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Interfaces evolution and ”level set” techniques

• Geometric problem: to follow the evolution of a manifold (inter-

face) which moves in the direction of the normal vector with a speed

dependent (for example) on position and curvature.

• Motivations: Combustion, porous media, semiconductors,...
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Interfaces evolution and ”level set” techniques

• Geometric problem: to follow the evolution of a manifold (inter-

face) which moves in the direction of the normal vector with a speed

dependent (for example) on position and curvature.

• Motivations: Combustion, porous media, semiconductors,...

• Classical approach: Let the manifold evolve using a parametrization

• ”Level set” approach: Consider the manifold as a level surface of

the solution of a suitable evolutive PDE
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Model problem: Motion by Mean Curvature

The most typical case of application of level set techniques to inter-

face propagation is the degenerate parabolic problem: vt(x, t) = |Dv| div

(
Dv(x,t)
|Dv(x,t)|

)
v(x,0) = v0(x)

(1)

in the unknown v = v(x, t), with x ∈ RN , t ≥ 0 and with v0 a continu-

ous function such that

Γ0 = {x ∈ RN |v0(x) = 0}

(initial interface position)

index
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Analytical questions (1)

Equation (1) is:

• nonlinear (it is in the form vt + H(u, Dv, D2v) = 0)

6



Analytical questions (1)

Equation (1) is:

• nonlinear (it is in the form vt + H(u, Dv, D2v) = 0)

• degenerate (not uniformly parabolic)

7



Analytical questions (1)

Equation (1) is:

• nonlinear (it is in the form vt + H(u, Dv, D2v) = 0)

• degenerate (not uniformly parabolic)

• indefinite at points where Dv = 0 (Dv/|Dv| makes no sense)

8



Analytical questions (1)

Equation (1) is:

• nonlinear (it is in the form vt + H(u, Dv, D2v) = 0)

• degenerate (not uniformly parabolic)

• indefinite at points where Dv = 0 (Dv/|Dv| makes no sense)

Such problems have been solved from an analytical point of view by

introducing the notion of viscosity solution (Evans-Spruck,Chen-Giga-

Goto,1991).
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Analytical questions (2)

On the basis of the theory of viscosity solutions, it is possible to define

a generalized evolution of Γ0 by Mean Curvature as

Γt = {x ∈ RN |v(x, t) = 0} ∀t ≥ 0.

• It is possible to prove that such definition matches the classical one

as far as the latter is well–defined, but can also handle generation of

singularities and topology changes of the interface (in this situations,

MCM cannot be defined in a classical sense).
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Analytical questions (2)

On the basis of the theory of viscosity solutions, it is possible to define

a generalized evolution of Γ0 by Mean Curvature as

Γt = {x ∈ RN |v(x, t) = 0} ∀t ≥ 0.

• It is possible to prove that such definition matches the classical one

as far as the latter is well–defined, but can also handle generation of

singularities and topology changes of the interface (in this situations,

MCM cannot be defined in a classical sense).

• Note that Γt does not depend on v0 (i.e. on how the initial position

of the interface is represented)
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Soner–Touzi formula (1)

Recently Soner and Touzi (2002) have proposed a stocastic represen-

tation formula for solutions of a large class of geometric second–order

Hamilton–Jacobi equations, including (1); in our case (and provided

Dv does not vanish - it can be generalized to situations in which

Dv = 0 at some point) it reads

v(x, t) = E{v0(y(x, t, t))} (2)

where the curves y(x, t, s) play the role of generalized characteristics.
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Soner–Touzi formula (2)

The function y(x, t, s) appearing in (2) solves the stochastic initial

value problem (written in R2 for simplicity):{
dy(x, t, s) = σ(y, t, s)dW (s)
y(x, t,0) = x,

(3)

where dW is the differential of a standard Wiener process, and

σ(y, t, s) =

√
2

|Dv(y, t− s)|

(
vx2(y, t− s)
−vx1(y, t− s)

)
(such matrix projects the diffusion on the space orthogonal to the

gradient of the solution v)

index
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Discretization (1)

Writing Soner–Touzi representation formula on a single time step

tk → tk+1 one obtains:

v(x, tk+1) = E{v(y(x, tk+1,∆t), tk)} (4)

where y(x, tk+1,∆t) is a single step (backwards from the point (x, tk+1))

along the generalized characteristic: dy(x, tk+1, s) =
√

2
|Dv(y,tk+1−s)|

(
vx2(y, tk+1 − s)
−vx1(y, tk+1 − s)

)
dW (s)

y(x, tk+1,0) = x.

(5)
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Discretization (2)

In order to set up (4), (5) in a fully discrete form:

• The computation of v(·, tk) is replaced by a numerical reconstruction

I[vk](·) (Lagrange, ENO, WENO,...)
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Discretization (2)

In order to set up (4), (5) in a fully discrete form:

• The computation of v(·, tk) is replaced by a numerical reconstruction

I[vk](·) (Lagrange, ENO, WENO,...)

• Partial derivatives vxi(y, tk+1) are replaced by finite differences com-

puted at time tk (a further error term is introduced to avoid an implicit

scheme)

• An approximation of the expectation E{v(y(x, tk+1,∆t), tk)} is com-

puted by weak convergence scheme for SDEs
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Discretization (3)

Given the stochastic Cauchy problem (which we assume as scalar for

simplicity) {
dy(x, t) = a(t, y(x, t)) + σ(t, y(x, t))dW (t)
y(x, t0) = x,

the simplest choice in order to approximate E{h(y(x,∆t))} is the weak

stochastic Euler method:{
y1(∆W ) = x + a(t0, x)∆t + σ(t0, x)∆W

E{h(y(x,∆t))} = 1
2

(
h(y1(

√
∆t)) + h(y1(−

√
∆t))

)
+ O(∆t2)

In this case, the expectation is approximated with the same order of

consistency as in the deterministic case (provided a(·, ·), σ(·, ·), h(·) are

smooth enough)
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Discretization (4)

We finally obtain the fully discrete scheme (in R2):

vn+1
ij =

1

2

(
I[vn](xij + σn

ij

√
∆t) + I[vn](xij − σn

ij

√
∆t)

)
in which the derivatives in σn

ij have been replaced with finite differ-

ences:

σn
ij =

√
2√

Dn
1,ij

2 + Dn
2,ij

2

(
Dn

2,ij
−Dn

1,ij

)

and, for example:

Dn
1,ij =

vn
i+1,j − vn

i−1,j

2∆x
, Dn

2,ij =
vn
i,j+1 − vn

i,j−1

2∆x
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Consistency

Assume the scheme approximating the SDE to converge with order

1, the interpolation I[v](·) to be of degree r and the approximation

of derivatives to converge with order q. Then, the consistency error

has the form:

L∆x,∆t(x, t) = O

(
∆t1/2 +

∆xr+1

∆t
+

∆xq

∆t1/2

)
.
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Consistency

Assume the scheme approximating the SDE to converge with order

1, the interpolation I[v](·) to be of degree r and the approximation

of derivatives to converge with order q. Then, the consistency error

has the form:

L∆x,∆t(x, t) = O

(
∆t1/2 +

∆xr+1

∆t
+

∆xq

∆t1/2

)
.

• It is possible to determine a relationship of the form ∆x = ∆tα

which makes the scheme consistent.

• Suitable conditions ensure consistency of the scheme where Dv = 0.
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Monotonicity

Consistency along with monotonicity would imply convergence by a

general convergence result (Barles-Souganidis, 1991).

Unfortunately, even perturbing the scheme with an artificial viscosity

term, the relationship ∆t/∆x giving monotonicity is opposite to the

relationship giving consistency.

index
27



Numerical tests (1)

Evolution of a circle

We take as initial condition the function

v0(x) = max{(1− (x2
1 + x2

2))
10,0}.

on the domain [−2,2]2. In this case the exact solution can be explicitly

computed as

v(x, t) = max{(1− (x2
1 + x2

2)− 2t)10,0}.

The following table reports numerical errors computed at t = 0.16,

with a scheme based on a first–order reconstruction.
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Numerical tests (2)

Evolution of a circle - error table

∆x ∆t ‖ · ‖∞ ‖ · ‖1 L∞ − order L1 − order

0.04 0.08 6.44 · 10−2 6.37 · 10−4

0.02 0.053 2.40 · 10−2 4.54 · 10−4 1.4 0.5
0.01 0.032 1.05 · 10−2 1.49 · 10−4 1.2 1.6
0.005 0.02 8.36 · 10−3 4.55 · 10−5 0.3 1.7
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Numerical tests (3)

Evolution of a square

We take as an initial condition the function

v0(x) = 1− ‖Qx‖1

with Q a rotation matrix (in order to avoid alignment between the

level curve and the grid).
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Numerical tests (4)

Fattening

We use an initial condition given by

v0(x) = x4
1 − x2

1 + x2
2 + 1

which has a saddle point at critical level v = 1. In this situation, it

is well–known that the level curve at the critical level may develop an

interior. This phenomenon is known as fattening and in the following

figures it has been illustrated by plotting two level curves, one slightly

above and one slightly below the critical level.
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Numerical tests (5)

Three–dimensional torus

We consider now the evolution of a toroidal surface in three space

dimensions. Is is known that there exists a critical ratio between the

two radii of the torus. When above this ratio, the torus evolves to-

wards a circle and extinguishes as such, when below the torus changes

topology evolving towards a sphere and collapsing in a point.

46



47



48



49



50



51



52



Adaptive time–stepping

• Large time–step schemes do not allow in general to efficiently detect

small scales (e.g. corners) when the level–set function is nonsmooth
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drop in efficiency as soon as the solution is smoothed out
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Adaptive time–stepping

• Large time–step schemes do not allow in general to efficiently detect

small scales (e.g. corners) when the level–set function is nonsmooth

• Reducing time step in order to resolve small structures leads to a

drop in efficiency as soon as the solution is smoothed out

• Resolution of the scheme is related to both space and time step,

but our first attempt is only towards time–step adaptivity
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• The numerical domain of depen-

dence is made of two regions of re-

construction which are 2
√

2∆t apart

• This is precisely what causes the

smaller scales to be underresolved

• In some sense, the problem is

accuracy rather than stability
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• Avoiding any such ”hole” in the numerical domain of dependence

would require the parabolic CFL condition ∆t ∼ ∆x2

• Asymptotically, ”holes” are filled at a given time T under the weaker

condition:

∆t = o
(
T2/3∆x2/3

)

• The behaviour of the scheme at fixed time step improves for large

times (or in the limit case of computing the regime solution)
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We follow a strategy based on the estimation of the local (time–)

truncation error as used for ODEs:

• Time–step derefinement is performed assuming the solution is smooth

and the error introduced on a single time step is estimated by

ε∆x,∆t(xj, tn) ∼ C1∆t3/2 + C2∆xr + C3∆t1/2∆xq
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• Time–step refinement is performed assuming the solution is only

Lipschitz continuous and the error introduced on a single time step is

ε∆x,∆t(xj, tn) ∼ C4∆t1/2 + C5∆x
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We follow a strategy based on the estimation of the local (time–)

truncation error as used for ODEs:

• Time–step derefinement is performed assuming the solution is smooth

and the error introduced on a single time step is estimated by

ε∆x,∆t(xj, tn) ∼ C1∆t3/2 +C2∆xr + C3∆t1/2∆xq

• Time–step refinement is performed assuming the solution is only

Lipschitz continuous and the error introduced on a single time step is

ε∆x,∆t(xj, tn) ∼ C4∆t1/2 +C5∆x

• We assume space discretization error is negligible

61



We compute the (n + 1)–th time step with 1 step ∆t and 2 steps

∆t/2 and estimate the local truncation error by:

ε∆t ∼
v∆t − v∆t/2

1− 1√
2

in smooth conditions (→ derefinement), and by

ε∆t ∼
v∆t − v∆t/2√

2− 1

for Lipschitz solutions (→ refinement).

• The L∞ norm of this estimate is computed on a suitable set S (a

”narrow band” around the interface)
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The local error estimate is compared with a refinement and a dere-

finement threshold:(
1−

1√
2

)
τD∆x <

∥∥∥∥∥v∆t − v∆t/2

|Dv|

∥∥∥∥∥
L∞(S)

< (
√

2− 1)τR∆x

• The renormalization by |Dv| allows the adaptation to be independent

of the function v0 (i.e. ”geometric”)

• The thresholds are set proportional to ∆x in order to take into

account the parabolic CFL condition in nonsmooth conditions

index
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Numerical tests

L∞ errors in a neighbourhood of the level curve for the shrinking

circle:

∆x Adaptive ∆t Fixed ∆t

1.428 · 10−1 1.581 · 10−3 1.066 · 10−3

7.070 · 10−2 3.872 · 10−4 2.587 · 10−4

3.517 · 10−2 1.039 · 10−4 6.725 · 10−5

In this situation the fixed step scheme performs slightly better then

the adaptive scheme with the same number of steps. However, we

expect adaptivity to become crucial in nonsmooth situations, as in

the evolution of a Lipschitz level set function.
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The case of codimension 2 (curves in R3)

In this case the framework is similar, but:

• We use the Ambrosio-Soner approach: the curve is interpreted as

zero level curve of a non–negative function (e.g. using the squared

distance from the manifold Γ0 as an initial condition)
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The case of codimension 2 (curves in R3)

In this case the framework is similar, but:

• We use the Ambrosio-Soner approach: the curve is interpreted as

zero level curve of a non–negative function (e.g. using the squared

distance from the manifold Γ0 as an initial condition)

• The Soner-Touzi formula has a generalized form (in particular, there

appears a minimization on all the directions orthogonal to Dv)
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The evolution equation describing the codimension–k MCM reads:vt = Fk(D
2v, Dv) = inf

ν
[trace(D2vP ν)]

v(x,0) = v0(x) with v0 = 0 on Γ0

with |ν| = 1, ν · Dv(x) = 0 and P ν an orthogonal projection. The

related Soner–Touzi representation formula is

u(x, t) = inf
µ(·)

(E {u(yµ(x, t, t),0)})

where µ(·) plays the role of a ”control”:dyµ(x, t, s) =
√

2µ(t− s)dŴ (s) s ∈ (0, t]

yµ(x, t,0) = x

with |µ(·)| = 1, and µ(t− s) ·Dv(yµ(x, t, s)) = 0.
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The fully discrete scheme has the same structure as for the codimension–

1 case, unless for a minimization:

vn+1
j = min

ν∈S2

{
1

2
I[vn](xj+

√
2∆tν)+

1

2
I[vn](xj−

√
2∆tν)+

1

ε
(Dj[v

n]·ν)2
}

where:

• I[v](·) is a numerical reconstruction

• Dj[v] is a centered–difference approximation of the gradient

• The constraint ν ·Dv = 0 has been treated by penalization
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Known problems in this approach:

• Following a curve made of stationary points is an inherently ill–

conditioned operation
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• The ε–sublevel set gets thicker and thicker because of the parabolic

behaviour of the equation
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Known problems in this approach:

• Following a curve made of stationary points is an inherently ill–

conditioned operation

• The ε–sublevel set gets thicker and thicker because of the parabolic

behaviour of the equation

• It is analytically known that the fattening phenomenon cannot be

avoided (Bellettini, Novaga, Paolini ’98).

index
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Post–processing of the solution (1)

Rather than follow the zero–level set, we move on Γt from a point ξj

to the next point ξj+1 by constrained minimization:

vn(ξj+1) = min
|ξ−ξj|=∆ξ

vn(ξ)
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Post–processing of the solution (1)

Rather than follow the zero–level set, we move on Γt from a point ξj

to the next point ξj+1 by constrained minimization:

vn(ξj+1) = min
|ξ−ξj|=∆ξ

vn(ξ)

• The admissible displacement ξj+1 − ξj is required to satisfy the

restriction (ξj+1 − ξj) · (ξj − ξj−1) ≥ 0 in order to avoid changing

direction on Γt

• The step ∆ξ is of the order of ∆x
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Post–processing of the solution (2)

The Ambrosio–Soner theory gives no analytical way to single out the

”physical” solution when fattening occurs
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The Ambrosio–Soner theory gives no analytical way to single out the

”physical” solution when fattening occurs

• As a general rule to check numerical schemes, double points should

be ”cut” keeping acute angles connected
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Post–processing of the solution (2)

The Ambrosio–Soner theory gives no analytical way to single out the

”physical” solution when fattening occurs

• As a general rule to check numerical schemes, double points should

be ”cut” keeping acute angles connected

• Although in our case fattening corresponds to an ”almost constant”

region for the solution, the post–processing phase tends to select the

physically relevant evolution of the curve

index
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Numerical tests

Evolution of two linked circles

In this test we follow the evolution of two linked circles in R3. In this

case by tracking the ε–level set we are unable to resolve the ambiguity

arising after the double point generation, due to fattening. On the

contrary, post–processing singles out the meaningful solution

82



−1

0

1

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

83



−1

0

1

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

84



−1

0

1

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

85



−1

0

1

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

86



−1

0

1

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

87



−1

0

1

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

88



Evolution of a helical curve

We consider the evolution of a helix in three dimensions, with periodic

conditions. The Mean Curvature Flow preserves the shape of the

curve, but causes its straightening towards the axis. The figures also

compare the ε–level set with the post–processed curve
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