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Setting of the problem
Let Ω ⊂ RN be a smooth bounded open set and let us
consider the following second order degenerate elliptic equation

−tr
(
A(x)D2u

)
+ |Du|p + u = f (x) , x ∈ Ω , (E)

where A : Ω 7→ SN is a continuous map from Ω into the space
of symmetric N × N matrices satisfying

O ≤ A(x) ≤ Λ IdN ∀ x ∈ Ω ,

√
A is Lipschitz continuous in Ω ,

and with
p > 1 , f ∈ C (Ω) .

We are going to focus on viscosity solutions of equation (E)
satisfying special boundary conditions.



Where does equation (E) come

from?

Equations like (E) arise in degenerate stochastic control
problems. Indeed, let us consider the following stochastic
differential equation

dXt = a(Xt) dt +
√

A(Xt) dWt , X0 = x ,

where a(Xt) is interpreted as a feedback control and Wt is a
standard Brownian motion.
By using the control a, we want to force the solution Xt to
stay in Ω with probability 1 for all t ≥ 0 and for all initial
points x ∈ Ω; in other words, we impose a state constraint on
the controlled system.
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Note that if A is non degenerate and if a is bounded, then the
probability that Xt hits the boundary ∂Ω is positive for all time
t > 0. Thus, in this case, the only way we have to keep the
solution Xt constrained in the domain is to use an unbounded
control a which pushes back the state process with an infinite
intensity.
We then define in such a way the class Ax of admisssible
controls for the initial point x ∈ Ω, and we consider for
a ∈ Ax (provided Ax is non empty) the following cost
functional associated with the problem

J(x , a) = E

∫ ∞

0

[
f (Xt) +

1

q
|a(Xt)|q

]
e−t dt .
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If q = p
p−1

, then equation (E) (up to a multiplicative constant

in front of |Du|p) is expected for the value function

u(x) = inf
a∈Ax

J(x , a) .

Moreover, the state contraint on the process Xt yields the
boundary condition for u

−tr
(
A(x)D2u

)
+ |Du|p + u ≥ f (x) , x ∈ ∂Ω .

In other words, the value function u turns out to be a solution
in Ω and a supersolution in Ω.
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the control and degenerating on the boundary)

• M.A. Katsoulakis, Viscosity solutions of second order fully
nonlinear elliptic equations with state constraints, Indiana
Univ. Math. J. 43 (1994)
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Maximal Solutions

Motivated by the above discussion, we give the following

Definition
A maximal solution of equation (E) is a function u ∈ C (Ω)
which is a viscosity solution in Ω and such that

u∗(x) =


u(x) if x ∈ Ω ,

lim inf
y∈Ω
y→x

u(y) if x ∈ ∂Ω ,

is a viscosity supersolution in Ω.



In the language of generalized viscosity solutions, a maximal
solution is nothing but a generalized viscosity solution of
equation (E) equipped with the boundary condition

u = +∞ on ∂Ω .

Then, the following result is very natural.

Proposition
Let u be a maximal solution. If v ∈ C (Ω) is a viscosity
subsolution in Ω, then v(x) ≤ u∗(x) for every x ∈ Ω .
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For the proof, use the comparison principle by

G. Barles, E. Rouy & P.E. Souganidis, Remarks on the
Dirichlet problem for quasilinear elliptic and parabolic
equations, in Stochastic Analysis, Control, Optimization and
Applications, Birkhäuser, Boston, 1999

jointly with a technicality to deal with the power–like
nonlinearity of equation (E) as in

G. Barles & F. Da Lio, On the generalized Dirichlet problem
for viscous Hamilton–Jacobi equations, J. Math. Pures Appl.
83 (2004).



Conversely, we have the following

Proposition
Let u ∈ C (Ω) be a viscosity subsolution such that u ≥ v for
every subsolution v ∈ USC (Ω). Then, u is a maximal solution.

The proof can be obtained by arguing as in the first order case
(see e.g. Capuzzo Dolcetta & Lions) and by using the “bump
lemma“of the User’s guide.

Goal: existence, uniqueness and regularity properties for
maximal solutions.
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Known results for the deterministic

case

If A ≡ O, then equation (E) reduces to the Hamilton–Jacobi
equation

|Du|p + u = f in Ω .

It has been proved that there exists a unique maximal solution
u ∈ C (Ω), which can be characterized also as the unique
generalized supersolution of the associated homogeneus
Neumann problem.
In this case, the maximal solution u is Lipschitz continuous in
Ω and the optimal control is a(x) = −|Du(x)|p−2Du(x).

Remark
Note that the Lipschitz continuity holds for any bounded
from below subsolution.
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Known results for the uniformly

stochastic case

In this case, equation (E) has the form

−∆u + |Du|p + u = f in Ω ,

and it has been shown to have a unique maximal solution
u ∈ C (Ω) which is locally Lipschitz continuous.

Moreover:

• if p ≤ 2, then u uniformly blows up at the boundary, with

a rate of order dist(x , ∂Ω)
p−2
p−1 if p < 2, and like

| log dist(x , ∂Ω)| if p = 2. Then, u is a so called large
solution.
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• if p > 2, then u is bounded in Ω and it can be extended
to a globally Hölder continuos function with exponent
α = p−2

p−1
.

In any case (with an additional assumption if p > 2), the
optimal feedback control is a(x) = −|Du|p−2Du, which is
unbounded on ∂Ω.
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The case of a general A, p > 2

Proposition
If u ∈ C (Ω) is a maximal solution, then there exist constants
m < M depending only on Ω, p > 2 and f such that

m ≤ u(x) ≤ M ∀ x ∈ Ω .

The proof basically uses the same barrier functions depending
on the distance from ∂Ω constructed in Lasry & Lions.
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Our main result is the following regularity theorem.

Theorem
Every viscosity subsolution u ∈ BUSC (Ω) of equation (E) can
be extended up to the boundary to a function satisfying

u ∈ C 0,α(Ω) , α =
p − 2

p − 1
.

The idea of the proof is to use strongly the coercitivity of the
first order term, as to partially absorbe the second order
perturbation.
The α–hölderianity is the sharp regularity for subsolutions, as
it is exhibited by the viscosity subsolution u(x) = |x |α in any
ball centered at the origin (if the dimension N is at least 2).
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As a consequence of the above regularity result, one easily gets
the existence of a maximal solution by using any approximation
argument (on the matrix A(x), or adding to f a forcing datum
defined on RN and blowing up on the complement of Ω, or.....)
Note that any approximating sequence of solutions will be
bounded and equicontinuous, and thus uniformly converging to
a solution.

The uniqueness of the maximal solution follows from the
comparison principle proved in Barles & Da Lio for generalized
sub- and supersolution, and the proof can be highly simplified
by using the continuity of any subsolution.
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As for the regularity of solution is concerned, by adapting the
Bernstein technique developped in Lasry & Lions, one can
obtain the local Lipschitz continuity of any bounded solution
by assuming f to be Lipschitz.
More precisely, for any solution u ∈ C (Ω) one gets the bound

|Du(x)| ≤ C

d(x)1−α
, x ∈ Ω , d(x) = dist(x , ∂Ω) .

As in the uniformly stochastic case, then one can show that
the maximal solution u is the value function of the initial
stochastic control problem, and a(x) = −|Du|p−2Du(x) is the
optimal control.
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The case of a general A, p ≤ 2

If p ≤ 2, in general a maximal solution u satisfies Dirichlet
boundary conditions of mixed type (bounded and unbounded).
In fact, one can easily show in this case that if u is any
bounded from below supersolution in Ω, then

u∗(x) = +∞ ∀ x ∈ ∂Ω such that A(x)ν(x) · ν(x) > 0 ,

where ν(x) is the outward unit normal vector to ∂Ω at the
point x .
On the other hand, in the boundary region where A
degenerates along the normal direction, u is expected to be
bounded (as in the deterministic case)
This makes the uniqueness still open, unless one specifies the
rate of blowing up at the boundary.
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As for the case p > 2, the local Lipschitz continuity for
solutions still holds if p ≤ 2, with the same bound

|Du(x)| ≤ C

d(x)1−α
, x ∈ Ω , d(x) = dist(x , ∂Ω) ,

with the same exponent α = p−2
p−1

, which now satisfies α ≤ 0.

From this, one can derive the existence of a maximal solution,
even if, beacause of the lackness of uniqueness result, it will
depend on the method of approximation.
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Open problems and perspectives

• comparison and uniqueness results for p ≤ 2;

• asymptotic expansion at the boundary;

• the ergodic limit;

• ...
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