Numerical discretisation for a stochastic control problem with unbounded controls

 a super replication problem arising in Finance
O. Bokanowski ${ }^{1}$

${ }^{1}$ Lab. Jacques-Louis Lions, University Paris 6 and University Paris 7

July 4, 2006 - Turin

This is a joint work with

Benjamun Bruder
Univ. Paris 7 and Société Générale and
Stefania Maroso
ENSTA and INRIA, Projet Sydoco and
Hasnaa Zidani
ENSTA and INRIA, Projet Sydoco

Outline

Our aim is to present a combination of recent and past technics in order to approximate a nonlinear PDE problem arising in Finance.
(1) A super replication problemApproximation scheme

- Abstract scheme
- Howard algorithm

Outline

Our aim is to present a combination of recent and past technics in order to approximate a nonlinear PDE problem arising in Finance.
(9) A super replication problem
(2) Approximation scheme

- Abstract scheme
- Howard algorithm

A super replication problem arising in Finance

Let $T>0$ be a fixed finite time horizon.
Let a given progressively measurable control process
$(\rho, \xi):=\{(\rho(t), \xi(t)) ; 0 \leq t \leq T\}$ with values in $[-1,1] \times \mathbb{R}_{+}$and such that $\int_{0}^{T} \xi(t)^{2} d t<\infty$.
We consider the controled 2-dimensional (positive) process

solution for $t \in[0, T]$ of:

> X : "underlying" asset, Y : "derivative" asset (i.e., volatility); $\mu:$ dividend; $\sigma:$ volatility (typicaly: $\sigma(t, Y)=\sqrt{Y}$).

A super replication problem arising in Finance

Let $T>0$ be a fixed finite time horizon.
Let a given progressively measurable control process
$(\rho, \xi):=\{(\rho(t), \xi(t)) ; 0 \leq t \leq T\}$ with values in $[-1,1] \times \mathbb{R}_{+}$and such that $\int_{0}^{T} \xi(t)^{2} d t<\infty$.
We consider the controled 2-dimensional (positive) process $(X, Y)=\left(X_{t, x, y}^{\rho, \xi}, Y_{t, s, X}^{\rho, \xi}\right)$ solution for $t \in[0, T]$ of:

$$
\begin{aligned}
& \left\{\begin{array}{l}
d X(s)= \\
d Y(s)=-\mu(s, Y(s)) d s+\quad \sigma(s, Y(s)) X(s) d W^{1}(s) \\
\xi(s) Y(s) d W^{2}(s)
\end{array}\right. \\
& \left\langle d W^{1}(s), d W^{2}(s)\right\rangle=\rho(s) \\
& X(t)=x, Y(t)=y
\end{aligned}
$$

X : "underlying" asset, Y : "derivative" asset (i.e., volatility);

A super replication problem arising in Finance

Let $T>0$ be a fixed finite time horizon.
Let a given progressively measurable control process
$(\rho, \xi):=\{(\rho(t), \xi(t)) ; 0 \leq t \leq T\}$ with values in $[-1,1] \times \mathbb{R}_{+}$and such that $\int_{0}^{T} \xi(t)^{2} d t<\infty$.
We consider the controled 2-dimensional (positive) process $(X, Y)=\left(X_{t, x, y}^{\rho, \xi}, Y_{t, s, X}^{\rho, \xi}\right)$ solution for $t \in[0, T]$ of:

$$
\begin{aligned}
& \left\{\begin{array}{l}
d X(s)= \\
d Y(s)=-\mu(s, Y(s)) d s+r(s, Y(s)) X(s) d W^{1}(s) \\
\xi(s) Y(s) d W^{2}(s)
\end{array}\right. \\
& \left\langle d W^{1}(s), d W^{2}(s)\right\rangle=\rho(s) \\
& X(t)=x, Y(t)=y
\end{aligned}
$$

X : "underlying" asset, Y : "derivative" asset (i.e., volatility); μ : dividend; σ : volatility (typicaly: $\sigma(t, Y)=\sqrt{Y}$).
σ and μ satisfy the following assumptions:
(A1) $\sigma \geq 0$ and $\sigma^{2}:[0, T] \times \mathbb{R}_{+}$is a locally Lipschitz function, Lipschitz in time, with linear growth with respect to the second argument, and s.t.

$$
\sigma(t, 0)=0, \quad \forall t \in[0, T]
$$

(A2) $\mu:(0, T) \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a positive Lipschitz function, with

$$
\mu(t, 0)=0, \quad t \in[0, T]
$$

We consider also a (Payoff) function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and assume (A3) g is a bounded, Lipschitz function.

We consider the following stochastic unbounded control problem:

We consider also a (Payoff) function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and assume (A3) g is a bounded, Lipschitz function.

We consider the following stochastic unbounded control problem:

We consider also a (Payoff) function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and assume (A3) g is a bounded, Lipschitz function.

We consider the following stochastic unbounded control problem:

$$
\begin{equation*}
v(t, x, y)=\sup _{(\rho, \xi)} \mathbf{E}\left[g\left(X_{t, x, y}^{\rho, \xi}(T)\right)\right] \tag{1}
\end{equation*}
$$

A first HJB equation

Let $\alpha=(\rho, \xi) \in[-1,1] \times \mathbb{R}_{+}$and

$$
H_{\alpha}(v):=\mu \frac{\partial v}{\partial x}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}-\bar{\sigma}(\rho \xi) \frac{\partial^{2} v}{\partial x \partial y}-\frac{1}{2} \xi^{2} \frac{\partial^{2} v}{\partial^{2} y}
$$

with $\bar{\sigma}:=x \sigma$.

Theorem

v given by (1) is a viscosity solution of

$$
\begin{equation*}
\min _{\alpha}\left\{-\frac{\partial v}{\partial t}+H_{\alpha}(v)\right\}=0 \tag{2}
\end{equation*}
$$

Some difficulties:

A first HJB equation

Let $\alpha=(\rho, \xi) \in[-1,1] \times \mathbb{R}_{+}$and

$$
H_{\alpha}(v):=\mu \frac{\partial v}{\partial x}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}-\bar{\sigma}(\rho \xi) \frac{\partial^{2} v}{\partial x \partial y}-\frac{1}{2} \xi^{2} \frac{\partial^{2} v}{\partial^{2} y}
$$

with $\bar{\sigma}:=x \sigma$.

Theorem

v given by (1) is a viscosity solution of

$$
\begin{equation*}
\min _{\alpha}\left\{-\frac{\partial v}{\partial t}+H_{\alpha}(v)\right\}=0 \tag{2}
\end{equation*}
$$

Some difficulties:

A first HJB equation

Let $\alpha=(\rho, \xi) \in[-1,1] \times \mathbb{R}_{+}$and

$$
H_{\alpha}(v):=\mu \frac{\partial v}{\partial x}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}-\bar{\sigma}(\rho \xi) \frac{\partial^{2} v}{\partial x \partial y}-\frac{1}{2} \xi^{2} \frac{\partial^{2} v}{\partial^{2} y}
$$

with $\bar{\sigma}:=x \sigma$.

Theorem

v given by (1) is a viscosity solution of

$$
\begin{equation*}
\min _{\alpha}\left\{-\frac{\partial v}{\partial t}+H_{\alpha}(v)\right\}=0 \tag{2}
\end{equation*}
$$

Some difficulties:

- discretisation of the controls
- scheme definition

A first HJB equation

Let $\alpha=(\rho, \xi) \in[-1,1] \times \mathbb{R}_{+}$and

$$
H_{\alpha}(v):=\mu \frac{\partial v}{\partial x}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}-\bar{\sigma}(\rho \xi) \frac{\partial^{2} v}{\partial x \partial y}-\frac{1}{2} \xi^{2} \frac{\partial^{2} v}{\partial^{2} y}
$$

with $\bar{\sigma}:=x \sigma$.

Theorem

v given by (1) is a viscosity solution of

$$
\begin{equation*}
\min _{\alpha}\left\{-\frac{\partial v}{\partial t}+H_{\alpha}(v)\right\}=0 \tag{2}
\end{equation*}
$$

Some difficulties:

- discretisation of the controls
- scheme definition

A first HJB equation

Let $\alpha=(\rho, \xi) \in[-1,1] \times \mathbb{R}_{+}$and

$$
H_{\alpha}(v):=\mu \frac{\partial v}{\partial x}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}-\bar{\sigma}(\rho \xi) \frac{\partial^{2} v}{\partial x \partial y}-\frac{1}{2} \xi^{2} \frac{\partial^{2} v}{\partial^{2} y}
$$

with $\bar{\sigma}:=x \sigma$.

Theorem

v given by (1) is a viscosity solution of

$$
\begin{equation*}
\min _{\alpha}\left\{-\frac{\partial v}{\partial t}+H_{\alpha}(v)\right\}=0 \tag{2}
\end{equation*}
$$

Some difficulties:

- discretisation of the controls
- scheme definition

A first HJB equation

Let $\alpha=(\rho, \xi) \in[-1,1] \times \mathbb{R}_{+}$and

$$
H_{\alpha}(v):=\mu \frac{\partial v}{\partial x}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}-\bar{\sigma}(\rho \xi) \frac{\partial^{2} v}{\partial x \partial y}-\frac{1}{2} \xi^{2} \frac{\partial^{2} v}{\partial^{2} y}
$$

with $\bar{\sigma}:=x \sigma$.

Theorem

v given by (1) is a viscosity solution of

$$
\begin{equation*}
\min _{\alpha}\left\{-\frac{\partial v}{\partial t}+H_{\alpha}(v)\right\}=0 \tag{2}
\end{equation*}
$$

Some difficulties:

- discretisation of the controls
- scheme definition
- error estimates

A first HJB equation

... revisited

Let $H(v)=\min _{\alpha} H_{\alpha}(v)$. In fact, we have only (2) if $H(v)>-\infty$, and only get in general $-\frac{\partial v}{\partial t}+H(v) \geq 0$. Then, the exact sense for the HJB equation (2) should be the following (see [Pham 05^{\prime}], [Soner \& Touzi 02']).
Let $G(v):=G\left(t, x, D_{x} v, D_{x}^{2} v\right)$, continuous, be such that

$$
H(v)>-\infty \Leftrightarrow G(v) \geq 0 .
$$

Eq. (2) must be replaced by

$$
\begin{equation*}
\min \left\{-\frac{\partial v}{\partial t}+H(v), G(v)\right\}=0 \tag{2'}
\end{equation*}
$$

Here

$$
\begin{aligned}
H(v)>-\infty & \Leftrightarrow\left(-\frac{\partial^{2} v}{\partial y^{2}} \geq 0, \text { and }-\frac{\partial^{2} v}{\partial y^{2}}=0 \Rightarrow-\frac{\partial^{2} v}{\partial x \partial y}=0\right) \\
& \Leftrightarrow \Lambda_{-}\left(\begin{array}{rr}
0 & -\frac{\partial^{2} v}{\partial x \partial y} \\
-\frac{\partial^{2} v}{\partial x \partial y} & \frac{\partial^{2} v}{\partial y^{2}}
\end{array}\right) \geq 0
\end{aligned}
$$

where $\Lambda_{-}(M)$ is the smallest eigenvalue of M.

A second HJB equation (case $\mu=0$)

On the other hand, for v regular, let $M(v):=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right)$ where $a_{11}(v):=-\frac{\partial v}{\partial t}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}, a_{12}(v):=\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y}$, and $a_{22}(v):=-\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}}$.

A second HJB equation (case $\mu=0$)

On the other hand, for v regular, let $M(v):=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right)$ where $a_{11}(v):=-\frac{\partial v}{\partial t}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}, a_{12}(v):=\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y}$, and $a_{22}(v):=-\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}}$.

$$
\Lambda_{-}(M)=0 \Leftrightarrow \inf _{\alpha_{1}^{2}+\alpha_{2}^{2}=1}\left\{\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}\right\}=0
$$

A second HJB equation (case $\mu=0$)

On the other hand, for v regular, let $M(v):=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right)$ where $a_{11}(v):=-\frac{\partial v}{\partial t}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}, a_{12}(v):=\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y}$, and $a_{22}(v):=-\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}}$.

$$
\begin{gathered}
\Lambda_{-}(M)=0 \Leftrightarrow \inf _{\alpha_{1}^{2}+\alpha_{2}^{2}=1}\left\{\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}\right\}=0 \\
\Leftrightarrow \min \left\{\begin{array}{l}
\inf ^{\alpha_{1}>0, \alpha_{2}= \pm \sqrt{1-\alpha_{1}^{2}}}\left(a_{11}(v)+2 \frac{\alpha_{2}}{\alpha_{1}} a_{12}(v)+\left(\frac{\alpha_{2}}{\alpha_{1}}\right)^{2} a_{22}(v)\right), \\
\left.a_{22}(v)\right\}=0
\end{array}\right.
\end{gathered}
$$

A second HJB equation (case $\mu=0$)

On the other hand, for v regular, let $M(v):=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right)$ where $a_{11}(v):=-\frac{\partial v}{\partial t}-\frac{1}{2} \bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}}, a_{12}(v):=\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y}$, and $a_{22}(v):=-\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}}$.

$$
\begin{aligned}
& \Lambda_{-}(M)=0 \Leftrightarrow \inf _{\alpha_{1}^{2}+\alpha_{2}^{2}=1}\left\{\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}\right\}=0 \\
& \qquad \min \left\{\begin{array}{c}
\inf _{\alpha_{1}>0, \alpha_{2}= \pm \sqrt{1-\alpha_{1}^{2}}}\left(a_{11}(v)+2 \frac{\alpha_{2}}{\alpha_{1}} a_{12}(v)+\left(\frac{\alpha_{2}}{\alpha_{1}}\right)^{2} a_{22}(v)\right), \\
\left.a_{22}(v)\right\}=0
\end{array}\right.
\end{aligned}
$$

$$
\vdots
$$

$$
\Leftrightarrow\left(2^{\prime}\right)
$$

Boundary conditions

Proposition. v satisfies
(i) The terminal condition

$$
v^{*}(T, x, y)=g(x), \quad(x, y) \in\left(\mathbb{R}_{+}\right)^{2}
$$

(ii) The boundary condition on $y=0$:

$$
v(t, x, 0)=g(x), \quad t>0, x \in \mathbb{R}_{+} .
$$

(iii) v is bounded (using g bounded).

Pemark. With these conditions, it is possible to obtain a comparison result.

Boundary conditions

Proposition. v satisfies
(i) The terminal condition

$$
v^{*}(T, x, y)=g(x), \quad(x, y) \in\left(\mathbb{R}_{+}\right)^{2}
$$

(ii) The boundary condition on $y=0$:

$$
v(t, x, 0)=g(x), \quad t>0, x \in \mathbb{R}_{+} .
$$

(iii) v is bounded (using g bounded).

Remark. With these conditions, it is possible to obtain a comparison result.

Boundary conditions

Proposition. v satisfies
(i) The terminal condition

$$
v^{*}(T, x, y)=g(x), \quad(x, y) \in\left(\mathbb{R}_{+}\right)^{2}
$$

(ii) The boundary condition on $y=0$:

$$
v(t, x, 0)=g(x), \quad t>0, x \in \mathbb{R}_{+} .
$$

(iii) v is bounded (using g bounded).

Remark. With these conditions, it is possible to obtain a comparison result.

Boundary conditions

Proposition. v satisfies
(i) The terminal condition

$$
v^{*}(T, x, y)=g(x), \quad(x, y) \in\left(\mathbb{R}_{+}\right)^{2}
$$

(ii) The boundary condition on $y=0$:

$$
v(t, x, 0)=g(x), \quad t>0, x \in \mathbb{R}_{+} .
$$

(iii) v is bounded (using g bounded).

Remark. With these conditions, it is possible to obtain a comparison result.

approximation scheme

> We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
> Let $d t=T / N, N$ integer.
> We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$. By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.

> Let $d t=T / N, N$ integer.
> We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$. By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
Let $d t=T / N, N$ integer.
We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$.
By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
Let $d t=T / N, N$ integer.
We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$.
By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
Let $d t=T / N, N$ integer.
We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$.
By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

- (i) Monotone (i.e. $V^{n} \geq U^{n} \Rightarrow V^{n+1} \geq U^{n+1}$).

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
Let $d t=T / N, N$ integer.
We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$.
By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

- (i) Monotone (i.e. $V^{n} \geq U^{n} \Rightarrow V^{n+1} \geq U^{n+1}$).

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
Let $d t=T / N, N$ integer.
We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$.
By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

- (i) Monotone (i.e. $V^{n} \geq U^{n} \Rightarrow V^{n+1} \geq U^{n+1}$).
- (ii) Regular / Bounded

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
Let $d t=T / N, N$ integer.
We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$.
By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

- (i) Monotone (i.e. $V^{n} \geq U^{n} \Rightarrow V^{n+1} \geq U^{n+1}$).
- (ii) Regular / Bounded

approximation scheme

We rewrite the problem for $v(T-t)$ intead of $v(t)$. The equation is similar, with a reversed sign for $\frac{\partial v}{\partial t}$ and an initial condition instead of a terminal one.
Let $d t=T / N, N$ integer.
We look for an approximation scheme for $\Lambda_{-}(M)=0$, that will compute successive approximation $V^{0}, V^{1}, \ldots, V^{N}$ of the value function at times $t_{n}=n \Delta t, n=0, \ldots, N$.
By [Souganidis- Barles], under a comparison result, we have a general convergence result if the scheme is

- (i) Monotone (i.e. $V^{n} \geq U^{n} \Rightarrow V^{n+1} \geq U^{n+1}$).
- (ii) Regular / Bounded
- (iii) Consistent

Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

This method is

- local: utilizes close neighboring mesh points (ORDER p)
- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

> This method is
> - local: utilizes close neighboring mesh points (ORDER p)
> - can treat non-diagonal dominant diffusion matrices (in 2d)
> - can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method
method 2: Generalized finite differences

- Generalized finite differences in space [Bonnans, Ottenwalter, Zidani]
- Euler Implicit (or better) in time

This method is
local: utilizes close neighboring mesh points (ORDER p)

- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method
method 2: Generalized finite differences

- Generalized finite differences in space [Bonnans, Ottenwalter, Zidani]
- Euler Implicit (or better) in time

This method is

- local: utilizes close neighboring mesh points (ORDER p)
- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method
method 2: Generalized finite differences

- Generalized finite differences in space [Bonnans, Ottenwalter, Zidani]
- Euler Implicit (or better) in time

This method is

- local: utilizes close neighboring mesh points (ORDER p)
- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method
method 2: Generalized finite differences

- Generalized finite differences in space [Bonnans, Ottenwalter, Zidani]
- Euler Implicit (or better) in time

This method is

- local: utilizes close neighboring mesh points (ORDER p)
- can treat non-diagonal dominant diffusion matrices (in 2d)
can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method
method 2: Generalized finite differences

- Generalized finite differences in space [Bonnans, Ottenwalter, Zidani]
- Euler Implicit (or better) in time

This method is

- local: utilizes close neighboring mesh points (ORDER p)
- can treat non-diagonal dominant diffusion matrices (in 2d)
can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method
method 2: Generalized finite differences

- Generalized finite differences in space [Bonnans, Ottenwalter, Zidani]
- Euler Implicit (or better) in time

This method is

- local: utilizes close neighboring mesh points (ORDER p)
- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions

Markov chains approximation methods

method 1: Semi Lagrangian method
method 2: Generalized finite differences

- Generalized finite differences in space [Bonnans, Ottenwalter, Zidani]
- Euler Implicit (or better) in time

This method is

- local: utilizes close neighboring mesh points (ORDER p)
- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions

Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and

$$
\begin{aligned}
\mathcal{A}_{\alpha}(v) & :=\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{11}(v) & a_{12}(v) \\
a_{12}(v) & a_{22}(v)
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}} \\
& =\alpha_{1}^{2} \frac{\partial v}{\partial t}+\frac{1}{2}\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right)\left(\begin{array}{rr}
-\bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}} & -\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y} \\
-\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y} & -\frac{\partial^{2} v}{\partial y^{2}}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}
\end{aligned}
$$

The spatial approximation for one given control α at time t_{n} is of the form

Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and

$$
\begin{aligned}
\mathcal{A}_{\alpha}(v) & :=\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{11}(v) & a_{12}(v) \\
a_{12}(v) & a_{22}(v)
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}} \\
& =\alpha_{1}^{2} \frac{\partial v}{\partial t}+\frac{1}{2}\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right)\left(\begin{array}{rr}
-\bar{\sigma}^{2} \frac{\partial^{2} v}{\partial x^{2}} & -\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y} \\
-\bar{\sigma} \frac{\partial^{2} v}{\partial x \partial y} & -\frac{\partial^{2} v}{\partial y^{2}}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}
\end{aligned}
$$

The spatial approximation for one given control α at time t_{n} is of the form

$$
\begin{aligned}
\mathcal{A}_{\alpha}(V) & \simeq \alpha_{1}^{2} \frac{V^{n+1}-V^{n}}{\Delta t}+A(\alpha) V^{n+1}-a(\alpha) \\
& \simeq B(\alpha) V^{n+1}-b^{V^{n}}(\alpha)
\end{aligned}
$$

where V^{n} vector, $B(\alpha):=\frac{\alpha_{1}^{2}}{\Delta t} I+A(\alpha)$ and $b(\alpha):=a(\alpha)+\frac{\alpha_{1}^{2}}{\Delta t} V^{n}$.

The scheme in abstract form

- The scheme writes (without control discretisation):

$$
\min _{u}\left(B(u) V^{n+1}-b^{V^{n}}(u)\right)=0, \quad n=0, \ldots, N-1
$$

where
$u \in S_{+}^{2}:=\left\{\left(\alpha_{1}, \alpha_{2}\right), \alpha_{1} \geq 0, \alpha_{2} \in[0,1], \alpha_{1}^{2}+\alpha_{2}^{2}=1\right\}$ (the right half unit circle).

- After the control discretisation, the scheme reads

The scheme in abstract form

- The scheme writes (without control discretisation):

$$
\min _{u}\left(B(u) V^{n+1}-b^{V^{n}}(u)\right)=0, \quad n=0, \ldots, N-1
$$

where
$u \in S_{+}^{2}:=\left\{\left(\alpha_{1}, \alpha_{2}\right), \alpha_{1} \geq 0, \alpha_{2} \in[0,1], \alpha_{1}^{2}+\alpha_{2}^{2}=1\right\}$ (the right half unit circle).

- After the control discretisation, the scheme reads

$$
\min _{k=1, \ldots, N_{u}}\left(B\left(u_{k}\right) V^{n+1}-b^{V^{n}}\left(u_{k}\right)\right)=0, \quad n=0, \ldots, N-1,
$$

where $\left(u_{k}\right)_{k=1, \ldots, N_{u}}$ is chosen uniformly on the half-circle, with N_{u} controls, and with $u_{1}=(0,1)$.

Convergence and error control

Proposition The scheme is convergent (when $N_{u} \rightarrow \infty$, $h_{x}, h_{y} \rightarrow 0, \Delta t \rightarrow 0$, order $\left.p \rightarrow \infty\right)$.

Remark 1. Assume (A3). Then it is possible to derive explicit lower bound estimate. (Refs: [Barles-Jackobsen], [Krylov], [Maroso, Zidani, Bonnans]).

Remark 2. However, for the Financial problem, the upper bound would be more interesting !

Convergence and error control

Proposition The scheme is convergent (when $N_{u} \rightarrow \infty$, $h_{x}, h_{y} \rightarrow 0, \Delta t \rightarrow 0$, order $p \rightarrow \infty$).

Remark 1. Assume (A3). Then it is possible to derive explicit lower bound estimate. (Refs: [Barles-Jackobsen], [Krylov], [Maroso, Zidani, Bonnans]).

Remark 2. However, for the Financial problem, the upper bound would be more interesting !

Convergence and error control

Proposition The scheme is convergent (when $N_{u} \rightarrow \infty$, $h_{x}, h_{y} \rightarrow 0, \Delta t \rightarrow 0$, order $p \rightarrow \infty$).

Remark 1. Assume (A3). Then it is possible to derive explicit lower bound estimate. (Refs: [Barles-Jackobsen], [Krylov], [Maroso, Zidani, Bonnans]).

Remark 2. However, for the Financial problem, the upper bound would be more interesting !

An Howard algorithm

Find a solution $X \in \mathbb{R}^{q}$ of $\min _{\alpha} B(\alpha) X-b(\alpha)=0$, with $\alpha \in K^{q}$ where $K=\left\{u_{1}, \ldots, u_{N_{u}}\right\}$ finite.
Let $\alpha^{(0)}$ given, and consider for iterations $k=0,1,2, \ldots$:

- Find $X^{(k)}$ such that $B\left(\alpha^{(k)}\right) X^{(k)}-b\left(\alpha^{(k)}\right)=0$
otherwise stop.
Theorem (Convergence of the Howard algorithm)
Suppose $\forall \alpha, B(\alpha)$ monotonous $(B(\alpha) X \geq 0 \Rightarrow X \geq 0)$. Then there exists a unique solution X and the Howard Algorithm converges to X with a finite number of iterations.

Remark. Neuman-type boundary conditions for large x, y, still monotonicity properties.

An Howard algorithm

Find a solution $X \in \mathbb{R}^{q}$ of $\min _{\alpha} B(\alpha) X-b(\alpha)=0$, with $\alpha \in K^{q}$ where $K=\left\{u_{1}, \ldots, u_{N_{u}}\right\}$ finite.
Let $\alpha^{(0)}$ given, and consider for iterations $k=0,1,2, \ldots$:

- Find $X^{(k)}$ such that $B\left(\alpha^{(k)}\right) X^{(k)}-b\left(\alpha^{(k)}\right)=0$
- If $X^{(k)} \neq X^{(k-1)}$, take $\alpha^{(k+1)}:=\operatorname{argmin}_{\alpha} B(\alpha) X^{(k)}-b(\alpha)$, otherwise stop.

Theorem (Convergence of the Howard algorithm)
Suppose $\forall \alpha, B(\alpha)$ monotonous $(B(\alpha) X \geq 0 \Rightarrow X \geq 0)$. Then
there exists a unique solution X and the Howard Algorithm
converges to X with a finite number of iterations.
Remar'k. Neuman-type boundary conditions for large x, y, still
monotonicity properties.

An Howard algorithm

Find a solution $X \in \mathbb{R}^{q}$ of $\min _{\alpha} B(\alpha) X-b(\alpha)=0$, with $\alpha \in K^{q}$ where $K=\left\{u_{1}, \ldots, u_{N_{u}}\right\}$ finite.
Let $\alpha^{(0)}$ given, and consider for iterations $k=0,1,2, \ldots$:

- Find $X^{(k)}$ such that $B\left(\alpha^{(k)}\right) X^{(k)}-b\left(\alpha^{(k)}\right)=0$
- If $X^{(k)} \neq X^{(k-1)}$, take $\alpha^{(k+1)}:=\operatorname{argmin}_{\alpha} B(\alpha) X^{(k)}-b(\alpha)$, otherwise stop.

Theorem (Convergence of the Howard algorithm)
Suppose $\forall \alpha, B(\alpha)$ monotonous $(B(\alpha) X \geq 0 \Rightarrow X \geq 0)$. Then there exists a unique solution X and the Howard Algorithm converges to X with a finite number of iterations.

Remark. Neuman-type boundary conditions for large x, y, still monotonicity properties.

An Howard algorithm

Find a solution $X \in \mathbb{R}^{q}$ of $\min _{\alpha} B(\alpha) X-b(\alpha)=0$, with $\alpha \in K^{q}$ where $K=\left\{u_{1}, \ldots, u_{N_{u}}\right\}$ finite.
Let $\alpha^{(0)}$ given, and consider for iterations $k=0,1,2, \ldots$:

- Find $X^{(k)}$ such that $B\left(\alpha^{(k)}\right) X^{(k)}-b\left(\alpha^{(k)}\right)=0$
- If $X^{(k)} \neq X^{(k-1)}$, take $\alpha^{(k+1)}:=\operatorname{argmin}_{\alpha} B(\alpha) X^{(k)}-b(\alpha)$, otherwise stop.

Theorem (Convergence of the Howard algorithm)
Suppose $\forall \alpha, B(\alpha)$ monotonous $(B(\alpha) X \geq 0 \Rightarrow X \geq 0)$. Then there exists a unique solution X and the Howard Algorithm converges to X with a finite number of iterations.

Remark. Neuman-type boundary conditions for large x, y, still monotonicity properties.

An Howard algorithm

Find a solution $X \in \mathbb{R}^{q}$ of $\min _{\alpha} B(\alpha) X-b(\alpha)=0$, with $\alpha \in K^{q}$ where $K=\left\{u_{1}, \ldots, u_{N_{u}}\right\}$ finite.
Let $\alpha^{(0)}$ given, and consider for iterations $k=0,1,2, \ldots$:

- Find $X^{(k)}$ such that $B\left(\alpha^{(k)}\right) X^{(k)}-b\left(\alpha^{(k)}\right)=0$
- If $X^{(k)} \neq X^{(k-1)}$, take $\alpha^{(k+1)}:=\operatorname{argmin}_{\alpha} B(\alpha) X^{(k)}-b(\alpha)$, otherwise stop.

Theorem (Convergence of the Howard algorithm)

Suppose $\forall \alpha, B(\alpha)$ monotonous $(B(\alpha) X \geq 0 \Rightarrow X \geq 0)$. Then there exists a unique solution X and the Howard Algorithm converges to X with a finite number of iterations.

Remark. Neuman-type boundary conditions for large x, y, still monotonicity properties.

Numerical results

cpu time / error test

$M_{1} \times M_{2}=100^{2}$ space discretisation points
$N_{u}=10$ controls
$N=20$ time steps
Neighborhing order $=4$.
On a 1.6 MHz cpu desktop computer

Numerical results

cpu time / error test

$M_{1} \times M_{2}=100^{2}$ space discretisation points
$N_{u}=10$ controls
$N=20$ time steps
Neighborhing order $=4$.
On a 1.6 MHz cpu desktop computer

- Fast initialisation of a sparse generalized differences matrix
- An howard iteration : 2-4s (using a sparse solver)
- One time step: from 2 to 10 Howard iterations.
- Complete computation: ≤ 5 minutes
- Error test on $\wedge_{-}(M(v)(t, x, y))=f(t, x, y)$:
relative L^{∞} error $\simeq 5 \times 10^{-3}$.
- That's all folks !

Numerical results

cpu time / error test

$M_{1} \times M_{2}=100^{2}$ space discretisation points
$N_{u}=10$ controls
$N=20$ time steps
Neighborhing order $=4$.
On a 1.6 MHz cpu desktop computer

- Fast initialisation of a sparse generalized differences matrix
- An howard iteration : 2-4s (using a sparse solver)
- One time step: from 2 to 10 Howard iterations.
- Complete computation: ≤ 5 minutes
- Error test on $\wedge_{-}(M(v)(t, x, y))=f(t, x, y)$: relative L^{∞} error $\simeq 5$
- That's all folks !

Numerical results

cpu time / error test

$M_{1} \times M_{2}=100^{2}$ space discretisation points
$N_{u}=10$ controls
$N=20$ time steps
Neighborhing order $=4$.
On a 1.6 MHz cpu desktop computer

- Fast initialisation of a sparse generalized differences matrix
- An howard iteration : 2-4s (using a sparse solver)
- One time step: from 2 to 10 Howard iterations.
- Complete computation: ≤ 5 minutes
- Error test on $\wedge_{-}(M(v)(t, x, y))=f(t, x, y)$: relative L^{∞} error $\simeq 5$
- That's all folks !

Numerical results

cpu time / error test

$M_{1} \times M_{2}=100^{2}$ space discretisation points
$N_{u}=10$ controls
$N=20$ time steps
Neighborhing order $=4$.
On a 1.6 MHz cpu desktop computer

- Fast initialisation of a sparse generalized differences matrix
- An howard iteration : 2-4s (using a sparse solver)
- One time step: from 2 to 10 Howard iterations.
- Complete computation: ≤ 5 minutes
- Error test on $\wedge_{-}(M(v)(t, x, y))=f(t, x, y)$ relative L^{∞} error $\simeq 5$ *
- That's all folks !

Numerical results

cpu time / error test

$M_{1} \times M_{2}=100^{2}$ space discretisation points
$N_{u}=10$ controls
$N=20$ time steps
Neighborhing order $=4$.
On a 1.6 MHz cpu desktop computer

- Fast initialisation of a sparse generalized differences matrix
- An howard iteration : 2-4s (using a sparse solver)
- One time step: from 2 to 10 Howard iterations.
- Complete computation: ≤ 5 minutes
- Error test on $\wedge_{-}(M(v)(t, x, y))=f(t, x, y)$: relative L^{∞} error $\simeq 5 \times 10^{-3}$.
- That's all folks !

Numerical results

cpu time / error test

$M_{1} \times M_{2}=100^{2}$ space discretisation points
$N_{u}=10$ controls
$N=20$ time steps
Neighborhing order $=4$.
On a 1.6 MHz cpu desktop computer

- Fast initialisation of a sparse generalized differences matrix
- An howard iteration : 2-4s (using a sparse solver)
- One time step: from 2 to 10 Howard iterations.
- Complete computation: ≤ 5 minutes
- Error test on $\wedge_{-}(M(v)(t, x, y))=f(t, x, y)$: relative L^{∞} error $\simeq 5 \times 10^{-3}$.
- That's all folks !

