Coupling of Quantum and Electrothermal Effects in Semiconductor Device Simulation

Carlo de Falco¹, Joseph W. Jerome², Riccardo Sacco³

¹Dublin City University, Ireland
 ²Northwestern University, Evanston (IL), USA
 ³Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, Italy

M.A.Q.S.A., Roma 26/10/2007

Outline of The Talk

1 Motivations

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction
- **3** Iterative Solution Algorithm
- Discretization Method
- **5** Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

1 Motivations

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction
- **3** Iterative Solution Algorithm
- Discretization Method
- **5** Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

Electro-Thermal Effects

- **self-heating** and **mutual-heating** effects will gain increasing importance in the near future
- In emerging **SOI** and **thin-film** CMOS technologies single device cooling is going to become a serious limitation

Electro-Thermal Effects

- **self-heating** and **mutual-heating** effects will gain increasing importance in the near future
- In emerging **SOI** and **thin-film** CMOS technologies single device cooling is going to become a serious limitation

Quantum Effects

Quantum Electrostatic (QE) effects: source-to-drain tunneling, energy quantization effects due to strong confinement, equivalent oxide thickness

Quantum Effects

Due to **off-state leakage currents** caused by QE effects, **steady-state power consumption** will become an important factor

1 Motivations

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction
- **3** Iterative Solution Algorithm
- Discretization Method
- 5 Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

The Thermo–Energy-Balance (ThEB) Model

$$\begin{cases} \operatorname{div} \mathbf{D} = q \left(p - n + N_D^+ - N_A^- \right) \\ \frac{\partial n}{\partial t} - \frac{1}{q} \operatorname{div} \mathbf{J}_n = -U \\ \frac{\partial p}{\partial t} + \frac{1}{q} \operatorname{div} \mathbf{J}_p = -U \\ \frac{\partial (n w_n)}{\partial t} + \operatorname{div} \mathbf{S}_n = \mathbf{E} \cdot \mathbf{J}_n - n w_n U + \left(\frac{\partial (n w_n)}{\partial t} \right)_{coll} \\ \frac{\partial (p w_p)}{\partial t} + \operatorname{div} \mathbf{S}_p = \mathbf{E} \cdot \mathbf{J}_p - p w_p U + \left(\frac{\partial (p w_p)}{\partial t} \right)_{coll} \\ \frac{\partial (\rho_L c_L T_L)}{\partial t} + \operatorname{div} \mathbf{S}_L = H_L. \end{cases}$$

[Baccarani et al., 1986-1993; Bosisio, 1996; Grasser, 1999; Medina, Pagani, S., 2006]

Constitutive Equations for Vector Fields

$$\begin{cases} \mathbf{D} = \varepsilon \mathbf{E} = -\varepsilon \, \nabla \, \varphi \\ \mathbf{J}_n = -q \, \mu_n \, n \, \nabla \, \left(\varphi - \frac{K_B \, T_n}{q} \right) + q \, D_n \, \nabla \, n \\ \mathbf{J}_p = -q \, \mu_p \, p \, \nabla \, \left(\varphi + \frac{K_B \, T_p}{q} \right) - q \, D_p \, \nabla \, p \\ \mathbf{S}_n = -\frac{\mathbf{J}_n}{q} \left(w_n + K_B \, T_n \right) - \kappa_n \, \nabla \, T_n \\ \mathbf{S}_p = \frac{\mathbf{J}_p}{q} \left(w_p + K_B \, T_p \right) - \kappa_p \, \nabla \, T_p \\ \mathbf{S}_L = -\kappa_L \, \nabla \, T_L \end{cases}$$

- Quasi-static approximation for the electric field
- Generalized DD laws for current densities and carrier energy flows
- Fourier law for lattice heat flow

Constitutive Equations for Scalars

$$\begin{split} D_{\nu} &= \mu_{\nu} \left(K_{B} T_{\nu} / q \right) \qquad \nu = n, p \\ U &= \left(p \, n - n_{eq}^{2} \right) F(n, p) \\ \kappa_{\nu} &= 3/2 (K_{B} / q)^{2} \sigma_{\nu} T_{\nu}, \qquad \kappa_{L} = \kappa_{L,0} \left(T_{L} / T_{0} \right)^{-4/3} \\ w_{\nu} &= \left(3/2 K_{B} T_{\nu} \right), \\ \left(\frac{\partial \left(\nu \, w_{\nu} \right)}{\partial \, t} \right)_{coll} &= -\nu \left(w_{\nu} - w_{\nu}^{eq} \right) / \tau_{w,\nu} \\ H_{L} &= E_{G} U - \left(\frac{\partial (n \, w_{n})}{\partial \, t} \right)_{coll} - \left(\frac{\partial (p \, w_{p})}{\partial \, t} \right)_{coll} \end{split}$$

- Generalized Einstein relations
- Convective terms are neglected in the energy density
- Relaxation approximation in the energy collision terms
- The last relation expresses the fact that the system is closed

Physical Simplifications and SThEB Model

To reduce the computational complexity of the ThEB model,

the carrier energy flow balance equations are dropped out by:

- neglecting energy outflow and recombination/generation
- assuming steady-state conditions
- enforcing the condition that the system is closed

$$\begin{cases} \operatorname{div} \mathbf{D} = \rho \\ \operatorname{div} \mathbf{J}_n - q \frac{\partial n}{\partial t} = qU \\ \operatorname{div} \mathbf{J}_p + q \frac{\partial p}{\partial t} = -qU \\ \frac{\partial W_L}{\partial t} + \operatorname{div} \mathbf{S}_L = H \end{cases}$$

Constitutive Equations

$$\begin{cases} \mathbf{J}_{n} = -q \,\mu_{n} \, n \, \nabla \, \left(\varphi - \frac{K_{B} \, T_{L}}{q}\right) + q \, D_{n} \, \nabla \, n \\ \mathbf{J}_{p} = -q \,\mu_{p} \, p \, \nabla \, \left(\varphi + \frac{K_{B} \, T_{L}}{q}\right) - q \, D_{p} \, \nabla \, p \\ D_{n,p} = \mu_{n,p} \frac{K_{B} \, T_{L}}{q} \\ H = \mathbf{J} \cdot \mathbf{E} + E_{G} \, U \end{cases}$$

- Only one temperature to describe non-isothermal conditions
- Heat source term:
 - Joule heat dissipation
 - 2 Energy loss/gain to the lattice through rec./gen.

Post-Processing of Carrier Temperatures

Once the SThEB system is solved, carrier temperatures can be computed by post-processing

$$T_{\nu} = T_L \left(1 + \frac{\tau_{w_{\nu}} \mathbf{E} \cdot \mathbf{J}_{\nu}}{\frac{3}{2} K_B T_L \nu} \right) \qquad \nu = n, p.$$

Physical Interpretation

local increase of
$$T_{\nu}$$
 w.r.t. $T_L = \frac{\mathcal{E}_{Joule}}{\mathcal{E}_{Th,\nu}}$

- \mathcal{E}_{Joule} : energy density dissipated through Joule effect
- $\mathcal{E}_{Th,\nu}$: thermal energy density of electron/hole gas assumed in equilibrium with the lattice

First Order Quantum Correction

 Quantum correction to the electrostatic potential (cf. QCDD model general framework, [de Falco, Gatti, Lacaita, S., JCP 2005])

$$\varphi \quad \rightarrow \quad (\varphi + G_{\nu}), \ \nu = n, p$$

- Models for the correction term:
 - Improved Modified Local Density Approach [Jungermann et al. 2001]
 - Density-Gradient model [Ancona et al. 1989]
 - Direct solution of the Schrödinger equation [Pirovano et al 2002]
- Corrections to energy and energy fluxes are neglected (cf. [Romano, JCP 2007])

2 Matematical Modeling Of Electrothermal Effects

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction

3 Iterative Solution Algorithm

- Discretization Method
- **5** Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

Outer Iteration Loop

- Superior performance with respect to other approaches was demonstrated in [Baccarani et al. '96]
- Complete decoupling allows for high flexibility in implementing different models and discretization schemes
- Vector extrapolation techniques improve speed (RRE, Anderson)

Electric Iteration Loop

- Introduced in [de Falco, Gatti, Lacaita, S. 2005]
- Analysis in [de Falco, Jerome, S. 2007]

Thermal Iteration Loop

- If the simplified model is used, the first step can be skipped
- Iteration is needed because of the dependence κ = κ(T)

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction
- **3** Iterative Solution Algorithm
- Discretization Method
- 5 Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

Discretization scheme

Diffusion-Advection-Reaction (DAR) Pb.:

$$\begin{cases} \mathcal{L}(u) = -\operatorname{div} \mathbf{F}(u) + c \, u = f \\ \mathbf{F}(u) = \alpha \, \gamma \left(\eta \, \nabla \, u - \beta \, u \right), \end{cases}$$

- FVSG discretization scheme
- Flux conservation across the Voronoi cell associated with every node of \mathcal{T}_h

•
$$F_i^K = \alpha^K < \gamma \eta >_i^K < \eta >_i^K \frac{u_k B(\Delta \psi_i^K) - u_j B(-\Delta \psi_i^K)}{|e_i^K|}$$

• Weakly acute triangulation should be used in practical computations

• (Primal Mixed) Galerkin interpretation simplifies imposing complex transmission conditions at interfaces

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction
- **3** Iterative Solution Algorithm
- 4 Discretization Method
- **5** Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

Double-Gate MOSFET

- Channel length 13nm
- Source, Drain doping $10^{25}m^{-3}$
- Channel doping $10^{20} m^{-3}$

Double-Gate MOSFET (without QC)

- $V_{DS} = 0.5V$
- $V_{GS} = 0V$
- Joule power density $(\vec{J}_n + \vec{J}_p) \cdot \vec{E}$

Double-Gate MOSFET (without QC)

- $V_{DS} = 0.5V$
- $V_{GS} = 0V$
- Lattice temperature T_L

Double-Gate MOSFET (with QC)

- $V_{DS} = 0.5V$
- $V_{GS} = 0V$
- Joule power density $(\vec{J}_n + \vec{J}_p) \cdot \vec{E}$

Double-Gate MOSFET (with QC)

- $V_{DS} = 0.5V$
- $V_{GS} = 0V$
- Lattice temperature T_L

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction
- **3** Iterative Solution Algorithm
- Discretization Method
- 5 Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

0D Thermal elements

- Dirichlet condition at the contacts implies an **infinite cooling capacity** which is unphysical
- A 0D model of heat flow through the contact can be defined via the **thermal resistance** $R_{th} \propto \kappa_{metal}^{-1} L$
- A 0D thermal resistance can also be used to take into account mutual heating among devices on the same CHIP (cf. [Medina, Pagani, S., 2006])
- More generally devices could be coupled via a thermal network [Grasser et al.]
- Details on FEM implementation of 0D coupling conditions in [Culpo, de Falco, Substructuring Methods for Coupled PDE/DAE Systems]

Mutual heating of devices integrated on the same CHIP

Mutual heating of devices integrated on the same CHIP

• Transmission conditions:

•
$$H_1(\vec{x}) = -\left(\frac{1}{R_i}\right) \left(\theta_1(\vec{x}) - \langle \theta_2 \rangle_{\Gamma_{i2}}\right)$$
 on Γ_{i1}

• $H_2(\vec{x}) = -\left(\frac{1}{R_i}\right) \left(\theta_2(\vec{x}) - \langle \theta_1 \rangle_{\Gamma_{i1}}\right)$ on Γ_{i1}

•
$$\langle H_1 \rangle_{\Gamma_{i1}} + \langle H_2 \rangle_{\Gamma_{i2}} = 0$$

Mutual heating of devices integrated on the same CHIP

- Γ_r , Γ_s , Γ_{i1} , Γ_{i2} , Γ_n , Ω_P
- $-\frac{\theta(\vec{x})-T_0}{R_r} = H(\vec{x})$ on Γ_r
- $-\frac{\theta(\vec{x})-T_0}{R_s} = H(\vec{x}) \text{ on } \Gamma_s$
- $P(\vec{x}) > 0$ in Ω_P
- Transmission conditions:

•
$$H_1(\vec{x}) = -\left(\frac{1}{R_i}\right) \left(\theta_1(\vec{x}) - \langle \theta_2 \rangle_{\Gamma_{i2}}\right)$$
 on Γ_{i1}
• $H_2(\vec{x}) = -\left(\frac{1}{R_i}\right) \left(\theta_2(\vec{x}) - \langle \theta_1 \rangle_{\Gamma_{i1}}\right)$ on Γ_{i1}
• $\langle H_1 \rangle_{\Gamma_{i1}} + \langle H_2 \rangle_{\Gamma_{i2}} = 0$

- Classical ThEB Model
- Reduced Model: SThEB
- Quantum Correction
- **3** Iterative Solution Algorithm
- Discretization Method
- **5** Validation Of The QSThEB Model
- **6** Device Mutual Heating
- Concluding Remarks

Conclusions and Future Perspectives

Conclusions:

- A Quantum Simplified Thermal Energy Balance (QSThEB) model for a consistent description of local self-heating and quantum effects has been discussed
- An Iterative Solution Map for the QSThEB model has been developed within the framework of Gummel's decoupled algorithm
- A Reduced-Order Thermal Coupling Model has been proposed to allow heat flux exchange between neighbouring devices
- Models and computational techniques have been extensively validated on realistic devices under different working conditions

Future work:

- Development of a parallel implementation for the Domain-Decomposition iterative solution of the QSThEB model
- **3D** simulations (and corresponding 3D/0D coupling)