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In a milestone paper appeared in 1964, W. Kohn showed that the insulating
state of matter reflects a peculiar organization of the electrons in their ground

state: the cause for the insulating behavior is electron localization [1]. Such
localization, however, manifests itself in a very subtle way, fully elucidated much
later. I will present the modern developments of the theory, which started in
1999. and continue to these days. The many-body wavefunction of an insulator
is characterized by means of geometrical concepts.

We consider a many-body system, whose most general Hamiltonian, includes
both a “twist” (alias “flux”), and a vector potential A of magnetic origin:
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where the potential V̂ includes a one-body term (the external potential) and a
two-body one (the electron-electron interaction). For any k, and for any system
size L, the ground wavefunction obeys periodic (toroidal) boundary conditions.
The Provost-Vallee quantum metric tensor [2], is in our case:

gαβ(k) = Re 〈∂αΨ0(k)|∂βΨ0(k)〉 − 〈∂αΨ0(k)|Ψ0(k)〉〈Ψ0(k)|∂βΨ0(k)〉,

where ∂α = ∂/∂kα. The corresponding many-body Berry curvature is

Ωαβ(k) = i[ 〈∂αΨ0(k)|∂βΨ0(k)〉 − 〈∂βΨ0(k)|∂αΨ0(k)〉 ],

and vanishes for time-reversal invariant systems.
The insulating state of matter is characterized by having gαβ(0)/N finite in

the thermodynamic limit, at variance with metals where it diverges [3]. This
quantity provides a measure of Kohn’s localization in any kind of insulator, and
has the physical meaning of the ground-state quantum fluctuation of macroscopic
polarization. In the simple case of a crystalline system of noninteracting electrons,
this same quantity sets a lower bound for the quadratic spread of the Wannier
functions (which, again, diverges in the metallic case).

In 2d the Chern number is C1 = 4π2Ω12(0)/L2 in the large-L limit. For a
quantum Hall fluid, the transverse conductivity is proportional to C1, ergo to
Ω12(0)/N . The system is indeed an insulator: in fact the longitudinal conductiv-
ity vanishes, and g11(0)/N is finite [4].
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