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Abstract. In this paper, we give a complete characterization of such limits

in terms of their continuity points when restricted to closed sets.
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1. Introduction

Baire-class function is named after Rene Louis Baire (1874-1932) a French math-
ematician. Baire defined the Baire-class k function by taking the limit of Baire-class
k-1 with Baire-class 0 is the set of continuous functions (see [1]). He also proved
an important result about complete metric spaces which commonly known as the
Baire’s Category Theorem. In this paper we focus on the space of Baire-class one
functions.

We begin by defining Baire’s terminology for sets, and the Baire’s Category
Theorem.

Definition 1.1. Let X be a metric space. A set E ⊆ X is of first category if it can
be written as a countable union of nowhere dense sets, and is of second category if
E is not of first category.

Remark 1.2. The empty set is nowhere dense so is of first category, and hence, a
set is of second category must not be empty.

Example 1.3. Q = ∪x∈Q{x}. So, the rational number is of first category and is
dense in R.

Example 1.4. The Cantor set is nowhere dense in R so it is of first category and
is uncountable.

Baire’s Category Theorem is an important tool in functional analysis and general
topology. We now prove that theorem.

Theorem 1.5 (Baire’s Category Theorem).
a) If (X, d) is a complete metric space and Let {Un}∞1 be the sequence of open dense
subset of X. Then ∩∞1 Un is dense.
b) A complete metric is of second category.

Proof. a) It suffices to show for any open non-empty set W ⊂ X, we have W ∩
(∩∞1 Un) 6= ∅. Let Fn = ∩ni=1Ui ∩ W and Br(x) = {y : d(x, y) < r}. Since F1

is open, hence, ∃ r1 > 0 and x1 ∈ F1 such that Br1(x1) ⊂ F1. Now, since F2

is open in X, so there is a r2 <
r1
2 and x2 ∈ Br1(x1) ∩ F2 such that Br2(x2) ⊂

Br1(x1)∩F2. We can construct a sequence in X inductively by choosing rn <
rn−1

2

and xn ∈ Brn−1(xn−1)∩Fn such that Brn(xn) ⊂ Bn−1(xn−1)∩Fn. Then {xn}∞n=1

is a cauchy sequence in X. By completeness of X,
x = limxn exists and x ∈ BrN (XN ) for all N.
Thus x ∈ ∩∞n=1Fn
b) Let {En} be sequence of nowhere dense set. Then E

c

n = On is open and dense.

And ∩On 6= ∅ if and only if ∪Ecn 6= X �

2. Application of Baire’ Category Theorem

We first give a formal definition for Baire-class one functions.

Definition 2.1. Let f : R → R be a function. f is called Baire-class one if there
is a sequence of continuous function converging to f point-wise.

Of course, this definition can be extended to any metric space as well as any
general topological space.
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Here is one application for Baire’s Category Theorem which the domain is defined
on a complete metric space. This theorem and its corollary show that although the
point-wise limit of continuous function is not necessarily to be continuous, but
its continuity points still form a nice set. [4] has given a proof with the domain
defined on the real line. However, since the result for functions that the domain
defined on the general complete metric space is more useful especially for our last
theorem. Therefore, I stated the theorem for functions that the domain taken on
any complete metric space.

Theorem 2.2. Let X be a complete metric space. If f : X → R is Baire-class one,
then the continuity points of f is of second category.

Proof. Let

(1) oscx(f) = lim sup
y→x

f(y)− lim inf
y→x

f(y)

be the oscillation of f at x. It is clear that f continuous at x if and only if
oscx(f) = 0. Let D = ∪∞n=1Dn be the set of discontinuity points of f where
Dn = {x : oscx(f) ≥ 1

n} is a closed set. So it suffices to show Dc
n is dense in X.

Suppose not, then there is an open set I such that I∩Dc
n = ∅ and hence I∩Dc

n = ∅

Consider the set Ek = ∩i,j≥k{x : |fj(x) − fi(x)| ≤ 1
4n}. Then Ek is closed,

E1 ⊆ E2 ⊆ ... and their union is X, so Ek is not nowhere dense and I = ∪∞1 (I∩Ek).
So, Baire’s theorem implies Ek ∩ I is not nowhere dense in I for some k. So, there
is an open set J ⊂ Ek ∩ I and |fj(x)− fi(x)| ≤ 1

4n for all x ∈ J and i, j ≥ k. Thus,

by letting i → ∞ we have |f(x) − fk(x)| ≤ 1
4n . Since fk is continuous, so there is

an open set O ⊆ J such that |fk(y) − fk(x)| ≤ 1
4n ∀x, y ∈ O. Thus ∀x, y ∈ O we

have |f(x)− f(y)| ≤ 3
4n <

1
n , but O ∩Dc

n = ∅. Thus Dc
n is dense. �

Corollary 2.3. If f : R → R is Baire-class one, then its point of continuity form
a dense set.

Proof. Dn is closed and nowhere dense. Thus Dc
n is open and dense. So, the result

follows from Baire’s category theorem. �

Corollary 2.4. If f : R → R is differentiable, then its derivative continuous at a
dense set of points

There are more applications for the Baire’s Category Theorem (see [2] and [3]).

3. Uniform limit of Baire-class one functions

The following proposition shows the space of Baire-class one functions is closed
under the uniform limit. Also, the reader can find further developments of this
proposition in [5].

Proposition 3.1. The uniform Limit of Baire-class one functions is Baire-class
one.

Proof. Let fn → f uniformly, each fn is Baire-calss one. Then there is a subse-
quence gk = fnk such that |gk−f | < 1

2k
. Then we can rewrite the limiting function

f(x) = g1(x) +
∑∞
n=2(gn(x)− gn−1(x)), and |gn− gn−1| < 3

2n ∀ n. So, it suffices to
show

∑∞
2 (gn(x)− gn−1(x)) is Baire-class one.
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Let φn,k be continuous and converges point-wise to (gn − gn−1) as k →∞. We

can assume |φn,k| ≤ 3
2n ∀ k since otherwise define φ̃n,k = φn,k1{x:|φn,k(x)|≤ 3

2n }
+

3
2n 1{x:φn,k(x)> 3

2n }
− 3

2n 1{x:φn,k(x)<− 3
2n }

. So, hk =
∑∞
n=2 φn,k make sense and the

convergence for this infinite sum is uniform. Now fix x and let ε be given, we can
choose an N large such that

∑∞
N |(gn − gn−1)| and

∑∞
n=N |φn,k| both < ε, then

|hk(x)−
∞∑
2

(gn(x)− gn−1(x))|(2)

≤
∞∑
n=N

|gn − gn−1|+
∞∑
n=N

|φn,k|(3)

+ |
N−1∑
n=2

φn,k(x)−
N−1∑
n=2

(gn(x)− gn−1(x))|(4)

< 2ε as k →∞(5)

Finally, we let ε→ 0 and the proof is complete. �

However, it may not be preserved under the point-wise limit. Here is a counter
example.

Example 3.2. [2] Cosider the indicator function of the rational number 1Q. Also
consider fm,n(x) = |cos(m!πx)|n. Then limm→∞ limn→∞ fm,n(x) = 1Q(x). Thus
1Q is poitwise limit of Baire-class one, but it has no point of continuity so is not
Baire-class one function.

4. Properties of Baire-class One functions

In this section we will study some properties of Baire-class one functions

Definition 4.1. Let X be a metric space. A ⊆ X is Gδ if it is countable intersection
of open sets, and is Fσ if it is countable union of closed sets

Proposition 4.2. If f is Baire-class one, then f−1(a,∞) and f−1(−∞, a) are Fσ
for all a ∈ R.

Proof. It suffices to show f−1(a,∞) is Fσ. Let {fn} be sequence of continuous
functions that converges to f point-wise. We claim that

(6) f−1(a,∞) = ∪∞m=1 ∪∞k=1 ∩∞n≥kf−1n [a+
1

m
,∞)

If x ∈ f−1(a,∞). Since lim fn(x) = f(x), hence for sufficiently large k, we have
a + 1

m ≤ fn(x) for some m and for all n ≥ k. Thus, x ∈ ∩∞n≥kf−1n [a + 1
m ,∞).

Conversely, if x ∈ ∪∞m=1 ∪∞k=1 ∩∞n≥kf−1n [a + 1
m ,∞) ⇒ x ∈ ∩∞n≥kf−1n [a + 1

m ,∞) for
some m and k
⇒ a < a+ 1

m ≤ lim fn(x) = f(x). �

In fact, the converse of this proposition is also true. The proof needs the following
lemmas.

Lemma 4.3. Let A and B be two disjoint closed sets in R, then there is a continuous
function f that is 1 on A and 0 on B with 0 ≤ f ≤ 1
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Proof. A and B are disjoint, so we can define a function f such that f |A = 1 and
f |B = 0. Now, Ac ∩ Bc is open in R, so it can be written as countable union of
disjoint open intervals (an, bn). On each [an, bn], We define

(7) f(x) =


1 if an, bn ∈ A
0 if an, bn ∈ B
linear if an, bn are in different set

�

Lemma 4.4. F ⊆ R is both Fσ and Gδ if and only if 1F , the indicator function of
F , is Baire-class one.

Proof. F is both Fσ and Gδ, then F c is Fσ. So F = ∪∞1 An and F c = ∪∞1 Bn, An
and Bn are closed for all n. Moreover An ∩ Bm = ∅ for all n,m. We may assume
An and Bn are increasing ( i.e. A1 ⊆ A2 ⊆ ...). By lemma 4.3, for each n, there is a
continuous function fn such that 1 on An and 0 on Bn. Then fn → 1F points-wise.
The converse is clear from proposition 4.2. and the fact f−1[a,∞) = f−1(a,∞) for
all a ∈ (0, 1) �

Lemma 4.5. Let A and B be two closed set in R, then A \B is Fσ

Proof. A \ B = A ∩ Bc, and Bc is open set in R, so is Fσ. So, the result follows
from deMorgan’s Law. �

Lemma 4.6. Let A and B be Fσ sets in R. Then there exists A′, B′ Fσ-set such
that A′ ⊆ A and B′ ⊆ B, A ∪B = A′ ∪B′, and A′ ∩B′ = ∅.

Proof. Let A = ∪∞1 An, B = ∪∞1 Bn. We may assume An, Bn are increasing for n.
Let Cn = (Bn∩An)\(Bn−1∪An−1), then Cn is Fσ for all n. So, we let A′n = An\Bn,
and B′n = (Bn \An) ∪ Cn and set A′ = ∪∞1 A′n and B′ = ∪∞1 B′n �

Remark 4.7. Let A,B and C be Fσ, we let D = A ∪ B, then there is a D′ ⊆ D
and C ′ ⊆ C Fσ such that D′ ∪ C ′ = D ∪ C and D′ ∩ C ′ = ∅. Also, there exist
A′ ⊆ A ∩ D′ and B′ ⊆ B ∩ D′ Fσ and A′ ∪ B′ = D′ with A′ ∩ B′ = ∅. Then
A ∪ B ∪ C = A′ ∪ B′ ∪ C ′ and they are Fσ and pairwise disjoint with A′ ⊆ A,
B′ ⊆ B, and C ′ ⊆ C.

Remark 4.8. We can apply the same construction inductively to any finite union
of Fσ set.

Now, we are ready to prove the converse of Proposition 4.2.

Proposition 4.9. if f−1(a,∞) and f−1(−∞, a) are Fσ for all a ∈ R, then f is
Baire-class one.

Proof. By composing with f̃ = 1
2 (1 + tanh(f)). We may assume 0 ≤ f ≤ 1. Now,

f−1(a, b) is Fσ for all a < b ∈ R. So, for n ∈ N, let

(8) Enk = f−1(k2−n, (k + 1)2−n + 2−2n)

Then there are Gnk ⊆ Enk Fσ-set such that Gnk ∩Gnl = ∅ ∀ m 6= l, and ∪nk=1G
n
k = R.

So, consider the function

(9) φn =

2n−1∑
k=0

k2−n1Gnk



FUNCTIONS OF BAIRE CLASS ONE 7

Write Enk = f−1(k2−n, (k + 1)2−n] ∪ (Enk ∩ Enk+1). If x is in the first part, then

|φn(x)− f(x)| ≤ 1+2−n

2n . If x is in the second part, then x is in either Gnk or Gnk+1,

then |f(x) − φn(x)| ≤ 1+2−n

2n . So, φn converges to f uniformly and each φn are
Baire-class one. So, f is Baire-class one. �

5. The Principle of Transfinite Induction

The principle of transfinite induction is a crucial tool for the last and the main
result on this paper, and also is a useful technique in many aspect in mathematics.
[6] has more discussion. We begin by defining the well ordered set.

Definition 5.1. If I is linearly ordered by < and every subset of I has a unique
minimal element in I, I is said to be well ordered by <.

Theorem 5.2 (The Principle of Transfinite Induction). Let I be well order set.
Define Ix = {y ∈ I : y < x} be the set of predecessor of x. If A ⊂ I and if Ix ⊂ A
implies x ∈ A. Then A = I

Proof. If I 6= A let x = inf(I \A). Then Ix ⊂ A but x /∈ A. �

So, if the well ordered set is the nature number, then it is just the ordinary
induction. We also use the transfinite recursion in the following way (see [6]).

Theorem 5.3 (The Principle of Transfinite Recursion). Let I be well ordered set
and S be a set. Let F be the set of all functions f : Ix → S. Then given a function
G : F → S, then there is a unique f : I → S such that f(x) = G(f |Ix).

In practice this just means that if we have partially defined a function f : I → S
for all α < β, and given this we have a rule for the definition of f at β, then we
can define f for all α ∈ I.

We now ready to prove a useful consequence in the real line.

Proposition 5.4. Let I be well ordered set and {Cα} is a collection of closed set
in R indexed by α ∈ I such that they are nested by reverse inclusion which is
Cα ( ∩β<αCβ. Then there are at most countably many Cα

Proof. Let Oα = Ccα, then each Oα are open set. Let U = {Ui} be countable base
for R (i.e. Ui = B 1

n
(x), x ∈ Q). If O is open and x ∈ O, then there is a Ui such

that x ∈ Ui ⊆ O.
Define f : I → U by
1) Let α0 = min(I) and take xα0

∈ Uα0
⊆ Oα0

and set f(α0) = Uα0

2) If we have defined Uα for all α < β take xβ ∈ Oβ \ ∪α<βOα then there is a Uβ
such that xβ ∈ Uβ ⊆ Oβ and set f(β) = Uβ
So, f exists by transfinite recursion. We will show f is injective by transfinite
induction: If we assume f is injective for all α < β, then by construction it is
clear that f(β) 6= f(α) for all α < β because xβ ∈ f(β) while xβ /∈ f(α) for all
α < β. �

6. Baire’s Characterization Theorem

Now we prove our last result.
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Theorem 6.1 (Baire’s Characterization Theorem). A function f : R→ R is Baire-
class one iff for every closed subset S ⊆ R there exists a point x ∈ S such that f |S is
continuous at x with respect to the subspace topology (i.e. for every sequence xn ∈ S
with xn → x one has f(xn)→ f(x)).

Proof. ⇐) Suppose for every closed subset S ⊆ R there exists a point x ∈ S such
that f |S is continuous at x. By proposition 4.9 It suffices to show f−1(a,∞) and
f−1(−∞, a) are Fσ. First, we will show f−1(a,∞) is Fσ. Let a < b and I be a well
ordered set. Let 0 = min(I) and C0 = R, by the assumption there is an x0 ∈ C0

such that f is continuous at x0. so, there is an open set I0 such that if f(x0) > a
then f(I0) ⊆ (a,∞) or if f(x0) < b then f(I0) ⊆ (−∞, b). We divide it into two
cases,
a) Set A0 = I0 if f(x0) > a and A0 = ∅ otherwise.
b) Set B0 = I0 if f(x0) ≤ a and B0 = ∅ otherwise.
Then A0 and B0 are Fσ

We can continuous the process with transfinite recursion. If for all β ∈ Iα have
been defined then set Cα = R \ ((∪β<αIβ), then pick a xα which f |Cα continuous
at xα. Choose an open set Iα relative to Cα as above and define
a) Aα = Iα if f(xα) > a and Aα = ∅ otherwise.
b) Bα = Iα if f(xα) ≤ a and Bα = ∅ otherwise.
Then Aα and Bα are Fσ in R.

We end the process when Cα reaches the empty set. Now, {Cα} is well ordered
with reverse inclusion so is countable by proposition 5.4 , and each Aα and Bα is
Fσ set and so is A = ∪Aα and B = ∪Bα with A ⊆ f−1(a,∞) and B ⊆ f−1(−∞, b).
Thus, f−1[b,∞) ⊆ A ⊆ f−1(a,∞). Since b can be chosen arbitrary, by taking a
sequence bn > a and converges to a. So, f−1(a,∞) is an Fσ set. And apply the
same process to f−1(−∞, a) but with b < a to conclude f−1(−∞, a) is Fσ.
⇒) It is clear from theorem 2.2. �

The closedness condition of the restriction set is crucial. In fact there is a counter
example for which the function is Baire class one, but it has no point of continuity
when it restricted on the the of rational number. We end this paper with the
following example.

Example 6.2. Consider the rational ruler function that is

(10) f(x) =

{
1
q if x = p

q p ∈ N and q ∈ Z
0 otherwise

Let S ⊆ R be closed. Since f is continuous on Qc, so it suffices to show S ⊂ Q,
f |S has a point of continuity, but then S is not a perfect set which implies there is
an isolated point x ∈ S, and f |S continuous at x. Thus, f is Baire class one. But

there is no continuity points when f restricted on Q. Since p(r−1)
qr → p

q as r →∞
but f(p(r−1)qr ) = 1

qr → 0 for any p
q
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