Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Correctors

# Homogenization of first order equations with $u / \varepsilon$-periodic Hamiltonians 

C. Imbert* \& R. Monneau**

(*) Institut de Mathématiques et de Modélisation de Montpellier
CNRS UMR 5149 / Université Montpellier II
Montpellier, France
(**) CERMICS, Ecole des Ponts
Paris, France
Torino, $4^{\text {rd }}$ of July, 2006

## Outline

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors
Exact ergodicity
(1) Introduction

- Motivations from Physics
- Setting of the problem
- Main results


## Outline

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem
Main results

Cell problem

The classical case Homogenize an ODE ODE: ansatz? Back to PDE
(9) Introduction

- Motivations from Physics
- Setting of the problem
- Main results
(2) Proof of convergence / determining the cell problem
- The classical case
- Homogenize an ODE
- The ODE case: ansatz?
- The PDE case


## Outline

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

(9) Introduction

- Motivations from Physics
- Setting of the problem
- Main results
(2) Proof of convergence / determining the cell problem
- The classical case
- Homogenize an ODE
- The ODE case: ansatz?
- The PDE case
(3) Constructing correctors
- Constructing approximate cell problems
- Constructing approximate correctors
- Approximate ergodicity implies exact ergodicity


## Outline

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem Main results

Cell problem
The classical case
Homogenize an ODE ODE: ansatz? Back to PDE

Correctors
Approx cell pbs Approx correctors Exact ergodicity
(1) Introduction

- Motivations from Physics
- Setting of the problem
- Main results
(2) Proof of convergence / determining the cell problem
- The classical case
- Homogenize an ODE
- The ODE case: ansatz?
- The PDE case
(3) Constructing correctors
- Constructing approximate cell problems
- Constructing approximate correctors
- Approximate ergodicity implies exact ergodicity


## Motivations from Physics

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

## Motivations

The problem
Main results

## Cell problem

The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE

## Correctors

Approx cell pbs Approx correctors Exact ergodicity

Defaults moving in crystals


Figure: Dislocations in a slip plane

## Physics of dislocations

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results

The classical case
Homogenize an ODE ODE: ansatz? Back to PDE

Correctors
Approx cell pbs Approx correctors Exact ergodicity

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh '99 / Groma, Czikor, Zaiser '03 / Sethna '04 etc.)

## Physics of dislocations

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem
Main results

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh '99 / Groma, Czikor, Zaiser '03 / Sethna '04 etc.)
Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS’04, ARMA 06))

## Physics of dislocations

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

## Motivations

The problem
Main results

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh '99 / Groma, Czikor, Zaiser '03 / Sethna '04 etc.)
Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS'04, ARMA 06))
The monotone case:

$$
\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=h_{1}\left(\frac{x}{\varepsilon}, \nabla u^{\varepsilon},\left[u^{\varepsilon}\right]\right)+h_{2}\left(\frac{u^{\varepsilon}}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

## Physics of dislocations

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

## Motivations

The problem
Main results

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh '99 / Groma, Czikor, Zaiser '03 / Sethna '04 etc.)
Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS'04, ARMA 06))
The monotone case:

$$
\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=h_{1}\left(\frac{x}{\varepsilon}, \nabla u^{\varepsilon},\left[u^{\varepsilon}\right]\right)+h_{2}\left(\frac{u^{\varepsilon}}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

First difficulty: non-local HJ equation

## Physics of dislocations

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

## Motivations

The problem
Main results

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh '99 / Groma, Czikor, Zaiser '03 / Sethna '04 etc.)
Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS'04, ARMA 06))
The monotone case:

$$
\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=h_{1}\left(\frac{x}{\varepsilon}, \nabla u^{\varepsilon},\left[u^{\varepsilon}\right]\right)+h_{2}\left(\frac{u^{\varepsilon}}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

## Physics of dislocations

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

## Main results

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh '99 / Groma, Czikor, Zaiser '03 / Sethna '04 etc.)
Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS’04, ARMA 06))
The monotone case:

$$
\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=h_{1}\left(\frac{x}{\varepsilon}, \nabla u^{\varepsilon},\left[u^{\varepsilon}\right]\right)+h_{2}\left(\frac{u^{\varepsilon}}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

Main difficulty: the $\frac{u}{\varepsilon}$-dependance of the Hamiltonian

## Setting of the problem

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

We reduce the problem to the main difficulty by considering the following $\varepsilon-H J$ equation:

$$
(\mathrm{HJ})_{\varepsilon} \quad\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=H\left(\frac{u^{\varepsilon}}{\varepsilon}, \frac{x}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

## Setting of the problem

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem
Main results
Cell problem
The classical case

We reduce the problem to the main difficulty by considering the following $\varepsilon-H J$ equation:

$$
(\mathrm{HJ})_{\varepsilon} \quad\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=H\left(\frac{u^{\varepsilon}}{\varepsilon}, \frac{x}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

Examples:
$-\frac{d u^{\varepsilon}}{d t}(t)=h\left(\frac{u^{\varepsilon}(t)}{\varepsilon}\right)$
(the ODE case)

## Setting of the problem

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem
Main results
Cell problem
The classical case

We reduce the problem to the main difficulty by considering the following $\varepsilon-H J$ equation:

$$
(\mathrm{HJ})_{\varepsilon} \quad\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=H\left(\frac{u^{\varepsilon}}{\varepsilon}, \frac{x}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

## Examples:

- $\frac{d u^{\varepsilon}}{d t}(t)=h\left(\frac{u^{\varepsilon}(t)}{\varepsilon}\right)$
(the ODE case)
- $\frac{\partial u^{\varepsilon}}{\partial t}=c\left(\frac{X}{\varepsilon}\right)\left|\nabla u^{\varepsilon}\right|+h\left(\frac{u^{\varepsilon}}{\varepsilon}\right)$


## Setting of the problem

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem
Main results
Cell problem
The classical case

We reduce the problem to the main difficulty by considering the following $\varepsilon-H J$ equation:

$$
(\mathrm{HJ})_{\varepsilon} \quad\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=H\left(\frac{u^{\varepsilon}}{\varepsilon}, \frac{x}{\varepsilon}, \nabla u^{\varepsilon}\right) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

## Examples:

- $\frac{d u^{\varepsilon}}{d t}(t)=h\left(\frac{u^{\varepsilon}(t)}{\varepsilon}\right)$
(the ODE case)
- $\frac{\partial u^{\varepsilon}}{\partial t}=c\left(\frac{x}{\varepsilon}\right)\left|\nabla u^{\varepsilon}\right|+h\left(\frac{u^{\varepsilon}}{\varepsilon}\right)$
- $\frac{\partial u^{\varepsilon}}{\partial t}=c\left(\frac{X}{\varepsilon}\right)\left(1+|\nabla u|^{2}\right)^{\frac{1}{4}}+h\left(\frac{u^{\varepsilon}}{\varepsilon}\right)$


## Setting of the problem (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem Main results

Main assumptions

- Regularity

$$
\left|\frac{\partial H}{\partial i}\right| \leq C \quad(i=u, p) \quad\left|\frac{\partial H}{\partial y}\right| \leq C(1+|p|)
$$

- Periodicity

$$
H(u+l, y+k, p)=H(u, y, p) \quad l \in \mathbb{Z}, k \in \mathbb{Z}^{N}
$$

- Coercivity

$$
H(x, u, p) \underset{|p| \rightarrow+\infty}{\longrightarrow}+\infty
$$

Aims

- Determine the homogenized equation
- Construct correctors
- Prove convergence


## Main results

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem Main results

The initial value "cell" problem (IVCP):

$$
\left\{\begin{array}{l}
\frac{\partial w}{\partial t}=H(p \cdot y+w, y, p+\nabla w) \\
w(0, y)=0
\end{array}\right.
$$

## Ergodicity

There exists $\bar{H}(p)$, a unique $\lambda \in \mathbb{R}$ such that the continuous solution of (IVCP) satisfies: $\frac{w(\tau, y)}{\tau} \rightarrow \lambda$ as $\tau \rightarrow \infty$ unif wrt $y$.

Put $v=w-\lambda \tau$ and get the "cell" problem (CP):

$$
\left\{\begin{array}{l}
\lambda+\frac{\partial v}{\partial t}=H(\lambda \tau+p \cdot y+v, y, p+\nabla v) \\
v(0, y)=0
\end{array}\right.
$$

## Main results (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results

## Cell problem

The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors Exact ergodicity

Comments about correctors $v$

- They are bounded
- They are time-dependent
- They are not space-periodic


## Main results (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations The problem Main results

Comments about correctors $v$

- They are bounded
- They are time-dependent
- They are not space-periodic

The homogenized HJ equation:

$$
\left\{\begin{array}{l}
\frac{\partial u^{0}}{\partial t}=\bar{H}\left(\nabla u^{0}\right) \\
u^{0}(0, x)=u_{0}(x)
\end{array}\right.
$$

## Convergence

The bounded continuous solution $u^{\varepsilon}$ of the $\varepsilon$-HJ equation converges locally uniformly towards the bounded continuous solution $u^{0}$ of the homogenized HJ equation.

## The results of Guy Barles

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction

After this work was completed, Guy Barles obtained simpler proofs of some results.

- G. Barles. Some homogenization results for non-coercive Hamilton-Jacobi equations, preprint (HAL)


## The results of Guy Barles

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction

After this work was completed, Guy Barles obtained simpler proofs of some results.

- G. Barles. Some homogenization results for non-coercive Hamilton-Jacobi equations, preprint (HAL)

Assumptions

- Regularity, periodicity, coercivity
- Behaviour at infinity

$$
\left|H(x, u, p)-p \cdot \nabla_{p} H(x, u, p)\right| \leq C
$$

## The results of Guy Barles

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction

After this work was completed, Guy Barles obtained simpler proofs of some results.

- G. Barles. Some homogenization results for non-coercive Hamilton-Jacobi equations, preprint (HAL)

Assumptions

- Regularity, periodicity, coercivity
- Behaviour at infinity

$$
\left|H(x, u, p)-p \cdot \nabla_{p} H(x, u, p)\right| \leq C
$$

Main idea

- Replace $\frac{u^{\varepsilon}}{\varepsilon}$ with $\frac{y}{\varepsilon}$ where $y$ is a new variable
- Reduce the problem to homogenize a front equation


## Outline

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem Main results

## Cell problem

The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Correctors
Approx cell pbs Approx correctors Exact ergodicity
(1) Introduction

- Motivations from Physics
- Setting of the problem
- Main results
(2) Proof of convergence / determining the cell problem
- The classical case
- Homogenize an ODE
- The ODE case: ansatz?
- The PDE case
(3) Constructing correctors
- Constructing approximate cell problems
- Constructing approximate correctors
- Approximate ergodicity implies exact ergodicity


## Determining the cell problem

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors
Exact ergodicity

We discuss the two following (linked) points:

## Determining the cell problem

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors
Exact ergodicity

We discuss the two following (linked) points:

- It is not clear (even if not surprising) that the cell problem we presented is the proper one.


## Determining the cell problem

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction

We discuss the two following (linked) points:

- It is not clear (even if not surprising) that the cell problem we presented is the proper one.
- Does the classical proof of convergence (classical ansatz) applies to our case?


## The classical case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

The equation

$$
\frac{\partial u^{\varepsilon}}{\partial t}=H\left(\frac{x}{\varepsilon}, \nabla u^{\varepsilon}\right)
$$

## The classical case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors Exact ergodicity

The equation

$$
\frac{\partial u^{\varepsilon}}{\partial t}=H\left(\frac{x}{\varepsilon}, \nabla u^{\varepsilon}\right)
$$

## An ansatz

Look for $v$ that is a good "corrector" between $u^{\varepsilon}$ and $u^{0}$ :

$$
u^{\varepsilon}(t, x)=u^{0}(t, x)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)+\ldots
$$

## The classical case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case

The equation

$$
\frac{\partial u^{\varepsilon}}{\partial t}=H\left(\frac{x}{\varepsilon}, \nabla u^{\varepsilon}\right)
$$

## An ansatz

Look for $v$ that is a good "corrector" between $u^{\varepsilon}$ and $u^{0}$ :

$$
u^{\varepsilon}(t, x)=u^{0}(t, x)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)+\ldots
$$

## Comments

This extension is done around a fixed point $\left(t_{0}, x_{0}\right)$ ( $r$ denotes the radius around this point)

## The classical case (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors
Exact ergodicity

Plugg into the $\varepsilon$-HJ equation and get:

$$
\begin{array}{r}
\nabla_{x} u^{\varepsilon}=\nabla_{x} u^{0}+\nabla_{y} v \\
\partial_{t} u^{\varepsilon}=\partial_{t} u^{0}+\partial_{\tau} v \\
\partial_{t} u_{0}+\partial_{\tau} v=H\left(y, \nabla_{x} u_{0}+\nabla_{y} v\right)
\end{array}
$$

## The classical case (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations
The problem
Main results
Cell problem
The classical case

Plugg into the $\varepsilon$-HJ equation and get:

$$
\begin{array}{r}
\nabla_{x} u^{\varepsilon}=\nabla_{x} u^{0}+\nabla_{y} v \\
\partial_{t} u^{\varepsilon}=\partial_{t} u^{0}+\partial_{\tau} v \\
\partial_{t} u_{0}+\partial_{\tau} v=H\left(y, \nabla_{x} u_{0}+\nabla_{y} v\right)
\end{array}
$$

Hope: if $p=\nabla_{x} u_{0}$ is fixed, there is a unique $\partial_{t} u_{0}=\lambda=\bar{H}(p)$
Comments on the classical case.

- Look for bounded correctors $v$
- time-independent correctors $v$ are ok


## The ODE case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors
Exact ergodicity

Threshold phenomenon for the homogenization of an ODE

- If the periodic function $h$ vanishes, $u^{\varepsilon} \rightarrow 0$


## The ODE case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Cell problem
The classical case

Threshold phenomenon for the homogenization of an ODE

- If the periodic function $h$ vanishes, $u^{\varepsilon} \rightarrow 0$
- If not, $0<\alpha \leq h \leq A$, then $\alpha \leq \frac{u^{\varepsilon}}{t} \leq \boldsymbol{A}$


## The ODE case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

 MotivationsThe problem
Main results

Threshold phenomenon for the homogenization of an ODE

- If the periodic function $h$ vanishes, $u^{\varepsilon} \rightarrow 0$
- If not, $0<\alpha \leq h \leq \boldsymbol{A}$, then $\alpha \leq \frac{u^{\varepsilon}}{t} \leq \boldsymbol{A}$

Proper ansatz for $\frac{d u^{\varepsilon}}{d t}(t)=h\left(t, \frac{u^{\varepsilon}(t)}{\varepsilon}\right) \& u^{\varepsilon}(0)=1$ ?
Expected homogenized equation: $\frac{d}{d t} u^{0}=\lambda(t) \& u^{0}(0)=1$.

$$
u^{0}(t) \simeq u^{0}\left(t_{0}\right)-\lambda\left(t_{0}\right) t_{0}+\lambda\left(t_{0}\right) t
$$

and we try to determine $\lambda=\lambda\left(t_{0}\right)$.

## Find the ansatz for the ODE case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors Exact ergodicity

Classical ansatz

$$
\begin{aligned}
u^{\varepsilon}(t) & =u^{0}(t)+\varepsilon v\left(\frac{t}{\varepsilon}\right)+\ldots \\
& =u^{0}\left(t_{0}\right)-\lambda t_{0}+\lambda t+\varepsilon v\left(\frac{t}{\varepsilon}\right)+\ldots
\end{aligned}
$$

## Find the ansatz for the ODE case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem Main results

Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors Exact ergodicity

Classical ansatz

$$
\begin{aligned}
& u^{\varepsilon}(t)=u^{0}(t)+\varepsilon v\left(\frac{t}{\varepsilon}\right)+\ldots \\
&=u^{0}\left(t_{0}\right)-\lambda t_{0} \\
&+\lambda t+\varepsilon v\left(\frac{t}{\varepsilon}\right)+\ldots \\
& \hookrightarrow \lambda+d_{\tau} v=h\left(\frac{{u^{0}\left(t_{0}\right)-\lambda t_{0}}_{\varepsilon}^{\varepsilon}}{}+\lambda \tau+v\right) \quad \text { with } \tau=\frac{t}{\varepsilon}
\end{aligned}
$$

The "error":

$$
\ldots \ldots \simeq \frac{r}{\varepsilon} .
$$

## Find the ansatz for the ODE case

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem Main results

Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors Exact ergodicity

Classical ansatz

$$
\begin{aligned}
& u^{\varepsilon}(t)=u^{0}(t)+\varepsilon v\left(\frac{t}{\varepsilon}\right)+\ldots \\
&=u^{0}\left(t_{0}\right)-\lambda t_{0} \\
&+\lambda t+\varepsilon v\left(\frac{t}{\varepsilon}\right)+\ldots \\
& \hookrightarrow \lambda+d_{\tau} v=h\left(\frac{{u^{0}\left(t_{0}\right)-\lambda t_{0}}_{\varepsilon}^{\varepsilon}}{}+\lambda \tau+v\right) \quad \text { with } \tau=\frac{t}{\varepsilon}
\end{aligned}
$$

The "error":

$$
\ldots \ldots \simeq \frac{r}{\varepsilon} .
$$

## Find the ansatz for the ODE case (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors Exact ergodicity

## Second ansatz

Add a fast variable: $y=\frac{1}{\varepsilon}$ and write:

$$
\begin{array}{r}
u^{\varepsilon}(t)=u^{0}(t)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{u^{0}(t)-\lambda t}{\varepsilon}\right)+\ldots \\
\hookrightarrow \lambda+\frac{d}{d \tau} v+\cdots=h(\lambda \tau+y+v(\tau, y))
\end{array}
$$



Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors
Exact ergodicity

- To construct a bounded solution $v$, solve the PDE:

$$
d_{\tau} w=h(y+w) \quad \& \quad w(0)=0
$$

and find $\lambda$ such that $v:=w-\lambda \tau$ is bounded.

- Note that the corrector have to depend on time


## The PDE case:

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Consider now the PDE case and write:
$u^{\varepsilon}(t, x)=u^{0}(t, x \quad)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \frac{u^{0}(t, x}{}\right)-\lambda t$
with $\lambda=\partial_{t} u_{0}\left(t_{0}, x_{0}\right)$ and plug it:

$$
\begin{array}{r}
\lambda+\partial_{\tau} v+\partial_{N+1} v \times\left(\partial_{t} u^{0}(t)-\lambda\right) \\
=H\left(\lambda \tau \quad+y_{N+1}+v, y, \mathbf{p}+\nabla_{y} v+\left(\partial_{N+1} v \times \nabla_{x} u^{0}\right)\right)
\end{array}
$$

with $p=\nabla u^{0}\left(t_{0}, x_{0}\right)$ and $\lambda=\partial_{t} u^{0}\left(t_{0}, x_{0}\right)$.

## The PDE case:

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Consider now the PDE case and write:
$u^{\varepsilon}(t, x)=u^{0}(t, x \quad)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \frac{u^{0}(t, x}{\varepsilon}\right)-\lambda t$
with $\lambda=\partial_{t} u_{0}\left(t_{0}, x_{0}\right)$ and plug it:

$$
\begin{array}{r}
\lambda+\partial_{\tau} v+\partial_{N+1} v \times\left(\partial_{t} u^{0}(t)-\lambda\right) \\
=H\left(\lambda \tau \quad+y_{N+1}+v, y, \mathrm{p}+\nabla_{y} v+\left(\partial_{N+1} v \times \nabla_{x} u^{0}\right)\right)
\end{array}
$$

with $p=\nabla u^{0}\left(t_{0}, x_{0}\right)$ and $\lambda=\partial_{t} u^{0}\left(t_{0}, x_{0}\right)$.
To get $\ldots \ll 1$
try to control $\partial_{N+1} v$

## The PDE case: twist a variable

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Consider now the PDE case and write:
$u^{\varepsilon}(t, x)=u^{0}(t, x \quad)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \frac{u^{0}(t, x}{\varepsilon}\right)$
with $\lambda=\partial_{t} u_{0}\left(t_{0}, x_{0}\right)$ and plug it:

$$
\begin{array}{r}
\lambda+\partial_{\tau} v+\partial_{N+1} v \times\left(\partial_{t} u^{0}(t)-\lambda\right) \\
=H\left(\lambda \tau \quad+y_{N+1}+v, y, \mathrm{p}+\nabla_{y} v+\left(\partial_{N+1} v \times \nabla_{x} u^{0}\right)\right)
\end{array}
$$

with $p=\nabla u^{0}\left(t_{0}, x_{0}\right)$ and $\lambda=\partial_{t} u^{0}\left(t_{0}, x_{0}\right)$.
To get $\ldots \ll 1$
try to control $\partial_{N+1} v$

## The PDE case: twist a variable

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Consider now the PDE case and write:
$\left.u^{\varepsilon}(t, x)=u^{0}(t, x \quad)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \frac{u^{0}(t, x}{}\right)-\lambda t-p \cdot x\right)$
with $\lambda=\partial_{t} u_{0}\left(t_{0}, x_{0}\right)$ and plug it:

$$
\begin{array}{r}
\lambda+\partial_{\tau} v+\partial_{N+1} v \times\left(\partial_{t} u^{0}(t)-\lambda\right) \\
=H\left(\lambda \tau+p \cdot y+y_{N+1}+v, y, \bar{p}+\nabla_{y} v+\left(\partial_{N+1} v \times\left(\nabla_{x} u^{0}-p\right)\right)\right)
\end{array}
$$

with $p=\nabla u^{0}\left(t_{0}, x_{0}\right)$ and $\lambda=\partial_{t} u^{0}\left(t_{0}, x_{0}\right)$.
To get $\ldots \ll 1$
try to control $\partial_{N+1} v$

## The PDE case: twist a variable and add one

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Consider now the PDE case and write:

$$
u^{\varepsilon}(t, x)=u^{0}\left(t, x, x_{N+1}\right)+\varepsilon v\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \frac{u^{0}\left(t, x, x_{N+1}\right)-\lambda t-p \cdot x}{\varepsilon}\right)
$$

with $\lambda=\partial_{t} u_{0}\left(t_{0}, x_{0}\right)$ and plug it:

$$
\begin{array}{r}
\lambda+\partial_{\tau} v+\partial_{N+1} v \times\left(\partial_{t} u^{0}(t)-\lambda\right) \\
=H\left(\lambda \tau+p \cdot y+y_{N+1}+v, y, \overline{\mathrm{p}}+\nabla_{y} v+\left(\partial_{N+1} v \times\left(\nabla_{x} u^{0}-p\right)\right)\right)
\end{array}
$$

with $p=\nabla u^{0}\left(t_{0}, x_{0}\right)$ and $\lambda=\partial_{t} u^{0}\left(t_{0}, x_{0}\right)$.
To get $\ldots \ll 1$
try to control $\partial_{N+1} v$

## Outline

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE
(1) Introduction

- Motivations from Physics
- Setting of the problem
- Main results
(2) Proof of convergence / determining the cell problem
- The classical case
- Homogenize an ODE
- The ODE case: ansatz?
- The PDE case
(3) Constructing correctors
- Constructing approximate cell problems
- Constructing approximate correctors
- Approximate ergodicity implies exact ergodicity


## Constructing approximate cell problems

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Recall: the initial value "cell" problem:

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H\left(p \cdot y+y_{N+1}+W, y, \nabla_{y} W\right) \\
W(0, Y)=0
\end{array}\right.
$$

and find $\lambda$ such that $v=w-\lambda \tau$ is bounded

Aim: obtain regular sub- and supercorrectors.
How? By approximating the cell problem.

Which approximation?

## Constructing approximate cell problems

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem Main results

Recall: the initial value "cell" problem:

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H\left(p \cdot y+y_{N+1}+W, y, \nabla_{y} W\right) \\
W(0, Y)=0
\end{array}\right.
$$

and find $\lambda$ such that $v=w-\lambda \tau$ is bounded

Aim: obtain regular sub- and supercorrectors.
How? By approximating the cell problem.

Which approximation?
Use coercivity of $H$ to construct Lipschitz approx correctors

## A gradient estimate

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results

$$
\left\{\begin{array}{l}
\frac{\partial U}{\partial t}=F\left(U, y, \nabla_{Y} U\right) \\
U(0, Y)=U_{0}(Y)
\end{array}\right.
$$

## Gradient estimate

If $F(W, y, p)=$ constant outside a starshaped compact set $\Omega$, then the inclusion $\nabla \cup_{0} \in \Omega$ is preserved:

$$
\nabla U(t, \cdot) \cdot \in \Omega \quad \text { for any } t>0
$$

## Precise construction

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results

Cell problem

The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE

## Correctors

Approx cell pbs

- $H(u, y, q)$ is not coercive wrt $Q=\left(q, q_{N+1}\right)$


## Precise construction

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE

## Correctors

## Approx cell pbs

Approx correctors
Exact ergodicity

- $H(u, y, q)$ is not coercive wrt $Q=\left(q, q_{N+1}\right)$
$\hookrightarrow H^{\delta}(u, y, Q)=H(u, y, q)+\delta\left|q_{N+1}\right|$.


## Precise construction

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE

## Correctors

## Approx cell pbs

Exact ergodicity

- $H(u, y, q)$ is not coercive wrt $Q=\left(q, q_{N+1}\right)$
$\hookrightarrow H^{\delta}(u, y, Q)=H(u, y, q)+\delta\left|q_{N+1}\right|$.
- Truncate it:


## Precise construction

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE

## Correctors

## Approx cell pbs

Approx correctors

Exact ergodicity

- $H(u, y, q)$ is not coercive wrt $Q=\left(q, q_{N+1}\right)$
$\hookrightarrow H^{\delta}(u, y, Q)=H(u, y, q)+\delta\left|q_{N+1}\right|$.
- Truncate it: $\hookrightarrow H_{K, \delta}^{+}(u, y, Q)=T_{K}\left(H^{\delta}\right)$ so that


## Precise construction

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE

## Correctors

Approx cell pbs

Approx correctors

Exact ergodicity

- $H(u, y, q)$ is not coercive wrt $Q=\left(q, q_{N+1}\right)$
$\hookrightarrow H^{\delta}(u, y, Q)=H(u, y, q)+\delta\left|q_{N+1}\right|$.
- Truncate it: $\hookrightarrow H_{K, \delta}^{+}(u, y, Q)=T_{K}\left(H^{\delta}\right)$ so that

$$
\left\{\begin{array}{l}
H_{K, \delta}^{+}=H^{\delta} \simeq H \quad \text { if }|\mathbf{Q}| \leq \mathbf{K} \\
\end{array}\right.
$$

## Precise construction

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations

## The problem

Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

- $H(u, y, q)$ is not coercive wrt $Q=\left(q, q_{N+1}\right)$
$\hookrightarrow H^{\delta}(u, y, Q)=H(u, y, q)+\delta\left|q_{N+1}\right|$.
- Truncate it: $\hookrightarrow H_{K, \delta}^{+}(u, y, Q)=T_{K}\left(H^{\delta}\right)$ so that

$$
\begin{cases}H_{K, \delta}^{+}=H^{\delta} \simeq H & \text { if }|\mathbf{Q}| \leq \mathbf{K} \\ H_{K, \delta}^{+}=\underline{M_{K, \delta}^{+}} & \text {if } \mathbf{Q} \notin \Omega_{\mathbf{K}, \delta}^{+}\end{cases}
$$

- It is now constant outside $\Omega_{K, \delta}^{+}$starshaped compact. It implies the Lipschitz regularity of the solution.


## Precise construction

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

Motivations
The problem
Main results

- $H(u, y, q)$ is not coercive wrt $Q=\left(q, q_{N+1}\right)$
$\hookrightarrow H^{\delta}(u, y, Q)=H(u, y, q)+\delta\left|q_{N+1}\right|$.
- Truncate it: $\hookrightarrow H_{K, \delta}^{+}(u, y, Q)=T_{K}\left(H^{\delta}\right)$ so that

$$
\begin{cases}H_{K, \delta}^{+}=H^{\delta} \simeq H & \text { if }|\mathbf{Q}| \leq \mathbf{K} \\ H_{K, \delta}^{+}=M_{K, \delta}^{+} & \text {if } \mathbf{Q} \notin \Omega_{\mathbf{K}, \delta}^{+} \\ H_{K, \delta}^{+} \geq \bar{H} & \text { if } \mathbf{Q} \in \overline{\Omega_{\mathbf{K}, \delta}^{+}}\end{cases}
$$

- It is now constant outside $\Omega_{K, \delta}^{+}$starshaped compact. It implies the Lipschitz regularity of the solution.

The approximate corrector is an "exact" supercorrector

## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{K, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right) \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{K, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations

Main results

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{K, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle ; get the gradient estimates


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{K, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle ; get the gradient estimates
- Control $Y$-space oscillations of $W$


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{K, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle ; get the gradient estimates
- Control $Y$-space oscillations of $W$
- Control $\tau$-time oscillations of $W$


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

## Introduction

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{K, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle ; get the gradient estimates
- Control $Y$-space oscillations of $W$
- Control $\tau$-time oscillations of $W$
- Construct a global in time solution


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{\kappa, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle ; get the gradient estimates
- Control $Y$-space oscillations of $W$
- Control $\tau$-time oscillations of $W$
- Construct a global in time solution
- Use the strong maximum principle \& the sliding method to get a $\tau$-periodic solution


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{\kappa, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle ; get the gradient estimates
- Control $Y$-space oscillations of $W$
- Control $\tau$-time oscillations of $W$
- Construct a global in time solution
- Use the strong maximum principle \& the sliding method to get a $\tau$-periodic solution
- Get an estimate of $(\tau, Y)$-oscillations indep of $K$


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

$$
\left\{\begin{array}{l}
\frac{\partial W}{\partial t}=H_{K, \delta}^{+}\left(P \cdot Y+W, y, \nabla_{Y} W\right)+\varepsilon \mathcal{I}[W] \\
W(0, Y)=0
\end{array}\right.
$$

Main steps in the construction of super-correctors.

- Perturb by a non-local 0 order operator to get a strong maximum principle ; get the gradient estimates
- Control $Y$-space oscillations of $W$
- Control $\tau$-time oscillations of $W$
- Construct a global in time solution
- Use the strong maximum principle \& the sliding method to get a $\tau$-periodic solution
- Get an estimate of $(\tau, Y)$-oscillations indep of $K$
- Pass to the limit as $\varepsilon \rightarrow 0$


## Constructing approximate correctors

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations

The problem
Main results

- Integer translations in $y$ :

$$
\left|v\left(\tau, y+k, y_{N+1}\right)-v\left(\tau, y, y_{N+1}\right)\right| \leq 1
$$

- v 1-periodic in $y_{N+1}$
- $u:=y_{N+1}+v$ nondecreasing
- sliding method + strong maximum principle:

$$
v\left(\tau, y, y_{N+1}\right)=v\left(0, y, \lambda \tau+y_{N+1}\right)
$$

$\hookrightarrow \quad$ control $v$ in $\lambda \tau$ and $y_{N+1}$

- $\lambda \leq F(|p|)$
- $\underline{v}(y)=\inf \left\{V\left(\tau, y, y_{N+1}\right): \tau \geq 0\right\}$ is Lipschitz $\mathrm{c}:$

$$
|\nabla \underline{v}| \leq F(|p|) \quad \rightarrow \quad \text { control } v \text { for small } y
$$

## Approximate ergodicity $\Rightarrow$ exact ergodicity

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

Cell problem

The classical case Homogenize an ODE ODE: ansatz? Back to PDE

$$
\lambda_{K}^{ \pm}+\partial_{\tau} V_{K}^{ \pm}=H_{K}^{ \pm}\left(\lambda_{K}^{ \pm} \tau+P \cdot Y+V_{K}^{ \pm}, y, P+\nabla_{Y} V_{K}^{ \pm}\right)
$$

such that:

$$
\left|V_{K}^{ \pm}\right| \leq C \quad \text { and } \quad\left|\lambda_{K}^{ \pm}\right| \leq C
$$

where $C$ does not depend on $K$.

## Approximate ergodicity $\Rightarrow$ exact ergodicity

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations The problem Main results

We construct correctors $V_{K}^{ \pm}$of:

$$
\lambda_{K}^{ \pm}+\partial_{\tau} V_{K}^{ \pm}=H_{K}^{ \pm}\left(\lambda_{K}^{ \pm} \tau+P \cdot Y+V_{K}^{ \pm}, y, P+\nabla_{Y} V_{K}^{ \pm}\right)
$$

such that:

$$
\left|V_{K}^{ \pm}\right| \leq C \quad \text { and } \quad\left|\lambda_{K}^{ \pm}\right| \leq C
$$

where $C$ does not depend on $K$.
Moreover,

$$
H_{K}^{ \pm} \rightarrow H \bullet
$$

## Approximate ergodicity $\Rightarrow$ exact ergodicity

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results

Cell problem

The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE

## Correctors

Approx cell pbs

We construct correctors $V_{K}^{ \pm}$of:

$$
\lambda_{K}^{ \pm}+\partial_{\tau} V_{K}^{ \pm}=H_{K}^{ \pm}\left(\lambda_{K}^{ \pm} \tau+P \cdot Y+V_{K}^{ \pm}, y, P+\nabla_{Y} V_{K}^{ \pm}\right)
$$

such that:

$$
\left|V_{K}^{ \pm}\right| \leq C \quad \text { and } \quad\left|\lambda_{K}^{ \pm}\right| \leq C
$$

where $C$ does not depend on $K$.
Moreover,

$$
H_{K}^{ \pm} \rightarrow H \bullet
$$

We next explain why as $K \rightarrow+\infty$ :

$$
\lambda_{K}^{ \pm} \rightarrow \lambda \quad \text { for some } \lambda \in \mathbb{R} ? ? ?
$$

## Approximate ergodicity $\Rightarrow$ exact ergodicity (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case

Define:

$$
\begin{array}{rll}
\lambda_{u}^{ \pm}=\lim \sup \lambda_{K}^{ \pm} & \& & \lambda_{l}^{ \pm}=\liminf \lambda_{K}^{ \pm} \\
V_{u}^{ \pm}=\lim \sup ^{*} V_{K}^{ \pm} & \& & V_{I}^{ \pm}=\liminf _{*} V_{K}^{ \pm} \bullet
\end{array}
$$

and get:

$$
\begin{aligned}
& \lambda_{u}^{ \pm}+\partial_{\tau} V_{u}^{ \pm} \leq H\left(\lambda_{u}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{u}^{ \pm}, p+\nabla_{y} V_{u}^{ \pm}\right) \\
& \lambda_{l}^{ \pm}+\partial_{\tau} V_{l}^{ \pm} \geq H\left(\lambda_{l}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{l}^{ \pm}, p+\nabla_{y} V_{l}^{ \pm}\right)
\end{aligned}
$$

## Approximate ergodicity $\Rightarrow$ exact ergodicity (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Define:

$$
\begin{array}{rll}
\lambda_{u}^{ \pm}=\lim \sup \lambda_{K}^{ \pm} & \& & \lambda_{l}^{ \pm}=\liminf \lambda_{K}^{ \pm} \\
V_{u}^{ \pm}=\lim \sup ^{*} V_{K}^{ \pm} & \& & V_{I}^{ \pm}=\liminf _{*} V_{K}^{ \pm} \bullet
\end{array}
$$

and get:

$$
\begin{aligned}
& \lambda_{u}^{ \pm}+\partial_{\tau} V_{u}^{ \pm} \leq H\left(\lambda_{u}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{u}^{ \pm}, p+\nabla_{y} V_{u}^{ \pm}\right) \\
& \lambda_{l}^{ \pm}+\partial_{\tau} V_{l}^{ \pm} \geq H\left(\lambda_{l}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{l}^{ \pm}, p+\nabla_{y} V_{l}^{ \pm}\right)
\end{aligned}
$$

The comparison principle for the $(\mathrm{HJ})_{\varepsilon}$ yields:

$$
\lambda_{u}^{ \pm} \tau+V_{u}^{ \pm} \leq W+C \leq \lambda_{l}^{ \pm} \tau+V_{l}^{ \pm}+2 C
$$

and this implies:

## Approximate ergodicity $\Rightarrow$ exact ergodicity (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Define:

$$
\lambda_{u}^{ \pm}=\lim \sup \lambda_{K}^{ \pm} \quad \& \quad \lambda_{I}^{ \pm}=\lim \inf \lambda_{K}^{ \pm}
$$

$$
V_{u}^{ \pm}=\lim \sup ^{*} V_{K}^{ \pm} \quad \& \quad V_{I}^{ \pm}=\liminf _{*} V_{K}^{ \pm} \bullet
$$

and get:

$$
\begin{aligned}
& \lambda_{u}^{ \pm}+\partial_{\tau} V_{u}^{ \pm} \leq H\left(\lambda_{u}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{u}^{ \pm}, p+\nabla_{y} V_{u}^{ \pm}\right) \\
& \lambda_{l}^{ \pm}+\partial_{\tau} V_{l}^{ \pm} \geq H\left(\lambda_{l}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{I}^{ \pm}, p+\nabla_{y} V_{l}^{ \pm}\right)
\end{aligned}
$$

The comparison principle for the $(\mathrm{HJ})_{\varepsilon}$ yields:

$$
\lambda_{u}^{ \pm} \tau+V_{u}^{ \pm} \leq W+C \leq \lambda_{l}^{ \pm} \tau+V_{l}^{ \pm}+2 C
$$

and this implies:

$$
\lambda_{u}^{ \pm} \leq \lambda_{I}^{ \pm}
$$

## Approximate ergodicity $\Rightarrow$ exact ergodicity (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations

The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Correctors
Approx cell pbs Approx correctors Exact ergodicity

Define:

$$
\begin{array}{ccl}
\lambda_{u}^{ \pm}=\lim \sup \lambda_{K}^{ \pm} & \& & \lambda_{l}^{ \pm}=\liminf \lambda_{K}^{ \pm} \\
V_{u}^{ \pm}=\lim \sup ^{*} V_{K}^{ \pm} & \& & V_{I}^{ \pm}=\liminf _{*} V_{K}^{ \pm} \bullet
\end{array}
$$

and get:

$$
\begin{aligned}
& \lambda_{u}^{ \pm}+\partial_{\tau} V_{u}^{ \pm} \leq H\left(\lambda_{u}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{u}^{ \pm}, p+\nabla_{y} V_{u}^{ \pm}\right) \\
& \lambda_{l}^{ \pm}+\partial_{\tau} V_{l}^{ \pm} \geq H\left(\lambda_{l}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{I}^{ \pm}, p+\nabla_{y} V_{l}^{ \pm}\right)
\end{aligned}
$$

The comparison principle for the $(\mathrm{HJ})_{\varepsilon}$ yields:

$$
\lambda_{u}^{ \pm} \tau+V_{u}^{ \pm} \leq W+C \leq \lambda_{I}^{ \pm} \tau+V_{I}^{ \pm}+2 C
$$

and this implies:

$$
\begin{aligned}
& \lambda_{u}^{ \pm} \leq \lambda_{l}^{ \pm} \quad \text { (4 ineq) } \\
& \lambda_{K}^{ \pm} \rightarrow \lambda
\end{aligned}
$$

## Approximate ergodicity $\Rightarrow$ exact ergodicity (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Define:

$$
\begin{array}{rll}
\lambda_{u}^{ \pm}=\lim \sup \lambda_{K}^{ \pm} & \& & \lambda_{l}^{ \pm}=\liminf \lambda_{K}^{ \pm} \\
V_{u}^{ \pm}=\lim \sup ^{*} V_{K}^{ \pm} & \& & V_{I}^{ \pm}=\liminf _{*} V_{K}^{ \pm} \bullet
\end{array}
$$

and get:

$$
\begin{aligned}
& \lambda_{u}^{ \pm}+\partial_{\tau} V_{u}^{ \pm} \leq H\left(\lambda_{u}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{u}^{ \pm}, p+\nabla_{y} V_{u}^{ \pm}\right) \\
& \lambda_{l}^{ \pm}+\partial_{\tau} V_{l}^{ \pm} \geq H\left(\lambda_{l}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{l}^{ \pm}, p+\nabla_{y} V_{l}^{ \pm}\right)
\end{aligned}
$$

The comparison principle for the $(\mathrm{HJ})_{\varepsilon}$ yields:

$$
\lambda \tau+V_{u}^{ \pm} \leq W+C \leq \lambda \tau+V_{I}^{ \pm}+2 C
$$

and this implies:

## Approximate ergodicity $\Rightarrow$ exact ergodicity (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Define:

$$
\lambda_{u}^{ \pm}=\lim \sup \lambda_{K}^{ \pm} \quad \& \quad \lambda_{I}^{ \pm}=\lim \inf \lambda_{K}^{ \pm}
$$

$$
V_{u}^{ \pm}=\lim \sup ^{*} V_{K}^{ \pm} \quad \& \quad V_{I}^{ \pm}=\liminf _{*} V_{K}^{ \pm} \bullet
$$

and get:

$$
\begin{aligned}
& \lambda_{u}^{ \pm}+\partial_{\tau} V_{u}^{ \pm} \leq H\left(\lambda_{u}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{u}^{ \pm}, p+\nabla_{y} V_{u}^{ \pm}\right) \\
& \lambda_{l}^{ \pm}+\partial_{\tau} V_{l}^{ \pm} \geq H\left(\lambda_{l}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{l}^{ \pm}, p+\nabla_{y} V_{l}^{ \pm}\right)
\end{aligned}
$$

The comparison principle for the $(\mathrm{HJ})_{\varepsilon}$ yields:

$$
\lambda \tau+V_{u}^{ \pm} \leq W+C \leq \lambda \tau+V_{I}^{ \pm}+2 C
$$

and this implies:
$W-\lambda \tau$ is bounded

## Approximate ergodicity $\Rightarrow$ exact ergodicity (2)

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case Homogenize an ODE ODE: ansatz? Back to PDE

Define:

$$
\begin{array}{cll}
\lambda_{u}^{ \pm}=\lim \sup \lambda_{K}^{ \pm} & \& & \lambda_{l}^{ \pm}=\liminf \lambda_{K}^{ \pm} \\
V_{u}^{ \pm}=\lim \sup ^{*} V_{K}^{ \pm} & \& & V_{I}^{ \pm}=\liminf _{*} V_{K}^{ \pm}
\end{array}
$$

and get:

$$
\begin{aligned}
& \lambda_{u}^{ \pm}+\partial_{\tau} V_{u}^{ \pm} \leq H\left(\lambda_{u}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{u}^{ \pm}, p+\nabla_{y} V_{u}^{ \pm}\right) \\
& \lambda_{l}^{ \pm}+\partial_{\tau} V_{l}^{ \pm} \geq H\left(\lambda_{l}^{ \pm} \tau+p \cdot y+y_{N+1}+V_{I}^{ \pm}, p+\nabla_{y} V_{l}^{ \pm}\right)
\end{aligned}
$$

The comparison principle for the $(\mathrm{HJ})_{\varepsilon}$ yields:

$$
\lambda \tau+V_{u}^{ \pm} \leq W+C \leq \lambda \tau+V_{I}^{ \pm}+2 C
$$

and this implies:
$W-\lambda \tau$ is bounded
but not regular

## Related works / works in progress

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE
ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs

Homogenization results for non-coercive HJ equations
G. Barles

## Related works / works in progress

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction
Motivations
The problem
Main results
Cell problem
The classical case
Homogenize an ODE ODE: ansatz?
Back to PDE
Correctors
Approx cell pbs Approx correctors Exact ergodicity

Homogenization results for non-coercive HJ equations G. Barles

Homogenization of the model for dislocations dynamics CI, R. Monneau and E. Rouy

## Related works / works in progress

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Homogenization results for non-coercive HJ equations G. Barles

Homogenization of the model for dislocations dynamics
CI, R. Monneau and E. Rouy
Formulation "à la Slepčev" of the problem
Work in progress with N. Forcadel and R. Monneau

## Related works / works in progress

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

Introduction Motivations

Homogenization results for non-coercive HJ equations G. Barles

Homogenization of the model for dislocations dynamics
CI, R. Monneau and E. Rouy
Formulation "à la Slepčev" of the problem Work in progress with N. Forcadel and R. Monneau

Numerical simulations for the effective Hamiltonian
A. Ghorbel, P. Hoch and R. Monneau

## Bibliography

Periodic homogen ${ }^{\circ}$ of $u_{t}=H\left(\frac{u}{\varepsilon}, \nabla u\right)$
C. Imbert

- I. and Monneau. First order equations with $u / \varepsilon$-periodic Hamiltonians. Part I: local equations, submitted
- I., Monneau and Rouy. First order equations with $u / \varepsilon$-periodic Hamiltonians. Part II: application to dislocation dynamics, submitted

These papers are available there:

```
http://www.math.univ-montp2.fr/~imbert
```

