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Why new device architectures? 

The difficulty in scaling conventional MOSFETs makes it necessary to search for 
alternative device structures new structural and techno-logical solutions.

1) Poor electrostatics increased Ioff

2) Poor channel transport decreased Ion

3) S/D parasitic resistance decreased Ion

4) Gate oxide scaling increased JG

5) Gate depletion increased EOT

1

2

3 4
5

Advanced non-classical devices like ultra-thin body fully depleted SOI and 
multiple-gate FETs will be needed to effectively scale the MOSFET gate length.

enhanced drive current and acceptable control of SCEs
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New device architecturesNew device architectures

SOI-FET DG-FET CNW-FET

Si

M. M. YangYang etet al., IEDM 2003al., IEDM 2003 J. J. WidiezWidiez etet al., TED 2005al., TED 2005 N. N. SinghSingh etet al., EDL 2006al., EDL 2006
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Quantum effects in NWQuantum effects in NW--FETsFETs

Structural-quantum confinement:

Quantization effects in the direction perpendicular to the  
Si/SiO2 interface Schrödinger equation

Channel length reduction: 

Full-quantum ballistic transport open boundary 
Schrödinger equation
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Bulk EM quantumBulk EM quantum--mechanical model (1)mechanical model (1)

Schrödinger equation with constant bulkconstant bulk effective mass (EM) (x,y
confined directions, z transport direction):
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open boundary 1D SE

closed boundary 2D SE

Quasi-separable potential approximation:
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Bulk EM quantumBulk EM quantum--mechanical model (2)mechanical model (2)

In general          is the solution of the open boundary 1D SE.
Constant potential in the injection leads (charge reservoirs) (QTBM).
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Special case: nanowire uniform in the z direction
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Bulk EM quantumBulk EM quantum--mechanical model (3)mechanical model (3)

Expression of the electron charge density (injection from the source):
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Similarly for the drain injection. Total density (to Poisson equation):

DStot nnn +=

Expression of the total current:

[ ] EEEfEEfETqI FDFS d),(),()(∫ −=
hπ

T(E) is the total (sum over all subbands) transmission coefficient
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Bulk EM quantumBulk EM quantum--mechanical model (4)mechanical model (4)
The problem is solved by separating the Schrödinger equation along the transverse 
and longitudinal coordinates.

Error check

Solve the 3D Poisson equation. 3D Poisson equation

ϕ

ϕ0

2D Schrödinger (closed boundary)

En (z), χn (x,y;z)

1D Schrödinger (QTBM)

�n (z)

n

Charge calculationCalculate the charge density.

φ0 taken from a classical solution, used 
only as initial guess.

The Fermi level is prescribed at the S 
and D leads.

Solve the 2D SE in the transverse 
direction for each cross-section.

Solve the 1D SE with open 
boundary conditions.
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Transverse 2D SETransverse 2D SE

The transverse 2D Schrödinger equation is solved numerically using 
different approaches:

Direct spatial discretization

Expansion of the unknown wave function in the eigenfunctions of the 
well potential problem, when known analytically.

o Very efficient for small physical dimensions, since only a few 
basis functions are needed in the expansion. 

o Used for rectangular (sine waves basis functions) and cylindrical 
(Bessel basis functions) NW.
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Example: cylindrical SNW (1)

The solution is given by:

x
ϕ r

ySiO2
Si

tOX

R

z

where are the zeros of the Bessel
andfunction
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Example: cylindrical SNW (2)
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Example: cylindrical SNW (3)

R=10nm

R=5nm

R=2.5nm

SiO2

Si

Self consistent charge calculation



University of Bologna

15A. Gnudi

Limits of the bulk EM approximation

The strong quantization due to the lateral dimensions pushes the
eigenvalues up in energy non parabolic effects.

Limited number of atoms in the transverse cross-section.

The nature of the interface and the termination of the dangling 
bonds have an influence on the band structure.

Conclusion: the band structure is no longer a material property
but, rather, a device property it must be computed for every 
device geometry using atomistic computations.
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Limited number of atoms in the crossLimited number of atoms in the cross--sectionsection
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An extreme solution

Full 3D atomistic tight binding Full 3D atomistic tight binding 
(TB) simulation.(TB) simulation.

In this example:
2.1 nm x 2.1 nm x 32 nm
20 orbitals for each atom
≈ 7000 atoms

Easy to account for 
different orientations and 
surface roughness.

Very time consuming, 
prohibitive for device 
optimization 〈100〉 〈110〉

From Luisier et al., IEDM, 2006
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An engineering approach (1)

Inject non parabolic corrections into the constant EM model scheme: 
abandon the bulk EM and use EMs function of the cross-section area, 
fitted upon atomistic band calculations for well potentials.

Quantization masses used in the 2D transverse SE (cylinder) are fitted on 
subband bottom energies.
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An engineering approach (2)

Transport masses used in the 1D longitudinal SE are fitted on the 
parabolic part of the 1DEG subbands.
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Electrical characteristics: threshold shift
From ITRS 2005: tox = 1 nm & VDD = 0.7 V. Analysis at fixed LG = 10 nm: 
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Electrical characteristics: effects on ION
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Electrical characteristics: subthreshold slope
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A higher order engineering approach

As before + non parabolic transport model in the 1D longitudinal SE.

E.g.: 6th order expansion of E(k) = γ − αγ2 + βγ3, where γ = (ħk)2/(2m*).

α and β fitted on the 
1DEG subbands
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Example of 1DEG subband fitting

dSi = 1 nm (5 atoms)

Symbols = DFT

Red squares:
twofold degenerate

Solid lines = 
6th order fitting
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Non-parabolic Hamiltonian: formulation

A non-parabolic E(k) relationship can always be expanded in series of k2 due to the 
parity of the dispersion relationship

Following the effective-mass theorem, we perform the substitution

The probability current becomes (generalization of the constant EM case):
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Non-parabolic Hamiltonian: problems (1)

A direct discretization scheme (central differences) does not seem to work 
properly.

The transfer matrix method (TMM) provides much more reliable results (at least up 
to the 6th order). However…

The TMM approach (from the literature) is based on: 

1. staircase potential

2. in each element                                  with ki in the first Brillouin zone       

3. continuity of ψ and J at each potential step
xjk

i
xjk

ii
ii eBeA −+=ψ
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Non-parabolic Hamiltonian: problems (2)

Problems:

J is continuous, but not dψ/dx.

If E(k) is non monotonic, the local transfer matrix is singular at 
the points where dE(k) / dk = 0.

What to do when 4 ks (or more) exist in the first Brillouin zone?

In principle, for an expansion of order N, in each element there 
are N plane waves, and the wave function and its derivatives up 
to order N-1 should be matched, but …

… if the expansion is truncated to reasonably low order,  junk ks

… if one tries to fit E(k) over the full Brillouin zone, a very high 
order expansion is required.

E(k)

k
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A full 1DEG band engineering approachA full 1DEG band engineering approach

+
generic subband: use Fourier expansion!!

1D open-boundary SE

Discrete form:
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SubbandSubband features and Fourier expansionfeatures and Fourier expansion

(3° order)

unprimed ladder splitting

missed crossing

• 8x8 atoms cell 
octagonal 〈100〉 SNW

• KS-DFT atomistic 
energy calculation by 
code CRYSTAL2003

• H-passivated structural 
relaxed SNW 
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Boundary conditions (1)Boundary conditions (1)

Characteristic equation in the source lead: 

If N is the Fourier expansion order, there are 2N complex solutions kSn
symmetric around the origin, with the real part in the first Brillouin zone:

Expression of the wave function within the source lead:

∑∑
=

−

=

==
N

n

nN
n

N

n
n kaAnkak

00

)(cos)cos(2)( εε = polynomial of order N in cos(ka)

The kSn are selected corresponding to back propagating waves (negative 
group velocity), or vanishing modes in the source lead (complex with 
positive real part)
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Boundary conditions (2)Boundary conditions (2)

)()( xax nn φφ =+ N additional periodic unknown functions

The wave function in the lead is expressed by a superposition of
Bloch functions, even if the injected electron is a plane wave.

It is expected the fine structure �(x) to be nearly flat for reasonably 
smooth potential profiles. 



University of Bologna

34A. Gnudi

Boundary conditions (3)Boundary conditions (3)

)()( xax nn φφ =+ N additional periodic unknown functions

• add N extra equations in the lead
• repeat the solution on additional shifted grids (uncoupled)

)0(nφ

)( 1xn ∆φ

)( 2xn ∆φ
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Boundary conditions (4)Boundary conditions (4)

CB1
N = 3

Examples of root loci of the characteristic equation ε(kS) = E

CB3
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Calculation of the probability currentCalculation of the probability current
From Gomez-Campos et al., J. Appl.Phys., 2005

based on the k2 power series expansion of ε(k)

and using the previous expression of ψS

with �(x) approximated with the truncated Fourier series 
through �(0), �(∆x1), …
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Are multiple grids really needed?Are multiple grids really needed?

CB3

E = 0.4 eV
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Are multiple grids really needed?Are multiple grids really needed?

With typical potential profiles one grid is generally sufficient, 
unless very high charge resolution is required
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Band effects on transportBand effects on transport

• T(E) drop due to finite energy extension of the subbands
• different SS due to different effective masses
• transmission zeros for CB3 in deep subthreshold
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Band effects on transportBand effects on transport

• T(E) drop due to finite energy extension of the subbands
• different SS due to different effective masses
• transmission zeros for CB3 in deep subthreshold
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IntervalleyIntervalley transitions: test casetransitions: test case

subband CB3

0.35 V potential 
step



University of Bologna

42A. Gnudi

Application to device simulation: flow chartApplication to device simulation: flow chart

Atomistic calculation of 1D 
subbands with well potential 3D potential initial guess φo(r,x)

Error check

3D electrostatic potential φ(r,x)

Poisson equation

subbands εi(k)

Transverse 2D Schrödinger eq. for each x (fitted const. quantization EM)

potential energy profiles Ui (x)

electron density n(r,x)

χi (r ; x)  transverse wavefunctions

Fermi distributions at 
source/drainCharge calculation

longitudinal wavefunctions ψi (x)

Longitudinal 1D Schrödinger eq. with full εi(k)
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Transmission coefficient Transmission coefficient –– 11stst subbandsubband
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Transmission coefficient Transmission coefficient –– 22ndnd subbandsubband
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Transmission coefficient Transmission coefficient –– 33rdrd subbandsubband
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Output characteristics Output characteristics 

Two negative output conductance 
intervals are clearly visible.
The drop at VDS = 0.8 V is larger 
because of the 2-fold degeneracy of 
the 2nd subband.

0.4 eV

0.8 eV
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Summary and conclusions (1)Summary and conclusions (1)

The importance of quantum effects in ultra scaled SNWs has been highlighted, both for 
electrostatics and transport.

The bulk EM approximation turns out to be inaccurate for very thin NWs.

A hierarchy of models with an increasing order of complexity has been presented to 
account for band effects.

A method has been described to deal with the 1D transport open boundary SE 
including the full subband structure.

The drop of the transmission coefficient due to the limited energy extension of the 
subbands, the possibility of tunneling transmission zeros and intervalley transitions 
have been discussed. 

The preliminary use of this method for full device simulation has been presented.

Possibility of negative output conductance.
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Summary and conclusions (2)Summary and conclusions (2)

Open problems: 

How far can the uncoupled subband method be pushed? 

Is tunneling in the energy gap correctly described?

The kinetic part of the Hamiltonian in principle is not separable any more when 
non parabolic bands are considered. What are we loosing by still forcing the 
separation?

An extensive comparison with more accurate methods (full 3D and atomistic 
simulations) and with experiments is necessary.

Are full band effects on transport really important in practical devices?
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