Compito di Fisica Generale II - 12 novembre 2014

Proff. S. Caprara e A. Crisanti

Una spira quadrata di lato 2b e resistenza elettrica trascurabile, ha massa m e coefficiente di autoinduzione L. La spira si muove di moto traslatorio nel piano che la contiene, nel verso positivo dell'asse x di un opportuno sistema di riferimento cartesiano ortogonale, con velocità $\mathbf{v}_0 = (v_0, 0, 0), v_0 > 0$. La posizione della spira è univocamente determinata dall'ascissa x_s del suo centro. All'istante t = 0, la spira giunge alla frontiera del semispazio x > 0, in cui è presente un campo di induzione magnetica $\mathbf{B}(x) = (0, 0, B_z(x))$, ortogonale al piano su cui giace la spira, con

$$B_z(x) = B_0 \sin\left(\frac{x}{a}\right), \quad \text{per } x \ge 0,$$

dove a > 0 e B_0 sono parametri dimensionali. Per x < 0, $B_z(x) = 0$.

Si chiede di determinare:

- 1. Il flusso $\Phi(x_s)$ del campo **B**, in funzione della posizione della spira.
- 2. La corrente indotta $i(x_s)$ che circola nella spira, in funzione della posizione della spira (la corrente è riferita al verso indicato in figura).
- 3. La forza $F(x_s)$ che agisce sulla spira, in funzione della posizione della spira, e l'equazione del moto della spira.
- 4. La velocità minima v_0^{\min} che permette alla spira di entrare definitivamente nel semispazio x > 0, assumendo che $b/a < \pi/2$. Per $v_0 > v_0^{\min}$, la velocità della spira tornerà ad assumere il valore v_0 ? Quante volte?

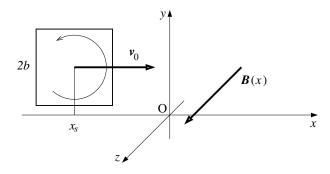


FIG. 1.

Soluzione

1. Posto $\Phi_0 \equiv 2B_0ab$, si ha $\Phi(x_s) = 0$, per $x_s < -b$;

$$\Phi(x_s) = \Phi_0 \sin^2\left(\frac{x_s + b}{2a}\right), \quad \text{per } -b \le x_s \le b;$$

$$\Phi(x_s) = \Phi_0 \sin\left(\frac{b}{a}\right) \sin\left(\frac{x_s}{a}\right), \quad \text{per } x_s > b.$$

2. Posto $i_0 \equiv 2B_0ab/L$, si ha $i(x_s) = 0$, per $x_s < -b$;

$$i(x_s) = -i_0 \sin^2\left(\frac{x_s + b}{2a}\right), \quad \text{per } -b \le x_s \le b;$$

$$i(x_s) = -i_0 \sin\left(\frac{b}{a}\right) \sin\left(\frac{x_s}{a}\right), \quad \text{per } x_s > b.$$

3. Posto $F_0 \equiv 8B_0^2 ab^2/L$, si ha che l'unica componente della forza diversa da zero è F_x e $F_x(x_s) = 0$, per $x_s < -b$;

$$F_x(x_s) = -F_0 \sin^3\left(\frac{x_s + b}{2a}\right) \cos\left(\frac{x_s + b}{2a}\right), \quad \text{per } -b \le x_s \le b;$$

$$F_x(x_s) = -F_0 \sin^2\left(\frac{b}{a}\right) \sin\left(\frac{x_s}{a}\right) \cos\left(\frac{x_s}{a}\right), \quad \text{per } x_s > b.$$

L'equazione del moto, posto $v_s = \dot{x}_s$, è $m\dot{v}_s = F_x(x_s)$, con condizioni iniziali $v_s(t=0) = v_0$, $x_s(t=0) = -b$.

4. Nelle ipotesi dell'esercizio, l'energia meccanica è conservata. Alla forza $F(x_s)$, dipendente solo dalla posizione della spira, posto $U_0 \equiv F_0 a/2$, può essere associata l'energia potenziale $U(x_s) = 0$, per $x_s < -b$;

$$U(x_s) = U_0 \sin^4\left(\frac{x_s + b}{2a}\right), \quad \text{per } -b \le x_s \le b;$$

$$U(x_s) = U_0 \sin^2\left(\frac{b}{a}\right) \sin^2\left(\frac{x_s}{a}\right), \quad \text{per } x_s > b.$$

Nelle ipotesi della domanda, il valore massimo dell'energia potenziale è $U^{\max} = U_0 \sin^2\left(\frac{b}{a}\right)$. Poiché $\frac{1}{2}mv_s^2 + U(x_s) = \frac{1}{2}mv_0^2$, si ha

$$v_0^{\rm min} = \sqrt{\frac{2U^{\rm max}}{m}} = \sqrt{\frac{2U_0}{m}} \sin\left(\frac{b}{a}\right).$$

Per $v_0 > v_0^{\min}$, la velocità tornerà ad assumere il valore v_0 infinite volte, quando la spira raggiungerà le posizioni tali che $U(x_s) = 0$, cioè $x_s^{(k)} = a(1+k)\pi$, con k intero positivo o nullo.