{e}^{i \theta_{2}}\right\|$
$D_{12}^{2}=2-2\left|\left\langle\psi_{0}\left(\mathbf{k}_{1}\right) \mid \psi_{0}\left(\mathbf{k}_{2}\right)\right\rangle\right|^{2}$
■ Manifestly gauge invariant.
■ Projectors:
$P(\mathbf{k})=\left|\Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k})\right|, \quad Q(\mathbf{k})=1-P(\mathbf{k})$

- Distance between projectors:

Bures distance
 D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

■ A parametric quantum Hamiltonian: $H(\mathbf{k})|\Psi(\mathbf{k})\rangle=E(\mathbf{k})|\Psi(\mathbf{k})\rangle$
$■$ Nondegenerate ground state $\left|\Psi_{0}(\mathbf{k})\right\rangle$;
■ Arbitrary phase factor $\mathrm{e}^{i \theta(\mathbf{k})}$: "gauge" freedom.
■ Distance between quantum states
$D_{12}^{2}=\inf _{\theta_{1} \theta_{2}}\left\|\psi_{0}\left(\mathbf{k}_{1}\right) \mathrm{e}^{i \theta_{1}}-\psi_{0}\left(\mathbf{k}_{2}\right) \mathrm{e}^{i \theta_{2}}\right\|$
$D_{12}^{2}=2-2\left|\left\langle\psi_{0}\left(\mathbf{k}_{1}\right) \mid \psi_{0}\left(\mathbf{k}_{2}\right)\right\rangle\right|^{2}$
■ Manifestly gauge invariant.
■ Projectors:
$P(\mathbf{k})=\left|\Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k})\right|, \quad Q(\mathbf{k})=1-P(\mathbf{k})$
■ Distance between projectors: $D_{12}^{2}=2-2 \operatorname{tr}\left\{P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)\right\}$.

Quantum metric \& curvature

J. P. Provost and G. Vallee, Commun. Math Phys. 76, 289 (1980)

$$
D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}
$$

$g_{\alpha \beta}(\mathbf{k})$
$=\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$ $=\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$

Fubini-Study metric

Curvature:

$$
\begin{aligned}
\Omega(\mathbf{k}) & =i\left[\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\beta} \Psi_{0}(\mathbf{k}) \mid \partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle\right] \\
& =-2 \operatorname{lm}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =-2 \operatorname{lm}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Quantum metric \& curvature

J. P. Provost and G. Vallee, Commun. Math Phys. 76, 289 (1980)
$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$
$=\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$
$=\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$
Fubini-Study metric

Curvature:

Quantum metric \& curvature

J. P. Provost and G. Vallee, Commun. Math Phys. 76, 289 (1980)
$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$

$$
\begin{aligned}
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Fubini-Study metric

Curvature:

Quantum metric \& curvature

J. P. Provost and G. Vallee, Commun. Math Phys. 76, 289 (1980)
$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$

$$
\begin{aligned}
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Fubini-Study metric

Curvature:

Quantum metric \& curvature

$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$

$$
\begin{aligned}
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Fubini-Study metric

Curvature:

$$
\Omega(\mathbf{k})=i\left[\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\beta} \Psi_{0}(\mathbf{k}) \mid \partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle\right]
$$

Quantum metric \& curvature

$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$

$$
\begin{aligned}
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Fubini-Study metric

Curvature:

$$
\begin{aligned}
\Omega(\mathbf{k}) & =i\left[\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\beta} \Psi_{0}(\mathbf{k}) \mid \partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle\right] \\
& =-2 \operatorname{lm}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Quantum metric \& curvature

$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$

$$
\begin{aligned}
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Fubini-Study metric

Curvature:

$$
\begin{aligned}
\Omega(\mathbf{k}) & =i\left[\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\beta} \Psi_{0}(\mathbf{k}) \mid \partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle\right] \\
& =-2 \operatorname{lm}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =-2 \operatorname{lm}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Quantum metric \& curvature

J. P. Provost and G. Vallee, Commun. Math Phys. 76, 289 (1980)
$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$

$$
\begin{aligned}
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

"Fubini-Study" metric

Curvature:
$\Omega(\mathbf{k})=i\left[\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\beta} \Psi_{0}(\mathbf{k}) \mid \partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle\right]$

Quantum metric \& curvature

$D_{\mathbf{k}, \mathbf{k}+d \mathbf{k}}^{2}=\sum_{\alpha, \beta=1}^{d} g_{\alpha \beta}(\mathbf{k}) d k_{\alpha} d k_{\beta}$
$g_{\alpha \beta}(\mathbf{k})$

$$
\begin{aligned}
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \Psi_{0}(\mathbf{k})\right\rangle\left\langle\Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =\operatorname{Re}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

"Fubini-Study" metric (?)

Curvature:

$$
\begin{aligned}
\Omega(\mathbf{k}) & =i\left[\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle-\left\langle\partial_{\beta} \Psi_{0}(\mathbf{k}) \mid \partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle\right] \\
& =-2 \operatorname{lm}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k}) \mid \partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle \\
& =-2 \operatorname{lm}\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle
\end{aligned}
$$

Sum-over-states formula

$$
H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle=E_{0}(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle
$$

$\left\langle\Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$

$$
=\sum_{n \neq 0} \frac{\left\langle\Psi_{0}(\mathrm{k})\right| \partial_{\alpha} H(\mathrm{k})\left|\psi_{n}(\mathrm{k})\right\rangle\left\langle\psi_{n}(\mathrm{k})\right| \partial_{\beta} H(\mathrm{k})\left|\Psi_{0}(\mathrm{k})\right\rangle}{\left[E_{0}(\mathrm{k})-E_{n}(\mathrm{k})\right]^{2}}
$$

Sum-over-states formula

$$
H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle=E_{0}(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle
$$

$$
\begin{gathered}
\left|\Psi_{0}(\mathbf{k}+d \mathbf{k})\right\rangle=\left|\Psi_{0}(\mathbf{k})\right\rangle+d \mathbf{k} \cdot \sum_{n \neq 0}^{\prime}\left|\Psi_{n}(\mathbf{k})\right\rangle \frac{\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\mathbf{k}} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{E_{0}(\mathbf{k})-E_{n}(\mathbf{k})} \\
\left|\partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle=\sum_{n \neq 0}^{\prime}\left|\Psi_{n}(\mathbf{k})\right\rangle \frac{\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\alpha} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{E_{0}(\mathbf{k})-E_{n}(\mathbf{k})}
\end{gathered}
$$

Sum-over-states formula

$$
H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle=E_{0}(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle
$$

$$
\begin{gathered}
\left|\Psi_{0}(\mathbf{k}+d \mathbf{k})\right\rangle=\left|\Psi_{0}(\mathbf{k})\right\rangle+d \mathbf{k} \cdot \sum_{n \neq 0}^{\prime}\left|\Psi_{n}(\mathbf{k})\right\rangle \frac{\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\mathbf{k}} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{E_{0}(\mathbf{k})-E_{n}(\mathbf{k})} \\
\left|\partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle=\sum_{n \neq 0}^{\prime}\left|\Psi_{n}(\mathbf{k})\right\rangle \frac{\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\alpha} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{E_{0}(\mathbf{k})-E_{n}(\mathbf{k})}
\end{gathered}
$$

$\left\langle\Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$

$$
=\sum_{n \neq 0}^{\prime \prime} \frac{\left\langle\Psi_{0}(\mathbf{k})\right| \partial_{\alpha} H(\mathbf{k})\left|\Psi_{n}(\mathbf{k})\right\rangle\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\beta} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{\left[E_{0}(\mathbf{k})-E_{n}(\mathbf{k})\right]^{2}}
$$

Sum-over-states formula

$$
H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle=E_{0}(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle
$$

$$
\begin{gathered}
\left|\Psi_{0}(\mathbf{k}+d \mathbf{k})\right\rangle=\left|\Psi_{0}(\mathbf{k})\right\rangle+d \mathbf{k} \cdot \sum_{n \neq 0}^{\prime}\left|\Psi_{n}(\mathbf{k})\right\rangle \frac{\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\mathbf{k}} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{E_{0}(\mathbf{k})-E_{n}(\mathbf{k})} \\
\left|\partial_{\alpha} \Psi_{0}(\mathbf{k})\right\rangle=\sum_{n \neq 0}^{\prime}\left|\Psi_{n}(\mathbf{k})\right\rangle \frac{\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\alpha} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{E_{0}(\mathbf{k})-E_{n}(\mathbf{k})}
\end{gathered}
$$

$\left\langle\Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \psi_{0}(\mathbf{k})\right\rangle$

$$
=\sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}(\mathbf{k})\right| \partial_{\alpha} H(\mathbf{k})\left|\Psi_{n}(\mathbf{k})\right\rangle\left\langle\Psi_{n}(\mathbf{k})\right| \partial_{\beta} H(\mathbf{k})\left|\Psi_{0}(\mathbf{k})\right\rangle}{\left[E_{0}(\mathbf{k})-E_{n}(\mathbf{k})\right]^{2}}
$$

Both real and imaginary parts: metric \& curvature.

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction

- Generalities: "twisted Hamiltonian"
- Metric vs. longitudinal conductivity

■ Special case: Crystalline system of independent electrons

- Curvature vs. transverse (Hall) conductivity

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction
■ Generalities: "twisted Hamiltonian"

- Metric vs. Iongitudinal conductivity

■ Special case: Crystalline system of independent electrons

- Curvature vs. transverse (Hall) conductivity

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

- A is a vector potential of magnetic origin.
- \hat{V} includes one-body and two-body terms.

■ The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L (over each electron coordinate independently).

- \mathbf{k} is a $3 d$ parameter (dimensions: inverse length) usually called "flux", or "twist".

■ Here: Twisted Hamiltonian, fixed boundary conditions;

- Alternatively: Fixed Hamiltonian, twisted boundary conditions.

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

$\square \mathbf{A}$ is a vector potential of magnetic origin.

- \hat{V} includes one-body and two-body terms.

■ The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L (over each electron coordinate independently).

- \mathbf{k} is a $3 d$ parameter (dimensions: inverse length) usually called "flux", or "twist".
- Here: Twisted Hamiltonian, fixed boundary conditions;
- Alternatively: Fixed Hamiltonian, twisted boundary conditions.

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

- A is a vector potential of magnetic origin.

■ \hat{V} includes one-body and two-body terms.

- The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L (over each electron coordinate independently).
- k is a 3d parameter (dimensions: inverse length) usually called "flux", or "twist".

■ Here: Twisted Hamiltonian, fixed boundary conditions;

- Alternatively: Fixed Hamiltonian, twisted boundary conditions.

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

■ \mathbf{A} is a vector potential of magnetic origin.
■ \hat{V} includes one-body and two-body terms.
■ The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L

- \mathbf{k} is a $3 d$ parameter (dimensions: inverse length) usually called "flux", or "twist"
- Here: Twisted Hamiltonian, fixed boundary conditions;
- Alternatively: Fixed Hamiltonian, twisted boundary conditions.

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

■ \mathbf{A} is a vector potential of magnetic origin.
■ \hat{V} includes one-body and two-body terms.
■ The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L (over each electron coordinate independently).

- k is a 3d parameter (dimensions: inverse length) usually called "flux", or "twist".

■ Here: Twisted Hamiltonian, fixed boundary conditions;

- Alternatively: Fixed Hamiltonian, twisted boundary
conditions.

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

■ \mathbf{A} is a vector potential of magnetic origin.
■ \hat{V} includes one-body and two-body terms.
■ The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L (over each electron coordinate independently).
■ \mathbf{k} is a $3 d$ parameter (dimensions: inverse length) usually called "flux", or "twist".

- Here: Twisted Hamiltonian, fixed boundary conditions;
- Alternatively: Fixed Hamiltonian, twisted boundary conditions.

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

■ A is a vector potential of magnetic origin.
■ \hat{V} includes one-body and two-body terms.
$■$ The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L (over each electron coordinate independently).
$■ \mathbf{k}$ is a $3 d$ parameter (dimensions: inverse length) usually called "flux", or "twist".

■ Here: Twisted Hamiltonian, fixed boundary conditions;

Many-electron Hamiltonian in 3d

$$
\hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V}
$$

■ \mathbf{A} is a vector potential of magnetic origin.
■ \hat{V} includes one-body and two-body terms.
$■$ The wavefunctions $|\Psi(\mathbf{k})\rangle$ obey periodic (toroidal) boundary conditions over a cubic box of side L (over each electron coordinate independently).
$■ \mathbf{k}$ is a $3 d$ parameter (dimensions: inverse length) usually called "flux", or "twist".

■ Here: Twisted Hamiltonian, fixed boundary conditions;

- Alternatively: Fixed Hamiltonian, twisted boundary conditions.

Localization tensor $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

(a.k.a. first cumulant moment of the electron distribution)

- Eventually, we are interested in the "thermodynamic limit": $N \rightarrow \infty, \quad L \rightarrow \infty, \quad N / L^{3}=$ constant.
- $\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$ is extensive (scales as the size of the system)
- We focus on $\mathbf{k}=0$, and we define the intensive quantity:
$\left\langle r_{0} r_{\rho}\right\rangle_{c}=\left\langle\partial_{\alpha} \Psi_{0}(0)\right| O(0)\left|\partial_{\rho} \Psi_{0}(0)\right\rangle / N$
- Both real and imaginart parts.
- The imaginary part vanishes in time-reversal invariant systems.

Localization tensor $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

(a.k.a. first cumulant moment of the electron distribution)

■ Eventually, we are interested in the "thermodynamic limit": $N \rightarrow \infty, \quad L \rightarrow \infty, \quad N / L^{3}=$ constant.

■ $\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$ is extensive (scales as the size of the system)
\square We focus on $\mathbf{k}=0$, and we define the intensive quantity:

$$
=\left\langle\partial_{0} \psi_{0}(0)\right| Q(0)\left|\partial_{\beta} \psi_{0}(0)\right\rangle / N
$$

- Both real and imaginart parts.
- The imaginary part vanishes in time-reversal invariant systems.

■ Eventually, we are interested in the "thermodynamic limit": $N \rightarrow \infty, \quad L \rightarrow \infty, \quad N / L^{3}=$ constant.

■ $\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$ is extensive (scales as the size of the system)

- We focus on $\mathbf{k}=0$, and we define the intensive quantity:

$$
=\left\langle\partial_{0} \psi_{0}(0)\right| Q(0)\left|\partial_{0} \psi_{0}(0)\right\rangle / N
$$

- Both real and imaginart parts.

■ The imaginary part vanishes in time-reversal invariant systems.

■ Eventually, we are interested in the "thermodynamic limit": $N \rightarrow \infty, \quad L \rightarrow \infty, \quad N / L^{3}=$ constant.

■ $\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$ is extensive (scales as the size of the system)

■ We focus on $\mathbf{k}=0$, and we define the intensive quantity:
$\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\left\langle\partial_{\alpha} \Psi_{0}(0)\right| Q(0)\left|\partial_{\beta} \Psi_{0}(0)\right\rangle / N$

■ Both real and imaginart parts.
■ The imaginary part vanishes in time-reversal invariant systems.

■ Eventually, we are interested in the "thermodynamic limit": $N \rightarrow \infty, \quad L \rightarrow \infty, \quad N / L^{3}=$ constant.

■ $\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$ is extensive (scales as the size of the system)

■ We focus on $\mathbf{k}=0$, and we define the intensive quantity:
$\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\left\langle\partial_{\alpha} \Psi_{0}(0)\right| Q(0)\left|\partial_{\beta} \Psi_{0}(0)\right\rangle / N$

■ Both real and imaginart parts.

- The imaginary part vanishes in time-reversal invariant systems.

■ Eventually, we are interested in the "thermodynamic limit": $N \rightarrow \infty, \quad L \rightarrow \infty, \quad N / L^{3}=$ constant.

■ $\left\langle\partial_{\alpha} \Psi_{0}(\mathbf{k})\right| Q(\mathbf{k})\left|\partial_{\beta} \Psi_{0}(\mathbf{k})\right\rangle$ is extensive (scales as the size of the system)

■ We focus on $\mathbf{k}=0$, and we define the intensive quantity:
$\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\left\langle\partial_{\alpha} \Psi_{0}(0)\right| Q(0)\left|\partial_{\beta} \Psi_{0}(0)\right\rangle / N$

- Both real and imaginart parts.
- The imaginary part vanishes in time-reversal invariant systems.

Localization tensor $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

(a.k.a. first cumulant moment of the electron distribution)

Meaning of $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

- Metric per electron at $\mathbf{k}=0$ (real part);

■ Curvature per electron at $\mathbf{k}=0$ (imaginary part).
■ "Geometric" response of the system to an infinitesimal "twist" of the many-body Hamiltonian.

Main message of the present talk

- Re $\left\langle r_{r} r_{0}\right\rangle_{\text {discriminates between insulators and metals. }}$
- It is the ground-state property which vindicates Kohn's (1964) viewpoint.

Localization tensor $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

(a.k.a. first cumulant moment of the electron distribution)

Meaning of $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

■ Metric per electron at $\mathbf{k}=0$ (real part);
■ Curvature per electron at $\mathbf{k}=0$ (imaginary part).

- "Geometric" response of the system to an infinitesimal "twist" of the many-body Hamiltonian.

Main message of the present talk

- $\operatorname{Re}\left\langle r_{a} r_{\beta}\right\rangle$
discriminates between insulators and metals.
- It is the ground-state property which vindicates Kohn's (1964) viewpoint.

Localization tensor $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

(a.k.a. first cumulant moment of the electron distribution)

Meaning of $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

■ Metric per electron at $\mathbf{k}=0$ (real part);
■ Curvature per electron at $\mathbf{k}=0$ (imaginary part).
■ "Geometric" response of the system to an infinitesimal "twist" of the many-body Hamiltonian.

Main message of the present talk
■ Re discriminates between insulators and metals.

- It is the ground-state property which vindicates Kohn's (1964) viewpoint.

Meaning of $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

■ Metric per electron at $\mathbf{k}=0$ (real part);
■ Curvature per electron at $\mathbf{k}=0$ (imaginary part).
■ "Geometric" response of the system to an infinitesimal "twist" of the many-body Hamiltonian.

Main message of the present talk

\square Re
discriminates between insulators and metals.
■ It is the ground-state property which vindicates Kohn's (1964) viewpoint.

Meaning of $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

■ Metric per electron at $\mathbf{k}=0$ (real part);
■ Curvature per electron at $\mathbf{k}=0$ (imaginary part).
■ "Geometric" response of the system to an infinitesimal "twist" of the many-body Hamiltonian.

Main message of the present talk

■ $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$ discriminates between insulators and metals.

- It is the ground-state property which vindicates Kohn's (1964) viewpoint.

Meaning of $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$

■ Metric per electron at $\mathbf{k}=0$ (real part);
■ Curvature per electron at $\mathbf{k}=0$ (imaginary part).
■ "Geometric" response of the system to an infinitesimal "twist" of the many-body Hamiltonian.

Main message of the present talk

■ $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$ discriminates between insulators and metals.
■ It is the ground-state property which vindicates Kohn's (1964) viewpoint.

Sum over states again

$$
\begin{align*}
& \hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V} \\
& \left.\partial_{\mathbf{k}} \hat{H}(\mathbf{k})\right|_{\mathbf{k}=0}=\frac{\hbar}{m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right]=\hbar \hat{v} \tag{velocity}
\end{align*}
$$

From now on, $\mathrm{k}=0$ implicit.

Sum over states again

$$
\begin{aligned}
& \hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V} \\
& \left.\partial_{\mathbf{k}} \hat{H}(\mathbf{k})\right|_{\mathbf{k}=0}=\frac{\hbar}{m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right]=\hbar \hat{\mathbf{v}} \quad \text { (velocity) }
\end{aligned}
$$

Sum over states again

$$
\begin{aligned}
& \hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V} \\
& \left.\partial_{\mathbf{k}} \hat{H}(\mathbf{k})\right|_{\mathbf{k}=0}=\frac{\hbar}{m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right]=\hbar \hat{\mathbf{v}} \quad \text { (velocity) }
\end{aligned}
$$

From now on, $\mathbf{k}=0$ implicit.

Sum over states again

$$
\begin{aligned}
& \hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V} \\
& \left.\partial_{\mathbf{k}} \hat{H}(\mathbf{k})\right|_{\mathbf{k}=0}=\frac{\hbar}{m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right]=\hbar \hat{\mathbf{v}} \quad \text { (velocity) }
\end{aligned}
$$

From now on, $\mathbf{k}=0$ implicit.

$$
\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{\hbar^{2}}{N} \sum_{n \neq 0}^{\prime \prime} \frac{\left\langle\Psi_{0}\right| \partial_{\alpha} \hat{H}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \partial_{\beta} \hat{H}\left|\Psi_{0}\right\rangle}{\left(E_{0}-E_{n}\right)^{2}}
$$

Sum over states again

$$
\begin{aligned}
& \hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V} \\
& \left.\partial_{\mathbf{k}} \hat{H}(\mathbf{k})\right|_{\mathbf{k}=0}=\frac{\hbar}{m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right]=\hbar \hat{\mathbf{v}} \quad \text { (velocity) }
\end{aligned}
$$

From now on, $\mathbf{k}=0$ implicit.

$$
\begin{aligned}
\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle & =\frac{\hbar^{2}}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \partial_{\alpha} \hat{H}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \partial_{\beta} \hat{H}\left|\Psi_{0}\right\rangle}{\left(E_{0}-E_{n}\right)^{2}} \\
& =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}}
\end{aligned}
$$

Sum over states again

$$
\begin{aligned}
& \hat{H}(\mathbf{k})=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)+\hbar \mathbf{k}\right]^{2}+\hat{V} \\
& \left.\partial_{\mathbf{k}} \hat{H}(\mathbf{k})\right|_{\mathbf{k}=0}=\frac{\hbar}{m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right]=\hbar \hat{\mathbf{v}} \quad \text { (velocity) }
\end{aligned}
$$

From now on, $\mathbf{k}=0$ implicit.

$$
\begin{aligned}
\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle & =\frac{\hbar^{2}}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \partial_{\alpha} \hat{H}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \partial_{\beta} \hat{H}\left|\Psi_{0}\right\rangle}{\left(E_{0}-E_{n}\right)^{2}} \\
& =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}}
\end{aligned}
$$

Ground-state property or excited-state property?

Conductivity tensor

Kubo formula:

$$
\begin{aligned}
\sigma_{\alpha \beta}(\omega)=\frac{i e^{2}}{\hbar L^{3}} \lim _{\eta \rightarrow 0^{+}} \sum_{n \neq 0}^{\prime} \frac{1}{\omega_{0 n}} & \left(\frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{\boldsymbol{v}}_{\beta}\left|\Psi_{0}\right\rangle}{\omega-\omega_{0 n}+i \eta}\right. \\
& \left.-\frac{\left\langle\Psi_{0}\right| \hat{v}_{\beta}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\alpha}\left|\Psi_{0}\right\rangle}{\omega+\omega_{0 n}+i \eta}\right)
\end{aligned}
$$

Assuming isotropy \& using

Conductivity tensor

Kubo formula:

$$
\begin{aligned}
\sigma_{\alpha \beta}(\omega)=\frac{i e^{2}}{\hbar L^{3}} \lim _{\eta \rightarrow 0^{+}} \sum_{n \neq 0}^{\prime} \frac{1}{\omega_{0 n}} & \left(\frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega-\omega_{0 n}+i \eta}\right. \\
& \left.-\frac{\left\langle\Psi_{0}\right| \hat{v}_{\beta}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\alpha}\left|\Psi_{0}\right\rangle}{\omega+\omega_{0 n}+i \eta}\right)
\end{aligned}
$$

Assuming isotropy \& using $\lim _{\eta \rightarrow 0^{+}} \frac{1}{x+i \eta}=\mathcal{P} \frac{1}{x}-i \pi \delta(x)$

Conductivity tensor

Kubo formula:

$$
\begin{aligned}
\sigma_{\alpha \beta}(\omega)=\frac{i e^{2}}{\hbar L^{3}} \lim _{\eta \rightarrow 0^{+}} \sum_{n \neq 0}^{\prime} \frac{1}{\omega_{0 n}} & \left(\frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega-\omega_{0 n}+i \eta}\right. \\
& \left.-\frac{\left\langle\Psi_{0}\right| \hat{v}_{\beta}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\alpha}\left|\Psi_{0}\right\rangle}{\omega+\omega_{0 n}+i \eta}\right)
\end{aligned}
$$

Assuming isotropy \& using $\quad \lim _{\eta \rightarrow 0^{+}} \frac{1}{x+i \eta}=\mathcal{P} \frac{1}{x}-i \pi \delta(x)$

Conductivity tensor

Kubo formula:

$$
\begin{aligned}
\sigma_{\alpha \beta}(\omega)=\frac{i e^{2}}{\hbar L^{3}} \lim _{\eta \rightarrow 0^{+}} \sum_{n \neq 0}^{\prime} \frac{1}{\omega_{0 n}} & \left(\frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega-\omega_{0 n}+i \eta}\right. \\
& \left.-\frac{\left\langle\Psi_{0}\right| \hat{v}_{\beta}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\alpha}\left|\Psi_{0}\right\rangle}{\omega+\omega_{0 n}+i \eta}\right)
\end{aligned}
$$

Assuming isotropy \& using $\quad \lim _{\eta \rightarrow 0^{+}} \frac{1}{x+i \eta}=\mathcal{P} \frac{1}{x}-i \pi \delta(x)$

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega) & =\frac{\pi e^{2}}{\hbar L^{3}} \operatorname{Re} \sum_{n \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Re} \sigma_{12}(0) & =\frac{2 e^{2}}{\hbar 1^{3}} \operatorname{lm} \sum \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{2}
\end{aligned}
$$

Conductivity tensor

Kubo formula:

$$
\begin{array}{r}
\sigma_{\alpha \beta}(\omega)=\frac{i e^{2}}{\hbar L^{3}} \lim _{\eta \rightarrow 0^{+}} \sum_{n \neq 0}^{\prime} \frac{1}{\omega_{0 n}} \\
\left(\frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega-\omega_{0 n}+i \eta}\right. \\
\left.-\frac{\left\langle\Psi_{0}\right| \hat{v}_{\beta}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\alpha}\left|\Psi_{0}\right\rangle}{\omega+\omega_{0 n}+i \eta}\right)
\end{array}
$$

Assuming isotropy \& using $\quad \lim _{\eta \rightarrow 0^{+}} \frac{1}{x+i \eta}=\mathcal{P} \frac{1}{x}-i \pi \delta(x)$

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega) & =\frac{\pi e^{2}}{\hbar L^{3}} \operatorname{Re} \sum_{n \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Re} \sigma_{12}(0) & =\frac{2 e^{2}}{\hbar L^{3}} \operatorname{Im} \sum_{n \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}}
\end{aligned}
$$

Conductivity tensor

Kubo formula:

$$
\begin{aligned}
\sigma_{\alpha \beta}(\omega)=\frac{i e^{2}}{\hbar L^{3}} \lim _{\eta \rightarrow 0+} \sum_{n \neq 0}^{\prime} \frac{1}{\omega_{0 n}} & \left(\frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega-\omega_{0 n}+i \eta}\right. \\
& \left.-\frac{\left\langle\Psi_{0}\right| \hat{v}_{\beta}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\alpha}\left|\Psi_{0}\right\rangle}{\omega+\omega_{0 n}+i \eta}\right)
\end{aligned}
$$

Assuming isotropy \& using $\quad \lim _{\eta \rightarrow 0+} \frac{1}{x+i \eta}=\mathcal{P} \frac{1}{x}-i \pi \delta(x)$

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega) & =\frac{\pi e^{2}}{\hbar L^{3}} \operatorname{Re} \sum_{n \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Re} \sigma_{12}(0) & =\frac{2 e^{2}}{\hbar L^{3}} \operatorname{Im} \sum_{n \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}}
\end{aligned}
$$

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction - Generalities: "twisted Hamiltonian"

■ Metric vs. longitudinal conductivity

- Special case: Crystalline system of independent electrons
■ Curvature vs. transverse (Hall) conductivity

Localization tensor (real part) \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}=\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{a \beta}(\mathrm{k}=0)
$$

The localization tensor diverges.

- Insulators: $\quad \sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators The real part of the localization tensor is finite.

Localization tensor (real part) \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}=\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0)
$$

The localization tensor diverges.
■ Insulators: $\quad \sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators

The real part of the localization tensor is finite.

Localization tensor (real part) \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}}
\end{aligned}
$$

- Metals:
$\sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$.
The localization tensor diverges.
- Insulators: $\quad \sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators

The real part of the localization tensor is finite.

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{h L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

- Metals:
 $\sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$.

The localization tensor diverges.

- Insulators:
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators

The real part of the localization tensor is finite.

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

- Metals:
$\sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$.
The localization tensor diverges.
- Insulators:
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators

The real part of the localization tensor is finite.

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

■ Metals: $\quad \sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$.
\square Insulators:
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators

The real part of the localization tensor is finite.

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

- Metals: $\quad \sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$. The localization tensor diverges.

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

\square Metals: $\quad \sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$. The localization tensor diverges.
■ Insulators: $\quad \sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators

Localization tensor (real part) \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

■ Metals: $\quad \sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$. The localization tensor diverges.
■ Insulators: $\quad \sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators .

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

- Metals: $\quad \sigma_{11}(\omega)$ is finite for $\omega \rightarrow 0$. The localization tensor diverges.
■ Insulators: $\quad \sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$
e.g. $\sigma_{11}(\omega) \equiv 0$ for $\hbar \omega \leq E_{\text {gap }}$ in "normal" insulators .

The real part of the localization tensor is finite.

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction

- Generalities: "twisted Hamiltonian"
- Metric vs. Iongitudinal conductivity

■ Special case: Crystalline system of independent electrons

- Curvature vs. transverse (Hall) conductivity

Special case:
Crystalline system of independent electrons
(e.g. Hartree-Fock or Kohn-Sham)

For presentation purpose: electrons in $1 d$.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finite- $\left|\Psi_{0}\right\rangle$ is an N-particle Slater determinant of Bloch orbitals.
- Caveat:

The many-body "flux" k and the Bloch vector q are different quantities (k equals zero in $\left|\Psi_{0}\right\rangle$).

- Periodic (toroidal) boundary conditions imposed over $L=M a: M$ allowed Bloch vectors in the reciprocal cell.
- $\left|\Psi_{0}\right\rangle$ is written as a determinant of occupied Bloch orbitals, in both the insulating and the metallic case.
- Key difference:

The whole band is used to build the insulating $\left|\Psi_{0}\right\rangle$, while only one half of the band is used for the metallic $\left|\Psi_{0}\right\rangle$.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finite■ $\left|\Psi_{0}\right\rangle$ is an N-particle Slater determinant of Bloch orbitals.

- Caveat:

The many-body "flux" k and the Bloch vector q are different quantities (k equals zero in $\left|\Psi_{0}\right\rangle$).

- Periodic (toroidal) boundary conditions imposed over $L=M a$: M allowed Bloch vectors in the reciprocal cell.
- $\left|\Psi_{0}\right\rangle$ is written as a determinant of occupied Bloch orbitals, in both the insulating and the metallic case.
- Key difference:

The whole band is used to build the insulating $\left|\psi_{0}\right\rangle$, while only one half of the band is used for the metallic $\left|\Psi_{0}\right\rangle$.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finite■ $\left|\Psi_{0}\right\rangle$ is an N-particle Slater determinant of Bloch orbitals.
■ Caveat:
The many-body "flux" k and the Bloch vector q are different quantities

- Periodic (toroidal) boundary conditions imposed over $L=M a: M$ allowed Bloch vectors in the reciprocal cell.

■ $\left|\Psi_{0}\right\rangle$ is written as a determinant of occupied Bloch orbitals, in both the insulating and the metallic case.

- Key difference:

The whole band is used to build the insulating $\left|\Psi_{0}\right\rangle$, while only one half of the band is used for the metallic $\left|\Psi_{0}\right\rangle$.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finite■ $\left|\Psi_{0}\right\rangle$ is an N-particle Slater determinant of Bloch orbitals.
■ Caveat:
The many-body "flux" k and the Bloch vector q are different quantities (k equals zero in $\left|\Psi_{0}\right\rangle$).

- Periodic (toroidal) boundary conditions imposed over $L=M a: M$ allowed Bloch vectors in the reciprocal cell.

■ $\left|\Psi_{0}\right\rangle$ is written as a determinant of occupied Bloch orbitals, in both the insulating and the metallic case.

- Key difference:

The whole band is used to build the insulating $\left|\psi_{0}\right\rangle$, while only one half of the band is used for the metallic $\left|\Psi_{0}\right\rangle$.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finite■ $\left|\Psi_{0}\right\rangle$ is an N-particle Slater determinant of Bloch orbitals.
■ Caveat:
The many-body "flux" k and the Bloch vector q are different quantities (k equals zero in $\left|\Psi_{0}\right\rangle$).
■ Periodic (toroidal) boundary conditions imposed over $L=M a: M$ allowed Bloch vectors in the reciprocal cell.

- $\left|\Psi_{0}\right\rangle$ is written as a determinant of occupied Bloch orbitals, in both the insulating and the metallic case.
- Key difference:

The whole band is used to build the insulating $\left|\Psi_{0}\right\rangle$, while only one half of the band is used for the metallic $\left|\Psi_{0}\right\rangle$.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finite■ $\left|\Psi_{0}\right\rangle$ is an N-particle Slater determinant of Bloch orbitals.
■ Caveat:
The many-body "flux" k and the Bloch vector q are different quantities (k equals zero in $\left|\Psi_{0}\right\rangle$).
■ Periodic (toroidal) boundary conditions imposed over $L=M a: M$ allowed Bloch vectors in the reciprocal cell.

- $\left|\Psi_{0}\right\rangle$ is written as a determinant of occupied Bloch orbitals, in both the insulating and the metallic case.
- Key difference:

The whole band is used to build the insulating $\left|\Psi_{0}\right\rangle$, while
only one half of the band is used for the metallic $\left|\Psi_{0}\right\rangle$

Crystalline system of independent electrons Before the thermodynamic limit: N and L finite

■ $\left|\Psi_{0}\right\rangle$ is an N-particle Slater determinant of Bloch orbitals.
■ Caveat:
The many-body "flux" k and the Bloch vector q are different quantities (k equals zero in $\left|\Psi_{0}\right\rangle$).
■ Periodic (toroidal) boundary conditions imposed over $L=M a: M$ allowed Bloch vectors in the reciprocal cell.

- $\left|\Psi_{0}\right\rangle$ is written as a determinant of occupied Bloch orbitals, in both the insulating and the metallic case.
- Key difference:

The whole band is used to build the insulating $\left|\Psi_{0}\right\rangle$, while only one half of the band is used for the metallic $\left|\Psi_{0}\right\rangle$.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finiteInsulator

Metal

$L=M a, M=14$ in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state,
7 occupied orbitals in the metallic state.

Crystalline system of independent electrons

 Before the thermodynamic limit: N and L finiteInsulator

Metal

$L=M a, M=14$ in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state,
7 occupied orbitals in the metallic state.

Crystalline system of independent electrons

 Thermodynamic limitInsulator

Metal

$$
\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle
$$

In the thermodynamic limit $(M \rightarrow \infty$ limit):
$\square\left\langle x^{2}\right\rangle_{\mathrm{c}}$ converges to a finite value in the insulating case;
■ $\left\langle x^{2}\right\rangle_{c}$ diverges in the metallic case.

Crystalline system of independent electrons

 Thermodynamic limit
Insulator

$$
\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle
$$

In the thermodynamic limit ($M \rightarrow \infty$ limit):
$-\left\langle x^{2}\right\rangle_{c}$ converges to a finite value in the insulating case;

- $\left\langle x^{2}\right\rangle_{c}$ diverges in the metallic case.

Crystalline system of independent electrons

 Thermodynamic limit
Insulator

Metal

$$
\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle
$$

In the thermodynamic limit ($M \rightarrow \infty$ limit):
$\square\left\langle x^{2}\right\rangle_{\mathrm{c}}$ converges to a finite value in the insulating case;
$\square\left\langle x^{2}\right\rangle_{\mathrm{c}}$ diverges in the metallic case.

Semantics: Why "localization tensor"?

(or even: why "second cumulant moment of the electron distribution"?)

Here: Only independent-electron explanation.

- So far, we have written $\left|\Psi_{0}\right\rangle$ an N-particle Slater determinant of Bloch orbitals.
■ Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
■ We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
- In the insulating case:
- The occupied manifold is the whole band: $\left|\Psi_{0}\right\rangle$ is invariant by such unitary transformation.
- $\left|\Psi_{0}\right\rangle$ can be equivalently written as an N-particle Slater determinant of Wannier orbitals.

Semantics: Why "localization tensor"?

(or even: why "second cumulant moment of the electron distribution"?)

Here: Only independent-electron explanation.
■ So far, we have written $\left|\Psi_{0}\right\rangle$ an N-particle Slater determinant of Bloch orbitals.

- Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
$■$ We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
- In the insulating case:
- The occupied manifold is the whole band: $\left|\Psi_{0}\right\rangle$ is invariant by such unitary transformation.
- $\left|\Psi_{0}\right\rangle$ can be equivalently written as an N-particle Slater determinant of Wannier orbitals.

Semantics: Why "localization tensor"?
 (or even: why "second cumulant moment of the electron distribution"?)

Here: Only independent-electron explanation.
■ So far, we have written $\left|\Psi_{0}\right\rangle$ an N-particle Slater determinant of Bloch orbitals.
■ Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.

- We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
- In the insulatina case:
- The occupied manifold is the whole band: $\left|\Psi_{0}\right\rangle$ is invariant by such unitary transformation.
- $\left|\Psi_{0}\right\rangle$ can be equivalently written as an N-particle Slater determinant of Wannier orbitals.

Semantics: Why "localization tensor"? (or even: why "second cumulant moment of the electron distribution"?)

Here: Only independent-electron explanation.
■ So far, we have written $\left|\Psi_{0}\right\rangle$ an N-particle Slater determinant of Bloch orbitals.
\square Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
■ We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.

- In the insulating case:
- The occupied manifold is the whole band:
$\left|\Psi_{0}\right\rangle$ is invariant by such unitary transformation.
- $\left|\Psi_{0}\right\rangle$ can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.

Semantics: Why "localization tensor"? (or even: why "second cumulant moment of the electron distribution"?)

Here: Only independent-electron explanation.
■ So far, we have written $\left|\Psi_{0}\right\rangle$ an N-particle Slater determinant of Bloch orbitals.

■ Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
■ We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
■ In the insulating case:

- The occupied manifold is the whole band: $\left|\Psi_{0}\right\rangle$ is invariant by such unitary transformation.
determinant of Wannier orbitals.

Semantics: Why "localization tensor"? (or even: why "second cumulant moment of the electron distribution"?)

Here: Only independent-electron explanation.
■ So far, we have written $\left|\Psi_{0}\right\rangle$ an N-particle Slater determinant of Bloch orbitals.
■ Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
■ We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
■ In the insulating case:

- The occupied manifold is the whole band: $\left|\Psi_{0}\right\rangle$ is invariant by such unitary transformation.
- $\left|\Psi_{0}\right\rangle$ can be equivalently written as an N-particle Slater determinant of Wannier orbitals.

Semantics: Why "localization tensor"?

(or even: why "second cumulant moment of the electron distribution"?)

■ In this drawing, again $L=M a$, with $M=14$:

- Slater determinant built with M occupied Wannier orbitals $w_{n}(x)$.
- $w_{n}(x)$ are exponentially localized in the $M \rightarrow \infty$ limit.

A measure of localization:
"quadratic spread", alias second cumulant moment.

- The spread diverges in the metallic case.

Semantics: Why "localization tensor"?

(or even: why "second cumulant moment of the electron distribution"?)

■ In this drawing, again $L=M$ a, with $M=14$:
■ Slater determinant built with M occupied Wannier orbitals $w_{n}(x)$.

- $w_{n}(x)$ are exponentially localized in the $M \rightarrow \infty$ limit.
\qquad
\square
A measure of localization:
"quadratic spread", alias second cumulant moment.
■ The spread diverges in the metallic case.

Semantics: Why "localization tensor"?

(or even: why "second cumulant moment of the electron distribution"?)

■ In this drawing, again $L=M$ a, with $M=14$:
■ Slater determinant built with M occupied Wannier orbitals $w_{n}(x)$.

- $w_{n}(x)$ are exponentially localized in the $M \rightarrow \infty$ limit.
- $\left.\left\langle x^{2}\right\rangle_{c}=\left\langle w_{n}\right| x^{2}\left|w_{n}\right\rangle-\left|\left\langle w_{n}\right| x\right| w_{n}\right\rangle\left.\right|^{2}$

A measure of localization:
"quadratic spread", alias second cumulant moment.

- The spread diverges in the metallic case.

Semantics: Why "localization tensor"?

 (or even: why "second cumulant moment of the electron distribution"?)

■ In this drawing, again $L=M$ a, with $M=14$:
■ Slater determinant built with M occupied Wannier orbitals $w_{n}(x)$.
$\square w_{n}(x)$ are exponentially localized in the $M \rightarrow \infty$ limit.
■ $\left.\left\langle x^{2}\right\rangle_{\mathrm{c}}=\left\langle w_{n}\right| x^{2}\left|w_{n}\right\rangle-\left|\left\langle w_{n}\right| x\right| w_{n}\right\rangle\left.\right|^{2}$:
A measure of localization:
"quadratic spread", alias second cumulant moment.
■ The spread diverges in the metallic case.

Semantics: Why "localization tensor"?

■ In this drawing, again $L=M$ a, with $M=14$:
■ Slater determinant built with M occupied Wannier orbitals $w_{n}(x)$.

- $w_{n}(x)$ are exponentially localized in the $M \rightarrow \infty$ limit.

■ $\left.\left\langle x^{2}\right\rangle_{\mathrm{c}}=\left\langle w_{n}\right| x^{2}\left|w_{n}\right\rangle-\left|\left\langle w_{n}\right| x\right| w_{n}\right\rangle\left.\right|^{2}$:
A measure of localization:
"quadratic spread", alias second cumulant moment.

- The spread diverges in the metallic case.

Semantics: Why "localization tensor"?

■ In this drawing, again $L=M$ a, with $M=14$:
■ Slater determinant built with M occupied Wannier orbitals $w_{n}(x)$.

- $w_{n}(x)$ are exponentially localized in the $M \rightarrow \infty$ limit.

■ $\left.\left\langle x^{2}\right\rangle_{\mathrm{c}}=\left\langle w_{n}\right| x^{2}\left|w_{n}\right\rangle-\left|\left\langle w_{n}\right| x\right| w_{n}\right\rangle\left.\right|^{2}$:
A measure of localization: "quadratic spread", alias second cumulant moment.
■ The spread diverges in the metallic case.

Kohn's theory of the insulating state, completed

■ Kohn's original (1964) message:
The insulating behavior reflects a certain type of organization of the electrons in the ground state.

- The real part of our "localization tensor"
$\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle$
is a geometrical property of the ground-state
wavefunction which quantitatively probes this kind of
organization
- $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$ discriminates sharply between insulators and metals.
■ Next: What about Im $\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$?
(when time-reversal symmetry is broken).

Kohn's theory of the insulating state, completed

■ Kohn's original (1964) message:
The insulating behavior reflects a certain type of organization of the electrons in the ground state.

- The real part of our "localization tensor" $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle$
is a geometrical property of the ground-state wavefunction which quantitatively probes this kind of organization
- $\operatorname{Re}\left\langle r_{\alpha} r_{\rho}\right\rangle$ discriminates sharply between insulators and metals.

■ Next: What about Im $\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$?
(when time-reversal symmetry is broken)

Kohn's theory of the insulating state, completed

■ Kohn's original (1964) message:
The insulating behavior reflects a certain type of organization of the electrons in the ground state.
■ The real part of our "localization tensor"
$\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle$ is a geometrical property of the ground-state wavefunction which quantitatively probes this kind of organization

- $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$ discriminates sharply
between insulators and metals.
■ Next: What about Im $\left\langle r_{N} r_{\beta}\right\rangle_{c}$?
(when time-reversal symmetry is broken).

Kohn's theory of the insulating state, completed

■ Kohn's original (1964) message:
The insulating behavior reflects a certain type of organization of the electrons in the ground state.
■ The real part of our "localization tensor"
$\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle$
is a geometrical property of the ground-state wavefunction which quantitatively probes this kind of organization
■ $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$ discriminates sharply between insulators and metals.
(when time-reversal symmetry is broken).

Kohn's theory of the insulating state, completed

■ Kohn's original (1964) message:
The insulating behavior reflects a certain type of organization of the electrons in the ground state.
■ The real part of our "localization tensor"
$\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle$
is a geometrical property of the ground-state wavefunction which quantitatively probes this kind of organization
■ $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$ discriminates sharply between insulators and metals.
■ Next: What about $\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}$?
(when time-reversal symmetry is broken).

Kohn's theory of the insulating state, completed

■ Kohn's original (1964) message:
The insulating behavior reflects a certain type of organization of the electrons in the ground state.
■ The real part of our "localization tensor"
$\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle$
is a geometrical property of the ground-state wavefunction which quantitatively probes this kind of organization
■ $\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$ discriminates sharply between insulators and metals.
■ Next: What about $\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$? (when time-reversal symmetry is broken).

Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction

- Generalities: "twisted Hamiltonian"
- Metric vs. Iongitudinal conductivity
- Special case: Crystalline system of independent electrons
■ Curvature vs. transverse (Hall) conductivity

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

In insulators:

Localization tensor (real part)
 \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

In insulators:

Localization tensor (real part) \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

In insulators:

- $\sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$ fast enough to make the integral converge.

Localization tensor (real part) \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

In insulators:
■ $\sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$ fast enough to make the integral converge.

- The real part of the localization tensor is finite.

Localization tensor (real part) \& longitudinal conductivity

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

$$
\begin{aligned}
\operatorname{Re}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Re}\left\langle\partial_{\alpha} \Psi\right| Q\left|\partial_{\beta} \Psi_{0}\right\rangle=\frac{1}{N} g_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Re} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\left\langle r_{1} r_{1}\right\rangle_{\mathrm{c}}=\left\langle x^{2}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{1}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{3}}{\pi e^{2} N} \int_{0}^{\infty} \frac{d \omega}{\omega} \operatorname{Re} \sigma_{11}(\omega)
\end{aligned}
$$

In insulators:
■ $\sigma_{11}(\omega) \rightarrow 0$ for $\omega \rightarrow 0$ fast enough to make the integral converge.
\square The real part of the localization tensor is finite.
■ The sum converges.

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathrm{k}=0)
$$

- Vanishing in time-reversal-invariant systems.
- If the system is insulatind, even this sum converges.
- Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}}=\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0)
$$

- Vanishing in time-reversal-invariant systems.
- If the system is insulatind, even this sum converges.
- Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{lm}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{lm} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}}
\end{aligned}
$$

- Vanishing in time-reversal-invariant systems.
- If the system is insulatind, even this sum converges.
- Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Im}\left\langle r_{1} r_{2}\right\rangle_{\mathrm{c}}=\operatorname{Im}\langle x y\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{V}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{h L^{2}}{2 e^{2} N} \operatorname{Re} \sigma_{12}(0)
\end{aligned}
$$

- Vanishing in time-reversal-invariant systems.
- If the system is insulating, even this sum converges.
- Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c} & =\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Im}\left\langle r_{1} r_{2}\right\rangle_{\mathrm{c}}=\operatorname{Im}\langle x y\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{2}}{2 e^{2} N} \operatorname{Re} \sigma_{12}(0)
\end{aligned}
$$

- Vanishing in time-reversal-invariant systems.
- If the system is insulating, even this sum converges.

■ Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Im}\left\langle r_{1} r_{2}\right\rangle_{\mathrm{c}}=\operatorname{Im}\langle x y\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{2}}{2 e^{2} N} \operatorname{Re} \sigma_{12}(0)
\end{aligned}
$$

■ Vanishing in time-reversal-invariant systems.

- If the system is insulating, even this sum converges.

■ Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part)
 \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Im}\left\langle r_{1} r_{2}\right\rangle_{\mathrm{c}}=\operatorname{Im}\langle x y\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{2}}{2 e^{2} N} \operatorname{Re} \sigma_{12}(0)
\end{aligned}
$$

■ Vanishing in time-reversal-invariant systems.
■ If the system is insulating, even this sum converges.

- Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Im}\left\langle r_{1} r_{2}\right\rangle_{\mathrm{c}}=\operatorname{Im}\langle x y\rangle_{\mathrm{c}} & =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{2}}{2 e^{2} N} \operatorname{Re} \sigma_{12}(0)
\end{aligned}
$$

- Vanishing in time-reversal-invariant systems.

■ If the system is insulating, even this sum converges.
■ Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c} & =\frac{1}{N} \operatorname{Im}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Im}\left\langle r_{1} r_{2}\right\rangle_{c}=\operatorname{Im}\langle x y\rangle_{c} & =\frac{1}{N} \operatorname{Im} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{2}}{2 e^{2} N} \operatorname{Re} \sigma_{12}(0)
\end{aligned}
$$

■ Vanishing in time-reversal-invariant systems.

- If the system is insulating, even this sum converges.
- Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)$

Localization tensor (imaginary part) \& transverse (Hall) conductivity in 2d
 R. Resta, Phys. Rev. Lett. 95, 196805 (2005)

$$
\begin{aligned}
\operatorname{Im}\left\langle r_{\alpha} r_{\beta}\right\rangle_{c} & =\frac{1}{N} \operatorname{lm}\left\langle\partial_{\alpha} \Psi \mid \partial_{\beta} \Psi_{0}\right\rangle=-\frac{1}{2 N} \Omega_{\alpha \beta}(\mathbf{k}=0) \\
& =\frac{1}{N} \operatorname{lm} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{\alpha}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{\beta}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
\operatorname{Im}\left\langle r_{1} r_{2}\right\rangle_{\mathrm{c}}=\operatorname{Im}\langle x y\rangle_{c} & =\frac{1}{N} \operatorname{lm} \sum_{n \neq 0}^{\prime} \frac{\left\langle\Psi_{0}\right| \hat{v}_{1}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \hat{v}_{2}\left|\Psi_{0}\right\rangle}{\omega_{0 n}^{2}} \\
& =\frac{\hbar L^{2}}{2 e^{2} N} \operatorname{Re} \sigma_{12}(0)
\end{aligned}
$$

■ Vanishing in time-reversal-invariant systems.

- If the system is insulating, even this sum converges.
- Hall conductivity: $\operatorname{Re} \sigma_{12}(\omega=0)=\frac{e^{2}}{\hbar L^{2}} \Omega_{\alpha \beta}(\mathbf{k}=0)$

The quantum Hall effect (both integer and fractional)

Y, ...

New Mathod for High-Ascurary Determinatian of the Finc-Stmetme Constant Hased on Quanlizel Hall Resisturne
K. .., Klibicina,

G. Durda

:ーロ
ㄴ. I'tpy $2=A$
 (lay-eivest "A Mory I 9futi)

The quantum Hall effect (both integer and fractional)

1! suac- 1 思:
New Mathod for High-Aecurary Determinatian of the Finc-Simetme Constant Hased on Quanlizel Hall Resisturne
K. v, Klibivar

$=4$

G. Durder

:
Y. I-tpptz 2

(lay-eivest "A Mory I Iffit

$\rho_{11}=\frac{\sigma_{11}}{\sigma_{11}^{2}+\sigma_{12}^{2}} \quad \rho_{12}=-\frac{\sigma_{12}}{\sigma_{11}^{2}+\sigma_{12}^{2}}$

 chry U Ut: d

The quantum Hall effect (both integer and fractional)

1! suac- 1 思:
New Mathod for High-Aecuracy Determinatian of the Find-Simethe Constant

K. ッ. Klitivan

-14
G. Durder

:
ㄴ. I foptz $=$

$\rho_{11}=\frac{\sigma_{11}}{\sigma_{11}^{2}+\sigma_{12}^{2}} \quad \rho_{12}=-\frac{\sigma_{12}}{\sigma_{11}^{2}+\sigma_{12}^{2}}$

In the QH regime σ_{12} is quantized and $\sigma_{11}=0$:

The quantum Hall effect (both integer and fractional)

1! suac- 1 思:
New Mathod for High-Aecurary Determinatian of the Finc-Simetme Constant

K. ッ. Kliciian

-14
G. Durdet

:
ㄴ. I foptz $=$

(laz-eivest "A Mory I Sfuti

$$
\rho_{11}=\frac{\sigma_{11}}{\sigma_{11}^{2}+\sigma_{12}^{2}} \quad \rho_{12}=-\frac{\sigma_{12}}{\sigma_{11}^{2}+\sigma_{12}^{2}}
$$

 $=13^{\wedge} \mu \boldsymbol{n}_{1}, \overline{\mathbf{v}} \quad 13^{\circ} \mathrm{T}$.

In the QH regime σ_{12} is quantized and $\sigma_{11}=0$: \longrightarrow The system is insulating

Chern numbers \& the quantum Hall effect, $2 d$

 Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)- C_{1} is the integral of the curvature over the "flux", or "twist".
- NTW proved that the quantized Hall conductivity is:

$$
\operatorname{Re} \sigma_{12}(0)=-\frac{e^{2}}{\hbar} C_{1}=-\frac{e^{2}}{2 \pi \hbar} C_{1}
$$

- Within our toroidal boundary conditions over a square of side L, the "twist" $\mathbf{k} \in\left[0, \frac{2 \pi}{L}\right) \times\left[0, \frac{2 \pi}{L}\right):$

$$
C_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi / L} d k_{1} \int_{0}^{2 \pi / L} d k_{2} \Omega_{12}(k)
$$

- In the limit of a large system

$$
C_{1} \rightarrow \frac{2 \pi}{L^{2}} \Omega_{12}(0)
$$

(the integration domain "shrinks" to single point).

Chern numbers \& the quantum Hall effect, $2 d$ Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

■ C_{1} is the integral of the curvature over the "flux", or "twist".

- NTW proved that the quantized Hall conductivity is:
. $\operatorname{Re} \sigma_{12}(0)=-\frac{e^{2}}{h} C_{1}=-\frac{e^{2}}{2 \pi \hbar} C_{1}$
- Within our toroidal boundary conditions over a square of side L, the "twist" $\mathbf{k} \in\left[0, \frac{2 \pi}{L}\right) \times\left[0, \frac{2 \pi}{L}\right)$:

- In the limit of a large system

(the integration domain "shrinks" to single point).

Chern numbers \& the quantum Hall effect, $2 d$ Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

$\square C_{1}$ is the integral of the curvature over the "flux", or "twist".

- NTW proved that the quantized Hall conductivity is:
. $\operatorname{Re} \sigma_{12}(0)=-\frac{e^{2}}{h} C_{1}=-\frac{e^{2}}{2 \pi \hbar} C_{1}$
- Within our toroidal boundary conditions over a square of side L, the "twist" $\mathbf{k} \in\left[0, \frac{2 \pi}{L}\right) \times\left[0, \frac{2 \pi}{L}\right)$:

■ In the limit of a large system

(the integration domain "shrinks" to single point).

Chern numbers \& the quantum Hall effect, $2 d$
 Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

■ C_{1} is the integral of the curvature over the "flux", or "twist".
■ NTW proved that the quantized Hall conductivity is:
$. \operatorname{Re} \sigma_{12}(0)=-\frac{e^{2}}{h} C_{1}=-\frac{e^{2}}{2 \pi \hbar} C_{1}$
■ Within our toroidal boundary conditions over a square of side L, the "twist" $\mathbf{k} \in\left[0, \frac{2 \pi}{L}\right) \times\left[0, \frac{2 \pi}{L}\right)$:

$$
C_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi / L} d k_{1} \int_{0}^{2 \pi / L} d k_{2} \Omega_{12}(\mathbf{k})
$$

- In the limit of a large system

(the integration domain "shrinks" to single point).

Chern numbers \& the quantum Hall effect, $2 d$
 Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

■ C_{1} is the integral of the curvature over the "flux", or "twist".

- NTW proved that the quantized Hall conductivity is:
. $\operatorname{Re} \sigma_{12}(0)=-\frac{e^{2}}{h} C_{1}=-\frac{e^{2}}{2 \pi \hbar} C_{1}$
■ Within our toroidal boundary conditions over a square of side L, the "twist" $\mathbf{k} \in\left[0, \frac{2 \pi}{L}\right) \times\left[0, \frac{2 \pi}{L}\right)$:

$$
C_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi / L} d k_{1} \int_{0}^{2 \pi / L} d k_{2} \Omega_{12}(\mathbf{k})
$$

- In the limit of a large system

$$
C_{1} \rightarrow \frac{2 \pi}{L^{2}} \Omega_{12}(0)
$$

(the integration domain "shrinks" to single point).

Chern numbers \& the quantum Hall effect, $2 d$
 Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

$\square C_{1}$ is the integral of the curvature over the "flux", or "twist".
■ NTW proved that the quantized Hall conductivity is:
. $\operatorname{Re} \sigma_{12}(0)=-\frac{e^{2}}{h} C_{1}=-\frac{e^{2}}{2 \pi \hbar} C_{1}$
■ Within our toroidal boundary conditions over a square of side L, the "twist" $\mathbf{k} \in\left[0, \frac{2 \pi}{L}\right) \times\left[0, \frac{2 \pi}{L}\right)$:

$$
C_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi / L} d k_{1} \int_{0}^{2 \pi / L} d k_{2} \Omega_{12}(\mathbf{k})
$$

- In the limit of a large system

$$
C_{1} \rightarrow \frac{2 \pi}{L^{2}} \Omega_{12}(0)
$$

(the integration domain "shrinks" to single point).

Summary

■ Theory of the insulating state of matter
■ Kohn's 1964 paper
■ Revisitation: rooted in the "Modern theory of polarization", based on a geometric phase
■ Geometrical properties of quantum states
■ Distance
■ Metric \& curvature
■ Geometrical properties of many-electron states
■ Twisted Hamiltonian
■ Metric \& curvature

- Relationship to the longitudinal \& transverse conductivity
- Final message:

The insulating/metallic state of matter is a geometrical property of the many-electron ground-state wavefunction.

Summary

■ Theory of the insulating state of matter
■ Kohn's 1964 paper
■ Revisitation: rooted in the "Modern theory of polarization", based on a geometric phase
■ Geometrical properties of quantum states
■ Distance
■ Metric \& curvature
■ Geometrical properties of many-electron states
■ Twisted Hamiltonian
■ Metric \& curvature

- Relationship to the longitudinal \& transverse conductivity

■ Final message:
The insulating/metallic state of matter is a geometrical property of the many-electron ground-state wavefunction.

