Integral formulations of the geometric eikonal equation

Aurélien Monteillet

Torino, July 4th 2006
1 Front propagation 3
2 Hadamard's formula 10
3 The integral formulation 16
4 The converse theorem 21
5 Regularity of the front 22

1 - Front propagation

1 - Front propagation

1.1 - Level-set method.

We are interested in front propagations governed by the law

$$
\begin{equation*}
V_{t, x}=c(t, x) \tag{0.1}
\end{equation*}
$$

where $V_{t, x}$ denotes the normal velocity of the point x of the front at time t.

1 - Front propagation

Références

[1] Alvarez, O. ; Cardaliaguet, P.; Monneau, R., Existence and uniqueness for dislocation dynamics with nonnegative velocity, to appear in Interfaces and free boundaries.
[2] Barles, G.; Ley, O., Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics, to appear in Comm. Partial Differential Equations.
[3] Barles, G.; Soner, H.M. ; Souganidis, P.E., Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), no. 2, 439-469.

1 - Front propagation

Assume that the front $\Gamma(t)=\partial \Omega(t)$ is smooth, and that there exists a smooth $u:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\Omega(t)=\left\{x \in \mathbb{R}^{N} ; u(t, x)>0\right\}, \quad \Gamma(t)=\left\{x \in \mathbb{R}^{N} ; u(t, x)=0\right\}
$$

and $D u(t, x) \neq 0$ when $x \in \Gamma(t)$, where $D u$ is the gradient of u with respect to x.

Then $V_{t, x}=\frac{u_{t}(t, x)}{|D u(t, x)|}$ and u therefore satisfies the eikonal equation :

$$
\begin{equation*}
u_{t}(t, x)=c(t, x)|D u(t, x)| \tag{0.2}
\end{equation*}
$$

1 - Front propagation

To generalize the preceding evolution to non-smooth fronts, we realize the following program :

1. Find $u_{0}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $\Gamma(0)=\left\{x \in \mathbb{R}^{N} ; u_{0}(x)=0\right\}$
2. Solve in an appropriate sense the problem

$$
\left\{\begin{array}{lr}
u_{t}(t, x)=c(t, x)|D u(t, x)| & \text { for }(t, x) \in(0, T) \times \mathbb{R}^{N} \tag{0.3}\\
u(0, x)=u_{0}(x) & \text { for } x \in \mathbb{R}^{N}
\end{array}\right.
$$

3. Set $\Gamma(t)=\left\{x \in \mathbb{R}^{N} ; u(t, x)=0\right\}$

1 - Front propagation

Theorem 0.1 (M. Crandall, P.L. Lions).

Under the following assumptions :
$(H) c:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuous, bounded, Lipschitz continuous with respect to the second variable,
the problem

$$
\left\{\begin{array}{lr}
u_{t}(t, x)=c(t, x)|D u(t, x)| & \text { for }(t, x) \in(0, T) \times \mathbb{R}^{N} \tag{0.4}\\
u(0, x)=u_{0}(x) & \text { for } x \in \mathbb{R}^{N}
\end{array}\right.
$$

has a unique uniformly continuous viscosity solution on $[0, T] \times \mathbb{R}^{N}$ for all initial datum u_{0} that is uniformly continuous on \mathbb{R}^{N}.

1 - Front propagation

From now on, we restrict ourselves to sub-solutions.
A result from Barles, Soner and Souganidis ([3]) shows that any sub-solution u of a geometric equation gives another sub-solution $1_{\{u \geq 0\}}$.

We infer, for any closed set $K(0) \subset \mathbb{R}^{N}$, that there exists a family $(K(t))_{t \in[0, T]}$ such that

1. The graph of $K, \bigcup_{t \in[0, T]}\{t\} \times K(t)$ is closed in \mathbb{R}^{N+1}.
2. $(t, x) \mapsto 1_{K(t)}(x)$ is a sub-solution of the eikonal equation on $(0, T) \times \mathbb{R}^{N}$.

1 - Front propagation

Proposition 0.2. If $K(0)$ is compact, the evolution is bounded : there exists $R>0$ such that for all $t \in[0, T], K(t) \subset B(0, R)$.

2 - Hadamard's formula

2 - Hadamard's formula

If $\Gamma(t)=\partial \Omega(t)$ is a smooth hypersurface of \mathbb{R}^{N} for $t \geq 0$, and $\left(\Gamma_{t}\right)_{t \geq 0}$ evolves smoothly in time, Hadamard's formula states that :

For all $\phi \in C^{1}\left([0,+\infty) \times \mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega(t)} \phi(t, x) d x=\int_{\Omega(t)} \frac{\partial \phi}{\partial t}(t, x) d x+\int_{\partial \Omega(t)} V_{t, x} \phi(t, x) d \mathcal{H}^{N-1}(x) \tag{0.5}
\end{equation*}
$$

2 - Hadamard's formula

In particular if $V_{t, x} \leq c(t, x)$ in the classical sense, we have for all $\phi \in C^{1}\left([0,+\infty) \times \mathbb{R}^{N}, \mathbb{R}_{+}\right):$

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega(t)} \phi(t, x) d x \leq \int_{\Omega(t)} \frac{\partial \phi}{\partial t}(t, x) d x+\int_{\partial \Omega(t)} c(t, x) \phi(t, x) d \mathcal{H}^{N-1}(x) \tag{0.6}
\end{equation*}
$$

2 - Hadamard's formula

When $(t, x) \mapsto 1_{K(t)}(x)$ is "only" a viscosity sub-solution of the eikonal equation, we don't know anything about the regularity of $K(t)$, and the term $\int_{\partial K(t)} c(t, x) \phi(t, x) d \mathcal{H}^{N-1}(x)$ does not make any sense.

2 - Hadamard's formula

When $(t, x) \mapsto 1_{K(t)}(x)$ is "only" a viscosity sub-solution of the eikonal equation, we don't know anything about the regularity of $K(t)$, and the term $\int_{\partial K(t)} c(t, x) \phi(t, x) d \mathcal{H}^{N-1}(x)$ does not make any sense.

However, under the conditions
i. $c(t, x)>0 \forall(t, x) \in[0, T] \times \mathbb{R}^{N}$,
ii. $K(0)$ has the interior ball property of radius $r>0$, i.e. is the union of closed balls of radius $r>0$,
it has been proved by O. Alvarez, P. Cardaliaguet and R. Monneau that $K(t)$ also satisfies an interior ball condition, and that Hadamard's formula still holds.

2 - Hadamard's formula

An essential point is the following theorem that gives a control on the perimeter of sets with the interior ball property :
Theorem 0.3. For all $r>0$, there exists $M>0$ such that for all closed set $E \subset \mathbb{R}^{N}$ having the interior ball property of radius r and of diameter less than $1 / r$, we have

$$
\mathcal{H}^{N-1}(\partial E) \leq M
$$

2 - Hadamard's formula

From here on, we do not make any assumption either on the sign of c, nor on the regularity of the initial set.

We only consider a family $(K(t))_{t \in[0, T]}$ with closed graph such that $(t, x) \mapsto 1_{K(t)}(x)$ is a sub-solution of the eikonal equation on $(0, T) \times \mathbb{R}^{N}$.

Set for all $\varepsilon>0$,

$$
K^{\varepsilon}(t)=\left\{x \in \mathbb{R}^{N} ; d_{K(t)}(x)<\varepsilon\right\}
$$

Then $\overline{K^{\varepsilon}(t)}$ has the interior ball property.
\rightarrow We want to generalize Hadamard's formula to the evolution $t \rightarrow K^{\varepsilon}(t)$.

2 - Hadamard's formula

To this end, we will have to modify the equation, which leads to introduce a perturbed velocity

$$
c^{\varepsilon}(t, x)=\max _{|y-x| \leq \varepsilon} c(t, y)
$$

3 - The integral formulation

3 - The integral formulation

3.1 - Statement of the result

Theorem 0.4. Let $K:[0, T] \rightarrow \mathcal{P}\left(\mathbb{R}^{N}\right) \backslash\{\emptyset\}$ be such that

1. $K(0)$ is compact and $K(t) \rightarrow K(0)$ in the Hausdorff distance as
$t \rightarrow 0$,
2. $\bigcup_{t \in[0, T]}\{t\} \times K(t)$ is closed in \mathbb{R}^{N+1},
3. $u:(t, x) \mapsto 1_{K(t)}(x)$ is a viscosity sub-solution of the eikonal equation.

3 - The integral formulation

Then for all t_{1} et t_{2} satisfying $0 \leq t_{1}<t_{2} \leq T$, for almost all $\varepsilon>0$, and for all $\phi \in C^{1}\left([0, T] \times \mathbb{R}^{N}, \mathbb{R}_{+}\right)$,

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} \int_{K^{\varepsilon}(s)} \phi_{t}(s, x) d x d s+\int_{t_{1}}^{t_{2}} \int_{\partial K^{\varepsilon}(s)} c^{\varepsilon}(s, x) \phi(s, x) d \mathcal{H}^{N-1}(x) d s \\
& \geq\left[\int_{K^{\varepsilon}(s)} \phi(s, x) d x d s\right]_{t_{1}}^{t_{2}} \tag{0.7}
\end{align*}
$$

3 - The integral formulation

3.2 - Steps of proof

Let $w(t, x)=-d_{K(t)}(x)$. Let $\theta: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and non-decreasing such that $\theta=0$ in $(-\infty,-\varepsilon], \theta=1$ in $[0, \infty)$, and set $w_{\theta}=\theta \circ w$.

3 - The integral formulation

3.2 - Steps of proof

Let $w(t, x)=-d_{K(t)}(x)$. Let $\theta: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and non-decreasing such that $\theta=0$ in $(-\infty,-\varepsilon], \theta=1$ in $[0, \infty)$, and set $w_{\theta}=\theta \circ w$.

1. w_{θ} is a sub-solution of $\left(w_{\theta}\right)_{t}=c^{\varepsilon}(t, x)\left|D w_{\theta}\right|$ in $(0, T) \times \mathbb{R}^{N}$.

3 - The integral formulation

3.2 - Steps of proof

Let $w(t, x)=-d_{K(t)}(x)$. Let $\theta: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and non-decreasing such that $\theta=0$ in $(-\infty,-\varepsilon], \theta=1$ in $[0, \infty)$, and set $w_{\theta}=\theta \circ w$.

1. w_{θ} is a sub-solution of $\left(w_{\theta}\right)_{t}=c^{\varepsilon}(t, x)\left|D w_{\theta}\right|$ in $(0, T) \times \mathbb{R}^{N}$.
2. For all $\phi \in C_{c}^{1}\left((0, T) \times \mathbb{R}^{N}, \mathbb{R}_{+}\right)$,

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{R}^{N}} w_{\theta}(s, x) \phi_{t}(s, x) d x d s \\
+ & \int_{0}^{T} \int_{\mathbb{R}^{N}} c^{\varepsilon}(s, x)\left|D w_{\theta}(s, x)\right| \phi(s, x) d x d s \geq 0
\end{aligned}
$$

(this is obtained by a regularization in time and integration by parts).

3 - The integral formulation

As θ tends to $1_{(-\varepsilon,+\infty)}$:
3. $\int_{0}^{T} \int_{\mathbb{R}^{N}} w_{\theta}(s, x) \phi_{t}(s, x) d x d s \rightarrow \int_{0}^{T} \int_{K^{\varepsilon}(s)} \phi_{t}(s, x) d x d s$.

3 - The integral formulation

As θ tends to $1_{(-\varepsilon,+\infty)}$:
3. $\int_{0}^{T} \int_{\mathbb{R}^{N}} w_{\theta}(s, x) \phi_{t}(s, x) d x d s \rightarrow \int_{0}^{T} \int_{K^{\varepsilon}(s)} \phi_{t}(s, x) d x d s$.
4. The coarea formula shows that

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} c^{\varepsilon}(s, x)\left|D w_{\theta}(s, x)\right| \phi(s, x) d x \\
= & \int_{0}^{1} \int_{\left\{w_{\theta}(s, \cdot)=\tau\right\}} c^{\varepsilon}(s, x) \phi(s, x) d \mathcal{H}^{N-1}(x) d \tau \\
\rightarrow & \int_{\partial K^{\varepsilon}(s)} c^{\varepsilon}(s, x) \phi(s, x) d \mathcal{H}^{N-1}(x) \quad \text { for a.a. } \varepsilon>0 .
\end{aligned}
$$

3 - The integral formulation

Conclusion :
For almost all $\varepsilon>0$, for all $\phi \in C_{c}^{1}\left((0, T) \times \mathbb{R}^{N}, \mathbb{R}_{+}\right)$,
$\int_{0}^{T} \int_{K^{\varepsilon}(s)} \phi_{t}(s, x) d x d s+\int_{0}^{T} \int_{\partial K^{\varepsilon}(s)} c^{\varepsilon}(s, x) \phi(s, x) d \mathcal{H}^{N-1}(x) d s \geq 0$.

4 - The converse theorem

4 - The converse theorem

The following theorem shows that the integral formulation characterizes the fact for $(t, x) \mapsto 1_{K(t)}(x)$ to be a viscosity sub-solution of the eikonal equation :

4 - The converse theorem

4 - The converse theorem

The following theorem shows that the integral formulation characterizes the fact for $(t, x) \mapsto 1_{K(t)}(x)$ to be a viscosity sub-solution of the eikonal equation :
Theorem 0.5. Let $K:[0, T] \rightarrow \mathcal{P}\left(\mathbb{R}^{N}\right) \backslash\{\emptyset\}$ be such that

1. $\bigcup_{t \in[0, T]}\{t\} \times K(t)$ is closed in \mathbb{R}^{N+1} and K is bounded.
2. For almost all small enough $\varepsilon>0$, for all $\phi \in C_{c}^{1}\left((0, T) \times \mathbb{R}^{N}, \mathbb{R}_{+}\right)$,
$\int_{0}^{T} \int_{K^{\varepsilon}(s)} \phi_{t}(s, x) d x d s+\int_{0}^{T} \int_{\partial K^{\varepsilon}(s)} c^{\varepsilon}(s, x) \phi(s, x) d \mathcal{H}^{N-1}(x) d s \geq 0$.
Then $u:(t, x) \mapsto 1_{K(t)}(x)$ is a viscosity sub-solution of $u_{t}=c(t, x)|D u|$ in $(0, T) \times \mathbb{R}^{N}$.

5 - Regularity of the front

5 - Regularity of the front

5.1 - BV functions and sets of finite perimeter

Let Ω be an open subset of \mathbb{R}^{N}.
Definition 0.6. An application $f \in L_{l o c}^{1}(\Omega)$ is said to have locally bounded variations in Ω if for all open set $U \subset \subset \Omega$,

$$
\sup \left\{\int_{U} f(x) \operatorname{div} \phi(x) d x ; \phi \in C_{c}^{1}\left(U, \mathbb{R}^{N}\right) ;\|\phi\|_{\infty} \leq 1\right\}<+\infty
$$

We denote by $B V_{l o c}(\Omega)$ the set of functions of locally bounded variations in Ω.

Likewise, we say that $f \in L^{1}(\Omega)$ has bounded variations in $\Omega(B V)$ if the preceding definition holds for $U=\Omega$. We denote by $B V(\Omega)$ their set.

5 - Regularity of the front

From the Riesz representation theorem, we deduce :
Theorem 0.7. Let $f \in B V_{l o c}(\Omega)$. Then there exists a Radon measure μ on Ω and a μ-measurable application $\sigma: \Omega \rightarrow \mathbb{R}^{N}$ such that : 1. $|\sigma(x)|=1 \mu$-a.e.
2. $\int_{\Omega} f(x) \operatorname{div} \phi(x) d x=-\int_{\Omega}\langle\phi(x), \sigma(x)\rangle d \mu \quad \forall \phi \in C_{c}^{1}\left(\Omega, \mathbb{R}^{N}\right)$.

The measure μ is called the variation measure of f, and is denoted by $\|D f\|$.

5 - Regularity of the front

Definition 0.8. A \mathcal{L}^{N}-measurable set $E \subset \mathbb{R}^{N}$ is said to have (locally) finite perimeter in Ω if 1_{E} has (locally) bounded variations in Ω.

The variation measure of 1_{E} is is this case denoted $\|\partial E\|$, and the function $-\sigma$ given by theorem 0.7 is denoted ν_{E}.

We thus have for all $\phi \in C_{c}^{1}\left(\Omega, \mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{E} \operatorname{div} \phi(x) d x=\int_{\mathbb{R}^{N}}\left\langle\phi(x), \nu_{E}(x)\right\rangle d\|\partial E\| \tag{0.8}
\end{equation*}
$$

5 - Regularity of the front

Definition 0.9. Let E be a set of locally finite perimeter in Ω. We say that $x \in \Omega$ belongs to the reduced boundary of E, denoted $\partial^{*} E$, if :

1. $\|\partial E\|(B(x, r))>0 \quad \forall r>0$,
2. $\frac{1}{\|\partial E\|(B(x, r))} \int_{B(x, r)} \nu_{E}(y) d\|\partial E\| \underset{r \rightarrow 0}{\longrightarrow} \nu_{E}(x)$,
3. $\left|\nu_{E}(x)\right|=1$.

5 - Regularity of the front

Then we have the following result :
Theorem 0.10. Let E be a set of locally finite perimeter in Ω.
Then :

1. $\|\partial E\|(B)=\mathcal{H}^{N-1}\left(B \cap \partial^{*} E\right)$ for all Borel set $B \subset \Omega$.
2. Gauss-Green formula : For all $\phi \in C_{c}^{1}\left(\Omega, \mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{E} \operatorname{div} \phi(x) d x=\int_{\partial^{*} E}\left\langle\phi(x), \nu_{E}(x)\right\rangle d \mathcal{H}^{N-1}(x) \tag{0.9}
\end{equation*}
$$

5 - Regularity of the front

5.2 - Perimeter estimate

Theorem 0.11. Let $K:[0, T] \rightarrow \mathcal{P}\left(\mathbb{R}^{N}\right)$ with closed graph in \mathbb{R}^{N+1} be such that

1. $K(0)$ is compact,
2. $K(t) \rightarrow K(0)$ in the Hausdorff distance as $t \rightarrow 0$,
3. $u:(t, x) \mapsto 1_{K(t)}(x)$ is a viscosity sub-solution of the eikonal equation. Under the additional assumptions
(A1) c is of class C^{1}, Dc is locally Lipschitz continuous with respect to the second variable,
(A2) $D c(t, x) \neq 0$ if $c(t, x)=0$,

5 - Regularity of the front

We have :

1. For almost all $t \in[0, T], c(t, \cdot) 1_{K(t)}$ has bounded variations in $\{c(t, \cdot)<0\}$.
2. For almost all $t \in[0, T], K(t)$ has locally finite perimeter in $\{c(t, \cdot)<0\}$.
3. If we denote $(\cdot)_{-}$the negative part of a quantity
$\left((x)_{-}=\max (-x, 0)\right)$, we have :

$$
\int_{0}^{T} \int_{\partial^{*} K(s)} c_{-}(s, x) d \mathcal{H}^{N-1}(x) d s<+\infty
$$

5 - Regularity of the front

Heuristic idea : apply the integral formulation with $\varepsilon=0$ to $\phi=1_{\{c<0\}}$:

$$
\begin{aligned}
& \int_{0}^{T} \int_{K(s)} \phi_{t}(s, x) d x d s+\int_{0}^{T} \int_{\partial K(s)} c(s, x) \phi(s, x) d \mathcal{H}^{N-1}(x) d s \\
& \geq\left[\int_{K(s)} \phi(s, x) d x d s\right]_{0}^{T}
\end{aligned}
$$

5 - Regularity of the front

1. $\left[\int_{K(s)} \phi(s, x) d x d s\right]_{0}^{T}=\left[\int_{K(s)} 1_{\{c<0\}}(s, x) d x d s\right]_{0}^{T}$.

5 - Regularity of the front

1. $\left[\int_{K(s)} \phi(s, x) d x d s\right]_{0}^{T}=\left[\int_{K(s)} 1_{\{c<0\}}(s, x) d x d s\right]_{0}^{T}$.
2. $\int_{0}^{T} \int_{K(s)} \phi_{t}(s, x) d x d s \leq \int_{0}^{T} \int_{K(s) \cap\{c(s,)=0\}} \frac{\left|c_{t}(s, x)\right|}{|D c(s, x)|} d \mathcal{H}^{N-1}(x) d s$.

5 - Regularity of the front

Thank you!

