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The milestone paper
W. Kohn, Phys. Rev. 133, A171 (1964)



Theory of the insulating state
before quantum mechanics



Theory of the insulating state: Quantum mechanics
(Bloch 1928, Wilson 1931)
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[starting with R. Resta and S. Sorella, Phys Rev. Lett. 82, 370 (1999)]

Kohn’s original message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
Present formulation:
The “type of organization” is a geometrical property of the
many-electron ground-state wavefunction.



Theory of the insulating state, revisited
[starting with R. Resta and S. Sorella, Phys Rev. Lett. 82, 370 (1999)]

Kohn’s original message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
Present formulation:
The “type of organization” is a geometrical property of the
many-electron ground-state wavefunction.



Theory of the insulating state, revisited
[starting with R. Resta and S. Sorella, Phys Rev. Lett. 82, 370 (1999)]

Kohn’s original message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
Present formulation:
The “type of organization” is a geometrical property of the
many-electron ground-state wavefunction.



1992 onwards: The “Modern theory of polarization”
A genuine change of paradigm, based on a geometric phase (Berry phase)

Phenomenologically:
Metal: Has a finite dc conductivity
Insulator: Has a vanishing dc conductivity
(at zero temperature!).

But also....
Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.
Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.

In this talk:
Focus on conductivity, not on polarization.
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The “Modern theory of polarization”

Macroscopic polarization has nothing to do with the
periodic charge of a polarized dielectric
(contrary to common statements in most textbooks).

Polarization can be expressed as a geometric phase
(Berry phase) of the electronic wavefunction.

Nowadays, the Berry phase is computed as a standard
option within all the electronic-structure codes on the
market.

This gives an idea of how, when, and why geometrical
concepts entered electronic-structure theory in condensed
matter.
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Bures distance
D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

A parametric quantum Hamiltonian:
H(k)|Ψ(k)〉 = E(k)|Ψ(k)〉
Nondegenerate ground state |Ψ0(k)〉;
Arbitrary phase factor eiθ(k): “gauge” freedom.
Distance between quantum states
D2

12 = inf θ1θ2 ‖ψ0(k1)eiθ1 − ψ0(k2)eiθ2‖
D2

12 = 2− 2|〈ψ0(k1)|ψ0(k2)〉|2

Manifestly gauge invariant.
Projectors:
P(k) = |Ψ0(k)〉〈Ψ0(k)| , Q(k) = 1− P(k)

Distance between projectors:
D2

12 = 2− 2 tr {P(k1)P(k2)}.
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Quantum metric & curvature
J. P. Provost and G. Vallee, Commun. Math Phys. 76, 289 (1980)

D2
k,k+dk =

∑d
α,β=1 gαβ(k)dkαdkβ

gαβ(k)
= Re 〈∂αΨ0(k)|∂βΨ0(k)〉− 〈∂αΨ0(k)|Ψ0(k)〉〈Ψ0(k)|∂βΨ0(k)〉
= Re 〈∂αΨ0(k)|Q(k)|∂βΨ0(k)〉

Fubini-Study metric

Curvature:

Ω(k) = i[ 〈∂αΨ0(k)|∂βΨ0(k)〉 − 〈∂βΨ0(k)|∂αΨ0(k)〉 ]
= −2 Im 〈∂αΨ0(k)|∂βΨ0(k)〉
= −2 Im 〈∂αΨ0(k)|Q(k)|∂βΨ0(k)〉
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Sum-over-states formula

H(k)|Ψ0(k)〉 = E0(k)|Ψ0(k)〉

|Ψ0(k + dk)〉 = |Ψ0(k)〉+ dk ·
′∑

n 6=0

|Ψn(k)〉〈Ψn(k)|∂kH(k)|Ψ0(k)〉
E0(k)− En(k)

|∂αΨ0(k)〉 =

′∑
n 6=0

|Ψn(k)〉〈Ψn(k)|∂αH(k)|Ψ0(k)〉
E0(k)− En(k)

〈Ψ0(k)|Q(k)|∂βΨ0(k)〉

=
∑
n 6=0

′ 〈Ψ0(k)|∂αH(k)|Ψn(k)〉〈Ψn(k)|∂βH(k)|Ψ0(k)〉
[E0(k)− En(k)]2

Both real and imaginary parts: metric & curvature.
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Many-electron Hamiltonian in 3d

Ĥ(k) =
1

2m

N∑
i=1

[pi +
e
c

A(ri) + ~k]2 + V̂

A is a vector potential of magnetic origin.
V̂ includes one-body and two-body terms.
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Localization tensor 〈rαrβ〉c
(a.k.a. first cumulant moment of the electron distribution)

Eventually, we are interested in the “thermodynamic limit”:
N →∞, L →∞, N/L3 = constant.

〈∂αΨ0(k)|Q(k)|∂βΨ0(k)〉 is extensive
(scales as the size of the system)

We focus on k = 0, and we define the intensive quantity:

〈rαrβ〉c = 〈∂αΨ0(0)|Q(0)|∂βΨ0(0)〉/N

Both real and imaginart parts.
The imaginary part vanishes in time-reversal invariant
systems.
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Meaning of 〈rαrβ〉c

Metric per electron at k = 0 (real part);
Curvature per electron at k = 0 (imaginary part).
“Geometric” response of the system to an infinitesimal
“twist” of the many-body Hamiltonian.

Main message of the present talk

Re 〈rαrβ〉c discriminates between insulators and metals.
It is the ground-state property which vindicates Kohn’s
(1964) viewpoint.
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(E0 − En)2

=
1
N

∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

Ground-state property or excited-state property?



Sum over states again
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Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction
Generalities: “twisted Hamiltonian”
Metric vs. longitudinal conductivity
Special case: Crystalline system of independent
electrons
Curvature vs. transverse (Hall) conductivity
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& longitudinal conductivity
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Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Re 〈rαrβ〉c =
1
N

Re 〈∂αΨ|Q|∂βΨ0〉 =
1
N

gαβ(k = 0)

=
1
N

Re
∑
n 6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2

0n

〈r1r1〉c = 〈x2〉c =
1
N

∑
n 6=0

′ 〈Ψ0|v̂1|Ψn〉〈Ψn|v̂1|Ψ0〉
ω2

0n

=
~L3

πe2N

∫ ∞

0

dω
ω

Re σ11(ω)

Metals: σ11(ω) is finite for ω → 0.
The localization tensor diverges.
Insulators: σ11(ω) → 0 for ω → 0
e.g. σ11(ω) ≡ 0 for ~ω ≤ Egap in “normal” insulators .
The real part of the localization tensor is finite.
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1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction
Generalities: “twisted Hamiltonian”
Metric vs. longitudinal conductivity
Special case: Crystalline system of independent
electrons
Curvature vs. transverse (Hall) conductivity



Special case:
Crystalline system of independent electrons
(e.g. Hartree-Fock or Kohn-Sham)

For presentation purpose: electrons in 1d .



Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

|Ψ0〉 is an N–particle Slater determinant of Bloch orbitals.
Caveat:
The many-body “flux” k and the Bloch vector q are
different quantities (k equals zero in |Ψ0〉 ).
Periodic (toroidal) boundary conditions imposed over
L = Ma: M allowed Bloch vectors in the reciprocal cell.
|Ψ0〉 is written as a determinant of occupied Bloch orbitals,
in both the insulating and the metallic case.
Key difference:
The whole band is used to build the insulating |Ψ0〉, while
only one half of the band is used for the metallic |Ψ0〉.
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Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state,
7 occupied orbitals in the metallic state.
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Crystalline system of independent electrons
Thermodynamic limit

〈rαrβ〉c =
1
N
〈∂αΨ|Q|∂βΨ0〉

In the thermodynamic limit (M →∞ limit):
〈x2〉c converges to a finite value in the insulating case;
〈x2〉c diverges in the metallic case.
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Semantics: Why “localization tensor”?
(or even: why “second cumulant moment of the electron distribution”?)

Here: Only independent-electron explanation.

So far, we have written |Ψ0〉 an N-particle Slater
determinant of Bloch orbitals.
Any determinant is invariant for unitary transformation of
the vectors (orbitals) within the occupied manifold.
We transform the Bloch (delocalized) orbitals
into Wannier (localized) orbitals.
In the insulating case:

The occupied manifold is the whole band:
|Ψ0〉 is invariant by such unitary transformation.
|Ψ0〉 can be equivalently written as an N-particle Slater
determinant of Wannier orbitals.
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(or even: why “second cumulant moment of the electron distribution”?)

In this drawing, again L = Ma, with M = 14:
Slater determinant built with M occupied
Wannier orbitals wn(x).
wn(x) are exponentially localized in the M →∞ limit.
〈x2〉c = 〈wn|x2|wn〉 − |〈wn|x |wn〉|2:
A measure of localization:
“quadratic spread”, alias second cumulant moment.
The spread diverges in the metallic case.
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Kohn’s theory of the insulating state, completed

Kohn’s original (1964) message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
The real part of our “localization tensor”
Re 〈rαrβ〉c = 1

N 〈∂αΨ|Q|∂βΨ0〉
is a geometrical property of the ground-state
wavefunction which quantitatively probes this kind of
organization
Re 〈rαrβ〉c discriminates sharply
between insulators and metals.
Next: What about Im 〈rαrβ〉c?
(when time-reversal symmetry is broken).



Kohn’s theory of the insulating state, completed

Kohn’s original (1964) message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
The real part of our “localization tensor”
Re 〈rαrβ〉c = 1

N 〈∂αΨ|Q|∂βΨ0〉
is a geometrical property of the ground-state
wavefunction which quantitatively probes this kind of
organization
Re 〈rαrβ〉c discriminates sharply
between insulators and metals.
Next: What about Im 〈rαrβ〉c?
(when time-reversal symmetry is broken).



Kohn’s theory of the insulating state, completed

Kohn’s original (1964) message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
The real part of our “localization tensor”
Re 〈rαrβ〉c = 1

N 〈∂αΨ|Q|∂βΨ0〉
is a geometrical property of the ground-state
wavefunction which quantitatively probes this kind of
organization
Re 〈rαrβ〉c discriminates sharply
between insulators and metals.
Next: What about Im 〈rαrβ〉c?
(when time-reversal symmetry is broken).



Kohn’s theory of the insulating state, completed

Kohn’s original (1964) message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
The real part of our “localization tensor”
Re 〈rαrβ〉c = 1

N 〈∂αΨ|Q|∂βΨ0〉
is a geometrical property of the ground-state
wavefunction which quantitatively probes this kind of
organization
Re 〈rαrβ〉c discriminates sharply
between insulators and metals.
Next: What about Im 〈rαrβ〉c?
(when time-reversal symmetry is broken).



Kohn’s theory of the insulating state, completed

Kohn’s original (1964) message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
The real part of our “localization tensor”
Re 〈rαrβ〉c = 1

N 〈∂αΨ|Q|∂βΨ0〉
is a geometrical property of the ground-state
wavefunction which quantitatively probes this kind of
organization
Re 〈rαrβ〉c discriminates sharply
between insulators and metals.
Next: What about Im 〈rαrβ〉c?
(when time-reversal symmetry is broken).



Kohn’s theory of the insulating state, completed

Kohn’s original (1964) message:
The insulating behavior reflects a certain type of
organization of the electrons in the ground state.
The real part of our “localization tensor”
Re 〈rαrβ〉c = 1

N 〈∂αΨ|Q|∂βΨ0〉
is a geometrical property of the ground-state
wavefunction which quantitatively probes this kind of
organization
Re 〈rαrβ〉c discriminates sharply
between insulators and metals.
Next: What about Im 〈rαrβ〉c?
(when time-reversal symmetry is broken).



Outline

1 Theory of the insulating state: historical

2 Quantum metric and curvature

3 Geometrical properties of the many-electron wavefunction
Generalities: “twisted Hamiltonian”
Metric vs. longitudinal conductivity
Special case: Crystalline system of independent
electrons
Curvature vs. transverse (Hall) conductivity



Localization tensor (real part)
& longitudinal conductivity
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)
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In insulators:
σ11(ω) → 0 for ω → 0
fast enough to make the integral converge.
The real part of the localization tensor is finite.
The sum converges.
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Localization tensor (imaginary part)
& transverse (Hall) conductivity in 2d
R. Resta, Phys. Rev. Lett. 95, 196805 (2005)
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Vanishing in time-reversal-invariant systems.
If the system is insulating, even this sum converges.
Hall conductivity: Re σ12(ω = 0)
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The quantum Hall effect
(both integer and fractional)

ρ11 = σ11
σ2

11+σ2
12

ρ12 = − σ12
σ2

11+σ2
12

In the QH regime σ12 is quantized and σ11 = 0:
−→ The system is insulating



The quantum Hall effect
(both integer and fractional)

ρ11 = σ11
σ2

11+σ2
12

ρ12 = − σ12
σ2

11+σ2
12

In the QH regime σ12 is quantized and σ11 = 0:
−→ The system is insulating



The quantum Hall effect
(both integer and fractional)

ρ11 = σ11
σ2

11+σ2
12

ρ12 = − σ12
σ2

11+σ2
12

In the QH regime σ12 is quantized and σ11 = 0:
−→ The system is insulating



The quantum Hall effect
(both integer and fractional)

ρ11 = σ11
σ2

11+σ2
12

ρ12 = − σ12
σ2

11+σ2
12

In the QH regime σ12 is quantized and σ11 = 0:
−→ The system is insulating



Chern numbers & the quantum Hall effect, 2d
Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

C1 is the integral of the curvature over the “flux”, or “twist”.
NTW proved that the quantized Hall conductivity is:
.Re σ12(0) = −e2

h C1 = − e2

2π~C1

Within our toroidal boundary conditions over a square of
side L, the “twist” k ∈ [0, 2π

L )× [0, 2π
L ):

C1 =
1

2π

∫ 2π/L

0
dk1

∫ 2π/L

0
dk2 Ω12(k)

In the limit of a large system

C1 →
2π
L2 Ω12(0)

(the integration domain “shrinks” to single point).
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Summary

Theory of the insulating state of matter
Kohn’s 1964 paper
Revisitation: rooted in the “Modern theory of polarization”,
based on a geometric phase

Geometrical properties of quantum states
Distance
Metric & curvature

Geometrical properties of many-electron states
Twisted Hamiltonian
Metric & curvature
Relationship to the longitudinal & transverse conductivity

Final message:
The insulating/metallic state of matter is a geometrical
property of the many-electron ground-state wavefunction.
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