A variational approach to the macroscopic electrodynamics of hard superconductors

Graziano Crasta

Dept. of Mathematics, Univ. of Rome "La Sapienza"

Torino, July 4, 2006, joint meeting U.M.I.-S.M.F.

Joint work with Annalisa Malusa

Outline

Superconductivity

- Introduction
- Macroscopic electrodynamics

Outline

Superconductivity

- Introduction
- Macroscopic electrodynamics

Quasistatic evolution

- Discretized Faraday's law
- Magnetic and electric field

In many materials, the resistance drop to an unmeasurably small value if the sample is cooled down at a temperature below its critical temperature T_c

 \implies superconductivity (H. Kamerlingh-Onnes 1911)

- In many materials, the resistance drop to an unmeasurably small value if the sample is cooled down at a temperature below its critical temperature T_c
- ⇒ superconductivity (H. Kamerlingh-Onnes 1911) The behavior (at $T < T_c$) of a superconducting sample in an external magnetic field \vec{H}_S is characterized by the Ginzburg-Landau
- parameter κ of the material.

κ

Superconductivity

In many materials, the resistance drop to an unmeasurably small value if the sample is cooled down at a temperature below its critical temperature T_c

⇒ superconductivity (H. Kamerlingh-Onnes 1911) The behavior (at $T < T_c$) of a superconducting sample in an external magnetic field \vec{H}_S is characterized by the Ginzburg-Landau parameter κ of the material.

In many materials, the resistance drop to an unmeasurably small value if the sample is cooled down at a temperature below its critical temperature T_c

⇒ superconductivity (H. Kamerlingh-Onnes 1911) The behavior (at $T < T_c$) of a superconducting sample in an external magnetic field \vec{H}_S is characterized by the Ginzburg-Landau parameter κ of the material.

In many materials, the resistance drop to an unmeasurably small value if the sample is cooled down at a temperature below its critical temperature T_c

⇒ superconductivity (H. Kamerlingh-Onnes 1911) The behavior (at $T < T_c$) of a superconducting sample in an external magnetic field \vec{H}_S is characterized by the Ginzburg-Landau parameter κ of the material.

H_c: critical field (type-I)

 H_{c_1} , H_{c_2} : critical fields (type-II)

In many materials, the resistance drop to an unmeasurably small value if the sample is cooled down at a temperature below its critical temperature T_c

⇒ superconductivity (H. Kamerlingh-Onnes 1911) The behavior (at $T < T_c$) of a superconducting sample in an external magnetic field \vec{H}_S is characterized by the Ginzburg-Landau parameter κ of the material.

 H_c : critical field (type-I)

 H_{c_1} , H_{c_2} : critical fields (type-II)

Introduction Macroscopic electrodynamics

Penetration of external magnetic field

= penetrated magnetic field

Supercond.

• Superconducting phase: thin layer (20-50 nm); no magnetic field in the bulk of the superconductor.

Introduction Macroscopic electrodynamics

Penetration of external magnetic field

Supercond.

- Superconducting phase: thin layer (20-50 nm); no magnetic field in the bulk of the superconductor.
- Mixed state: partial penetration in the bulk.

Introduction Macroscopic electrodynamics

Penetration of external magnetic field

= penetrated magnetic field

Supercond.

Mixed

Normal

- Superconducting phase: thin layer (20-50 nm); no magnetic field in the bulk of the superconductor.
- Mixed state: partial penetration in the bulk.
- Normal conducting phase: full penetration in the bulk.

Advantages of type-II superconductors

Technological advantages of type-II superconductors in mixed state:

- high T_c (up to 135K)
- superconductivity properties with large magnetic fields
- current flow in the bulk of the sample (not only in thin layers)

Introduction Macroscopic electrodynamics

Models for type-II superconductors

• Microscopic: BCS theory (Bardeen, Cooper, Schrieffer 1957), quantum mechanical description.

Models for type-II superconductors

- Microscopic: BCS theory (Bardeen, Cooper, Schrieffer 1957), quantum mechanical description.
- Mesoscopic: Ginzburg-Landau model (1950); formation of vortices (filaments), Abrikosov (1957).

Models for type-II superconductors

- Microscopic: BCS theory (Bardeen, Cooper, Schrieffer 1957), quantum mechanical description.
- Mesoscopic: Ginzburg-Landau model (1950); formation of vortices (filaments), Abrikosov (1957).
- Macroscopic: Bean's model (1962), critical state model for the description of macroscopic electrodynamics.

Bean's model (C.P. Bean, 1962) for type-II hard superconductors: exists a critical current J_c such that:

- $|\vec{J}| = J_c$ in the region penetrated by the magnetic field;
- $\vec{J} = 0$ otherwise.

Bean's model (C.P. Bean, 1962) for type-II hard superconductors: exists a critical current J_c such that:

\$|J| = J_c\$ in the region penetrated by the magnetic field;
\$J = 0\$ otherwise.

Anisotropy of J_c , due to Cu-O planes, structure of defects, etc: exists $\Delta \subset \mathbb{R}^3$ compact convex containing a neighborhood of 0 s.t.

J ∈ ∂Δ, in the region penetrated by the magnetic field; *J* = 0 otherwise.

A (1) < A (1) < A (1) < A (1) </p>

Macroscopic electrodynamics

PROBLEM: given a superconductor $Q \subset \mathbb{R}^3$ in an external field $\vec{H}_S(t)$, find the internal magnetic field $\vec{H}(x, t)$ and the electric field $\vec{E}(x, t)$. (Boundary condition: $\vec{H} = \vec{H}_S$ on ∂Q .)

Macroscopic electrodynamics

PROBLEM: given a superconductor $Q \subset \mathbb{R}^3$ in an external field $\vec{H}_S(t)$, find the internal magnetic field $\vec{H}(x, t)$ and the electric field $\vec{E}(x, t)$. (Boundary condition: $\vec{H} = \vec{H}_S$ on ∂Q .)

• Faraday's law: curl
$$ec{E} = -\mu_0 rac{\partial ec{H}}{\partial t}$$

Macroscopic electrodynamics

PROBLEM: given a superconductor $Q \subset \mathbb{R}^3$ in an external field $\vec{H}_S(t)$, find the internal magnetic field $\vec{H}(x, t)$ and the electric field $\vec{E}(x, t)$. (Boundary condition: $\vec{H} = \vec{H}_S$ on ∂Q .)

• Faraday's law: curl
$$\vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$$

• Ampère's law:
$$\vec{J} = \operatorname{curl} \vec{H}$$

Macroscopic electrodynamics

PROBLEM: given a superconductor $Q \subset \mathbb{R}^3$ in an external field $\vec{H}_S(t)$, find the internal magnetic field $\vec{H}(x, t)$ and the electric field $\vec{E}(x, t)$. (Boundary condition: $\vec{H} = \vec{H}_S$ on ∂Q .)

• Faraday's law: curl
$$\vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$$

• Ampère's law:
$$\vec{J} = \operatorname{curl} \vec{H}$$

• (Modified) Ohm's law: $\vec{E} = \vec{E}(\vec{J})$

Macroscopic electrodynamics

PROBLEM: given a superconductor $Q \subset \mathbb{R}^3$ in an external field $\vec{H}_S(t)$, find the internal magnetic field $\vec{H}(x, t)$ and the electric field $\vec{E}(x, t)$. (Boundary condition: $\vec{H} = \vec{H}_S$ on ∂Q .)

• Faraday's law: curl
$$ec{E} = -\mu_0 rac{\partial ec{H}}{\partial t}$$

• Ampère's law:
$$\vec{J} = \operatorname{curl} \vec{H}$$

• (Modified) Ohm's law: $\vec{E} = \vec{E}(\vec{J})$

Examples of material laws (Ohm's law):

• isotropic conductor: $\vec{E}(\vec{J}) = r \vec{J}$, r = resistivity

Macroscopic electrodynamics

PROBLEM: given a superconductor $Q \subset \mathbb{R}^3$ in an external field $\vec{H}_S(t)$, find the internal magnetic field $\vec{H}(x, t)$ and the electric field $\vec{E}(x, t)$. (Boundary condition: $\vec{H} = \vec{H}_S$ on ∂Q .)

• Faraday's law: curl
$$ec{E}=-\mu_0rac{\partialec{H}}{\partial t}$$

• Ampère's law:
$$\vec{J} = \text{curl } \vec{H}$$

• (Modified) Ohm's law: $\vec{E} = \vec{E}(\vec{J})$

Examples of material laws (Ohm's law):

- isotropic conductor: $\vec{E}(\vec{J}) = r \vec{J}$, r = resistivity
- anisotropic conductor: $\vec{E}(\vec{J}) = A \vec{J}$, A = resistivity tensor

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

< E

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

In the isotropic case, the constraint $|\vec{J}| \leq J_c$ can be described by a vertical $\vec{E} - \vec{J}$ relation:

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

In the isotropic case, the constraint $|\vec{J}| \leq J_c$ can be described by a vertical $\vec{E} - \vec{J}$ relation:

$$ert ec E(ec J) ert = c \left(rac{ert ec J ert}{J_c}
ight)^p$$
 .

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

In the isotropic case, the constraint $|\vec{J}| \leq J_c$ can be described by a vertical $\vec{E} - \vec{J}$ relation:

$$|\vec{E}(\vec{J})| = c \left(\frac{|\vec{J}|}{J_c}\right)^p$$

The electric field is determined using the additional condition $\vec{E} || \vec{J}$.

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

- **→** → **→**

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

• Start from an anisotropic power law approximation for the dissipation $\vec{E} \cdot \vec{J}$:

$$\vec{E}(\vec{J}) \cdot \vec{J} = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p}$$

 $(\rho_{\Delta} = \text{gauge function of } \Delta).$

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

• Start from an anisotropic power law approximation for the dissipation $\vec{E} \cdot \vec{J}$:

$$\vec{E}(\vec{J}) \cdot \vec{J} = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p}$$

 $(\rho_{\Delta} = \text{gauge function of } \Delta).$

• Deduce the dependence $\vec{E}(\vec{J}) = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p-1} D \rho_{\Delta}(\vec{J}).$

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

• Start from an anisotropic power law approximation for the dissipation $\vec{E} \cdot \vec{J}$:

$$\vec{E}(\vec{J}) \cdot \vec{J} = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p}$$

 $(\rho_{\Delta} = \text{gauge function of } \Delta).$

- Deduce the dependence $\vec{E}(\vec{J}) = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p-1} D \rho_{\Delta}(\vec{J}).$
- In the limit as $p \to \infty$: $\vec{E}(\vec{J}) \in \partial I_{\Delta}(\vec{J})$ $\partial I_{\Delta}(\vec{J}) = \begin{cases} \{0\}, & \text{if } \vec{J} \in \text{interior of } \Delta, \\ \{\lambda D \rho_{\Delta}(\vec{J}); \ \lambda \ge 0\}, & \text{if } \vec{J} \in \partial \Delta, \\ \emptyset, & \text{if } \vec{J} \notin \Delta \end{cases}$ subdifferential of the indicator function of Δ . \Longrightarrow gives the constraint $\vec{J} \in \Delta$.

Problem: dependence $\vec{E} = \vec{E}(\vec{J})$ in the Bean's anisotropic model.

• Start from an anisotropic power law approximation for the dissipation $\vec{E} \cdot \vec{J}$:

$$\vec{E}(\vec{J}) \cdot \vec{J} = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p}$$

 $(\rho_{\Delta} = \text{gauge function of } \Delta).$

- Deduce the dependence $\vec{E}(\vec{J}) = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p-1} D \rho_{\Delta}(\vec{J}).$
- In the limit as $p \to \infty$: $\vec{E}(\vec{J}) \in \partial I_{\Delta}(\vec{J})$ $\partial I_{\Delta}(\vec{J}) = \begin{cases} \{0\}, & \text{if } \vec{J} \in \text{interior of } \Delta, \\ \{\lambda D \rho_{\Delta}(\vec{J}); \ \lambda \ge 0\}, & \text{if } \vec{J} \in \partial \Delta, \\ \emptyset, & \text{if } \vec{J} \notin \Delta \end{cases}$ subdifferential of the indicator function of Δ .

 \implies gives the constraint $\vec{J} \in \Delta$.

Rigorous giustification by Γ-convergence.

Introduction Macroscopic electrodynamics

Cylindrical symmetry

- $Q = \Omega \times \mathbb{R}$, cylinder with cross-section $\Omega \subset \mathbb{R}^2$, smooth;
- $\vec{H}_{S}(t) = (0, 0, h_{S}(t))$ directed along the axis of the cylinder.

Introduction Macroscopic electrodynamics

Cylindrical symmetry

- $Q = \Omega imes \mathbb{R}$, cylinder with cross-section $\Omega \subset \mathbb{R}^2$, smooth;
- $\vec{H}_{S}(t) = (0, 0, h_{S}(t))$ directed along the axis of the cylinder.
- \implies By symmetry: $\vec{H}(x,t) = (0,0,h(x_1,x_2,t))$

Introduction Macroscopic electrodynamics

Cylindrical symmetry

$$H = (0,0,h) \qquad H = (0,0,h) \qquad H_S = (0,0,h_S) \qquad \longrightarrow \qquad H_S = (0,0,h_S) \qquad H_S = (0,0,h_S) \qquad \longrightarrow \qquad H_S = (0,0,h_S) \qquad \longrightarrow \qquad H_S = (0,0,h_S) \qquad \longrightarrow \qquad H_S = (0,0,h_S) \qquad H_S = (0,0,h_S$$

- $Q = \Omega \times \mathbb{R}$, cylinder with cross-section $\Omega \subset \mathbb{R}^2$, smooth;
- $\vec{H}_{S}(t) = (0, 0, h_{S}(t))$ directed along the axis of the cylinder.

$$\implies \text{By symmetry: } \vec{H}(x,t) = (0,0,h(x_1,x_2,t))$$
$$\implies \vec{J} = \text{curl } \vec{H} = (\partial_{x_2}h, -\partial_{x_1}h, 0)$$

Remark: $\vec{J} \in \Delta \iff Dh \in K$, where $K \subset \mathbb{R}^2$ is the rotation of the section $z = 0$ of Δ .
Discretized Faraday's law Magnetic and electric field

Quasistatic evolution

Time discretization in [0, T]:
$$\delta t = T/n$$
, $t_i = i\delta t$,
 $\vec{H}_i = \vec{H}(t_i)$, $\vec{E}_i = \vec{E}(t_i)$.

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Time discretization in [0, T]:
$$\delta t = T/n$$
, $t_i = i\delta t$,
 $\vec{H}_i = \vec{H}(t_i)$, $\vec{E}_i = \vec{E}(t_i)$.

Goal: give a variational formulation of the anisotropic Bean's model starting with a power law approximation.

/⊒ > < ∃ >

Time discretization in [0, T]:
$$\delta t = T/n$$
, $t_i = i\delta t$,
 $\vec{H}_i = \vec{H}(t_i)$, $\vec{E}_i = \vec{E}(t_i)$.

Goal: give a variational formulation of the anisotropic Bean's model starting with a power law approximation.

Power law for dissipation:
$$\vec{E}(\vec{J}) \cdot \vec{J} = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p}$$

/⊒ > < ∃ >

Time discretization in [0, T]:
$$\delta t = T/n$$
, $t_i = i\delta t$,
 $\vec{H}_i = \vec{H}(t_i)$, $\vec{E}_i = \vec{E}(t_i)$.

Goal: give a variational formulation of the anisotropic Bean's model starting with a power law approximation.

Power law for dissipation:
$$\vec{E}(\vec{J}) \cdot \vec{J} = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p}$$

Discretized Faraday's law: curl $\vec{E}_{i+1} = -\mu_0 \frac{\vec{H}_{i+1} - \vec{H}_i}{\delta t}$

/⊒ > < ∃ >

Time discretization in [0, T]:
$$\delta t = T/n$$
, $t_i = i\delta t$,
 $\vec{H}_i = \vec{H}(t_i)$, $\vec{E}_i = \vec{E}(t_i)$.

Goal: give a variational formulation of the anisotropic Bean's model starting with a power law approximation.

Power law for dissipation:
$$\vec{E}(\vec{J}) \cdot \vec{J} = \frac{c}{p} \left(\rho_{\Delta}(\vec{J}) \right)^{p}$$

Discretized Faraday's law: curl $\vec{E}_{i+1} = -\mu_0 \frac{\vec{H}_{i+1} - \vec{H}_i}{\delta t}$
 \implies admits the variational formulation

$$J_p(h) = \int_{\Omega} \frac{1}{p} \left[\rho(Dh) \right]^p + \frac{\mu_0}{2c\delta t} (h-h_i)^2, \qquad h \in h_s(t_{i+1}) + W_0^{1,p}(\Omega)$$

i.e., h_{i+1} is the unique minimum point of J_p in $h_s(t_{i+1}) + W_0^{1,p}(\Omega)$. $\rho = \rho_K = \text{gauge function of } K \subset \mathbb{R}^2$.

Convergence

Theorem (G.C. - A. Malusa)

 $u_p \in h_s(t_{i+1}) + W_0^{1,p}(\Omega)$: unique minimum point of J_p , $p \ge 1$. $u_\infty \in h_s(t_{i+1}) + W_0^{1,1}(\Omega)$: unique minimum point of

$$J(u) = \int_{\Omega} I_{\mathcal{K}}(Du) + (u - h_i)^2, \qquad u \in h_s(t_{i+1}) + W_0^{1,1}(\Omega).$$

Then, for every q > 1, (u_p) converges to u_∞ in weak- $W^{1,q}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Convergence

Theorem (G.C. - A. Malusa)

 $u_p \in h_s(t_{i+1}) + W_0^{1,p}(\Omega)$: unique minimum point of J_p , $p \ge 1$. $u_{\infty} \in h_s(t_{i+1}) + W_0^{1,1}(\Omega)$: unique minimum point of

$$J(u) = \int_{\Omega} I_{\mathcal{K}}(Du) + (u - h_i)^2, \qquad u \in h_s(t_{i+1}) + W_0^{1,1}(\Omega).$$

Then, for every q > 1, (u_p) converges to u_∞ in weak- $W^{1,q}$.

Conclusion: the variational formulation of Bean's law is based on functional *J*. Given h_i , we have $h_{i+1} = u_{\infty}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Convergence

Theorem (G.C. - A. Malusa)

 $u_p \in h_s(t_{i+1}) + W_0^{1,p}(\Omega)$: unique minimum point of J_p , $p \ge 1$. $u_\infty \in h_s(t_{i+1}) + W_0^{1,1}(\Omega)$: unique minimum point of

$$J(u) = \int_{\Omega} I_{\mathcal{K}}(Du) + (u - h_i)^2, \qquad u \in h_s(t_{i+1}) + W_0^{1,1}(\Omega).$$

Then, for every q > 1, (u_p) converges to u_∞ in weak- $W^{1,q}$.

Conclusion: the variational formulation of Bean's law is based on functional *J*. Given h_i , we have $h_{i+1} = u_{\infty}$. **Remark**: variational formulation proposed by Badía-López (2002) starting from physical considerations.

・ロト ・同ト ・ヨト ・ヨト

Discretized Faraday's law Magnetic and electric field

Necessary conditions - Electric field

Theorem (Dual function)

 \exists a non-negative continuous function v_i such that

$$-\operatorname{div}(v_i D
ho(Dh_{i+1})) = h_i - h_{i+1} \qquad in \ \Omega.$$

Necessary conditions - Electric field

Theorem (Dual function)

 \exists a non-negative continuous function v_i such that

$$-\operatorname{div}(v_i D\rho(Dh_{i+1})) = h_i - h_{i+1} \qquad in \ \Omega.$$

 v_i has an explicit representation in terms of the anisotropic principal curvatures of $\partial \Omega$ and the normal distance from cut locus.

Necessary conditions - Electric field

Theorem (Dual function)

 \exists a non-negative continuous function v_i such that

$$-\operatorname{div}(v_i D\rho(Dh_{i+1})) = h_i - h_{i+1} \qquad in \ \Omega.$$

 v_i has an explicit representation in terms of the anisotropic principal curvatures of $\partial \Omega$ and the normal distance from cut locus. Interpretation: $w_i = v_i/\delta t$ is the (discretized) dissipated power density, and $E_i = w_i D\rho(Dh_{i+1})$ is the (discretized) electric field.

Necessary conditions - Electric field

Theorem (Dual function)

 \exists a non-negative continuous function v_i such that

$$-\operatorname{div}(v_i D\rho(Dh_{i+1})) = h_i - h_{i+1} \qquad in \ \Omega.$$

 v_i has an explicit representation in terms of the anisotropic principal curvatures of $\partial \Omega$ and the normal distance from cut locus. Interpretation: $w_i = v_i/\delta t$ is the (discretized) dissipated power density, and $E_i = w_i D\rho(Dh_{i+1})$ is the (discretized) electric field.

Techniques developed in G.C., Malusa: to appear in Trans. Amer. Math. Soc. Isotropic case (K =ball): Cannarsa, Cardaliaguet, G.C., Giorgieri: Calc. Var. 2005

Selected references

- Badía, López, Phys. Rev. B 2002, J. Low Temp. Phys. 2003, J. Appl. Phys. 2004: anisotropic Bean's model
- Barrett, Prigozhin, Nonlinear Anal. 2000, preprint 2005: isotropic Bean's model, variational inequalities
- Brandt *et al.*, Phys. Rev. B 1996 and 2000: numerical and experimental data

Discretized Faraday's law Magnetic and electric field

Candidate solution $u_{\infty} = h_{i+1}$

Minkowski distance w.r.t. $K: d(x) = \min_{y \in \partial \Omega} \rho_K^0(x - y)$

 $(\rho_K^0 = \text{polar of the gauge function of } K)$

 \implies viscosity solution of $\rho(Du) = 1$ in Ω , u = 0 on $\partial \Omega$.

□ > < = > <

Candidate solution $u_{\infty} = h_{i+1}$

Minkowski distance w.r.t. $K: d(x) = \min_{y \in \partial \Omega} \rho_K^0(x - y)$ $(\rho_K^0 = \text{polar of the gauge function of } K)$

 \implies viscosity solution of $\rho(Du) = 1$ in Ω , u = 0 on $\partial \Omega$.

Minkowski distance w.r.t.
$$-K$$
:
 $d^{-}(x) = \min_{y \in \partial \Omega} \rho^{0}_{-K}(x - y) = \min_{y \in \partial \Omega} \rho^{0}_{K}(y - x)$
 \implies viscosity solution of $-\rho(Du) = -1$ in Ω , $u = 0$ on $\partial \Omega$.

□ > < = > <

Candidate solution $u_{\infty} = h_{i+1}$

Minkowski distance w.r.t. K: $d(x) = \min_{y \in \partial \Omega} \rho_K^0(x - y)$ $(\rho_K^0 = \text{polar of the gauge function of } K)$

 \implies viscosity solution of $\rho(Du) = 1$ in Ω , u = 0 on $\partial \Omega$.

Minkowski distance w.r.t.
$$-K$$
:
 $d^{-}(x) = \min_{y \in \partial \Omega} \rho^{0}_{-K}(x-y) = \min_{y \in \partial \Omega} \rho^{0}_{K}(y-x)$
 \implies viscosity solution of $-\rho(Du) = -1$ in Ω , $u = 0$ on $\partial \Omega$.

Solution of the minimum problem:

$$h_{i+1}(x) = egin{cases} d(x) + h_s(t_{i+1}), & ext{if } x \in \Omega^+ = \{h_i > d\}, \ -d^-(x) + h_s(t_{i+1}), & ext{if } x \in \Omega^- = \{h_i < -d^-\}, \ h_i(x), & ext{if } x \in \Omega^0 = \Omega \setminus (\Omega^+ \cup \Omega^-). \end{cases}$$

 $h_{i+1}(x) = [h_i(x) \lor (-d^-(x) + h_s(t_{i+1}))] \land (d(x) + h_s(t_{i+1}))_{\mathbb{R}}, \mathbb{R}$

Discretized Faraday's law Magnetic and electric field

1D heuristics

$$K = [-1, 2]$$
$$J(h) = \int_{\Omega} |h - h_i|^2 + I_K(Dh)$$
$$h = 0 \text{ on } \partial\Omega$$

- **→** → **→**

э

Discretized Faraday's law Magnetic and electric field

1D heuristics

$$egin{aligned} \mathcal{K} &= [-1,2] \ \mathcal{J}(h) &= \int_{\Omega} |h-h_i|^2 + \mathcal{I}_{\mathcal{K}}(Dh) \ h &= 0 ext{ on } \partial \Omega \end{aligned}$$

□→ < □→</p>

э

э

Decomposition of Ω in transport rays

 Ω can be decomposed in transport rays (paths of minimal distance from the boundary):

two possible decompositions, one for d and one for d^- .

Discretized Faraday's law Magnetic and electric field

Decomposition of Ω in transport rays

 Ω can be decomposed in transport rays (paths of minimal distance from the boundary): two possible decompositions, one for d and one for d^- . Example: $h_i(y) > 0$.

 $\begin{array}{c}
 \rho \\
 point on cut locus \\
 v(y) \\
 y \\
 D_{D\rho}(v(y)) \\
 transport ray \\
 v(y) = inward Euclidean normal of <math>\partial\Omega$ at y $l(y) = length of the transport ray
\end{array}$

 \implies on each transport ray apply the 1D-heuristics.

• Start with $h(x,0) = h_0(x) \in \operatorname{Lip}_{\mathcal{K}}(\Omega)$, $h_0 = h_{\mathcal{S}}(0)$ on $\partial \Omega$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• Start with $h(x,0) = h_0(x) \in \operatorname{Lip}_{\mathcal{K}}(\Omega)$, $h_0 = h_{\mathcal{S}}(0)$ on $\partial \Omega$.

•
$$h_{i+1} = \text{internal magnetic field at time } t_{i+1}$$

 \implies solution of the minimization problem
 $\min\left\{\int_{\Omega} \frac{\mu_0}{2} |h - h_i|^2 + \delta t I_K(Dh); h \in h_S(t_{i+1}) + W_0^{1,1}(\Omega)\right\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- Start with $h(x,0) = h_0(x) \in \operatorname{Lip}_{\mathcal{K}}(\Omega)$, $h_0 = h_{\mathcal{S}}(0)$ on $\partial \Omega$.
- $h_{i+1} = \text{internal magnetic field at time } t_{i+1}$ \implies solution of the minimization problem $\min\left\{\int_{\Omega} \frac{\mu_0}{2} |h - h_i|^2 + \delta t I_{\mathcal{K}}(Dh); h \in h_{\mathcal{S}}(t_{i+1}) + W_0^{1,1}(\Omega)\right\}$
- By the existence and uniqueness theorem, $h_{i+1}(x) = \left[h_i(x) \lor \left(h_S(t_{i+1}) - d^-(x)\right)\right] \land \left(h_S(t_{i+1}) + d(x)\right)$

- Start with $h(x,0) = h_0(x) \in \operatorname{Lip}_{\mathcal{K}}(\Omega)$, $h_0 = h_{\mathcal{S}}(0)$ on $\partial \Omega$.
- $h_{i+1} = \text{internal magnetic field at time } t_{i+1}$ \implies solution of the minimization problem $\min\left\{\int_{\Omega} \frac{\mu_0}{2} |h - h_i|^2 + \delta t I_{\mathcal{K}}(Dh); h \in h_{\mathcal{S}}(t_{i+1}) + W_0^{1,1}(\Omega)\right\}$
- By the existence and uniqueness theorem, $h_{i+1}(x) = \left[h_i(x) \lor \left(h_S(t_{i+1}) - d^-(x)\right)\right] \land \left(h_S(t_{i+1}) + d(x)\right)$
- Explicit formula for monotone external field:
 - 1. h_S monotone increasing in [0, T]:

 $h_i(x) = h_0(x) \lor (h_S(t_i) - d^-(x))$ 2. h_S monotone decreasing in [0, T]:

 $h_i(x) = h_0(x) \wedge (h_S(t_i) + d(x))$

- 同 ト - ヨ ト - - ヨ ト

For $\delta t = T/n$, $n \in \mathbb{N}^+$, construct h_i as above and define $h^n(x, t) = h_i(x)$, for $t \in [t_i, t_{i+1})$

For $\delta t = T/n$, $n \in \mathbb{N}^+$, construct h_i as above and define $h^n(x, t) = h_i(x)$, for $t \in [t_i, t_{i+1})$

Assume monotone external field; as $n \to \infty$ ($\delta t \to 0$)

For $\delta t = T/n$, $n \in \mathbb{N}^+$, construct h_i as above and define $h^n(x, t) = h_i(x)$, for $t \in [t_i, t_{i+1})$

Assume monotone external field; as $n \to \infty$ ($\delta t \to 0$)

• h_S increasing: $h^n(x,t) \rightarrow h(x,t) = h_0(x) \lor (h_S(t) - d^-(x))$

For $\delta t = T/n$, $n \in \mathbb{N}^+$, construct h_i as above and define $h^n(x, t) = h_i(x)$, for $t \in [t_i, t_{i+1})$

Assume monotone external field; as $n \to \infty$ ($\delta t \to 0$)

- h_S increasing: $h^n(x,t) \rightarrow h(x,t) = h_0(x) \lor (h_S(t) d^-(x))$
- h_S decreasing: $h^n(x,t) \rightarrow h(x,t) = h_0(x) \wedge (h_S(t) + d(x))$

For $\delta t = T/n$, $n \in \mathbb{N}^+$, construct h_i as above and define $h^n(x, t) = h_i(x)$, for $t \in [t_i, t_{i+1})$

Assume monotone external field; as $n \to \infty$ ($\delta t \to 0$)

• h_S increasing: $h^n(x,t) \rightarrow h(x,t) = h_0(x) \lor (h_S(t) - d^-(x))$

• h_S decreasing: $h^n(x, t) \rightarrow h(x, t) = h_0(x) \land (h_S(t) + d(x))$ \rightarrow the internal magnetic field can be explicitly computed if h_S is

 \implies the internal magnetic field can be explicitly computed if h_S is piecewise monotone.

Discretized Faraday's law Magnetic and electric field

Example

The section Ω , the constraints set K; Level sets and 3D-plot of the distance d.

Discretized Faraday's law Magnetic and electric field

Example: plot of h

 $\dot{t_4}$

▲圖 ▶ ▲ 圖 ▶

 $t_5 \quad t_6 = T$

э

Magnetic and electric field

Example: plot of h

Discretized Faraday's law Magnetic and electric field

Example: plot of h

イロト イヨト イヨト イ

э

∃ >

Discretized Faraday's law Magnetic and electric field

Example: plot of h

э

Discretized Faraday's law Magnetic and electric field

Example: plot of h

▲□ ▶ ▲ □ ▶ ▲

3 N 3

Magnetic and electric field

Example: plot of h

▲□ ▶ ▲ 三 ▶

э
Superconductivity Disc Quasistatic evolution Mag

Discretized Faraday's law Magnetic and electric field

Hysteresis loop

Hysteresis loop: magnetization $\vec{M} = \langle \vec{H} \rangle - \vec{H}_S$ versus external field \vec{H}_S .

- **→** → **→**

Superconductivity Quasistatic evolution

Discretized Faraday's law Magnetic and electric field

Example: plot of w

<ロ> <同> <同> < 同> < 同>

э

What we have done...

• Strong mathematical justification of the anisotropic variational formulation of Bean's law suggested by Badía and López.

I = →

What we have done...

- Strong mathematical justification of the anisotropic variational formulation of Bean's law suggested by Badía and López.
- Explicit form of both magnetic field and electric field inside the superconductor; explicit computation of the dissipated power density (very important for the stability analysis of the superconducting phase).

What we have done...

- Strong mathematical justification of the anisotropic variational formulation of Bean's law suggested by Badía and López.
- Explicit form of both magnetic field and electric field inside the superconductor; explicit computation of the dissipated power density (very important for the stability analysis of the superconducting phase).

...and what remains to do:

 Nonhomogeneous samples (general Finsler metric instead of Minkowski); connections with elasticity theory and material science (e.g., dieletric breakdown).

What we have done...

- Strong mathematical justification of the anisotropic variational formulation of Bean's law suggested by Badía and López.
- Explicit form of both magnetic field and electric field inside the superconductor; explicit computation of the dissipated power density (very important for the stability analysis of the superconducting phase).

...and what remains to do:

- Nonhomogeneous samples (general Finsler metric instead of Minkowski); connections with elasticity theory and material science (e.g., dieletric breakdown).
- True 3D analysis (no cylindrical symmetry).