Prova in itinere di Fisica Generale II del 14 gennaio 2016 Proff. G. Amelino-Camelia e S. Caprara

In una certa regione di spazio, in cui è assegnato un sistema di coordinate cilindriche r, θ, z , è presente una distribuzione di corrente a simmetria cilindrica di densità $\mathbf{j} = j_z(r)\hat{\mathbf{z}}$, con $j_z(r) = \gamma \left(a^2 - r^2\right)$, per $r \leq a$, e $j_z(r) = 0$, per r > a, dove a > 0 e γ sono parametri dimensionali, e l'asse z del sistema di riferimento coincide con l'asse di simmetria della distribuzione. Qui e nel seguito $\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, \hat{\mathbf{z}}$ sono i versori delle direzioni corrispondenti (con $\hat{\boldsymbol{\theta}} = \hat{\mathbf{z}} \times \hat{\mathbf{r}}$).

- 1. Determinare l'intensità di corrente totale i_{tot} associata alla distribuzione assegnata.
- 2. Determinare il campo di induzione magnetica B generato in tutto lo spazio dalla distribuzione assegnata.
- 3. In un piano meridiano del sistema di riferimento adottato è presente una spira quadrata di lato a e resistenza elettrica R, con due lati paralleli all'asse z. La spira, il cui lato più vicino all'asse z ha inizialmente una distanza da questo pari ad a, a partire dall'istante t=0 viene mossa di moto traslatorio in direzione radiale, con velocità costante $\mathbf{v}=v_r\hat{\mathbf{r}}$, allontanandosi dall'asse z (cioè, $v_r>0$). Determinare l'intensità i della corrente indotta che circola nella spira per t>0 (riferire la corrente al verso indicato in figura).

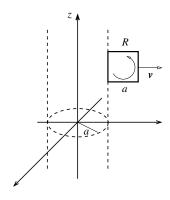


FIG. 1.

Prova in itinere di Fisica Generale II del 14 gennaio 2016 Proff. G. Amelino-Camelia e S. Caprara

In una certa regione di spazio, in cui è assegnato un sistema di coordinate cilindriche r, θ, z , è presente una distribuzione di corrente a simmetria cilindrica di densità $\mathbf{j} = j_z(r)\hat{\mathbf{z}}$, con $j_z(r) = \gamma \left(a^2 - r^2\right)$, per $r \leq a$, e $j_z(r) = 0$, per r > a, dove a > 0 e γ sono parametri dimensionali, e l'asse z del sistema di riferimento coincide con l'asse di simmetria della distribuzione. Qui e nel seguito $\hat{\mathbf{r}}, \hat{\theta}, \hat{\mathbf{z}}$ sono i versori delle direzioni corrispondenti (con $\hat{\theta} = \hat{\mathbf{z}} \times \hat{\mathbf{r}}$).

- 1. Determinare l'intensità di corrente totale i_{tot} associata alla distribuzione assegnata.
- 2. Determinare il campo di induzione magnetica \boldsymbol{B} generato in tutto lo spazio dalla distribuzione assegnata.
- 3. In un piano meridiano del sistema di riferimento adottato è presente una spira quadrata di lato a e resistenza elettrica R, con due lati paralleli all'asse z. La spira, il cui lato più vicino all'asse z ha inizialmente una distanza da questo pari ad a, a partire dall'istante t=0 viene mossa di moto traslatorio in direzione radiale, con velocità costante $\mathbf{v}=v_r\hat{\mathbf{r}}$, allontanandosi dall'asse z (cioè, $v_r>0$). Determinare l'intensità i della corrente indotta che circola nella spira per t>0 (riferire la corrente al verso indicato in figura).

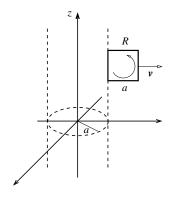


FIG. 2.