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Avec I'aide du principe de maximum nous prouvons la symétrie des
solutions v du probléme linéarisé. A partir de ce résultat nous déduisons
plusieurs propriétés de v et u; en particulier nous montrons que si f est
convexe et N = 2 on ne peut pas avoir deux solutons différentes qui
ont le méme maximum. On prouve aussi qu’il v a une seule solution si
flu) = v et X =

Dans la dernidre section nous étudions le probleéme

—Ay = uP + pul
uw=10

dans ©2
sur le bord de

et montrons que si L < p < N +2/N —2, 0 <g<1etyestpetiteil y

a exactement deux solutions positives dans quelques domaines particuliers.
© Elsevier, Paris

1. INTRODUCTION

In this paper we are interested in studying the qualitative behaviour of
the solutions of the semilinear elliptic problem

—-Au+iu=flu) inQ
(1.1) w>0 in 0
7= { on 80

where Q is a bounded domain of RY and N > 2. It is clear that to

understand some of the properties of a solution o». {1.1) it is important to
study the linearized operator at u, i.e.

(1.2} L=A-X+ f(u)

Here we consider the case of a bounded domain  symmetric with respect
to the hyperplanes {z; = 0} and convex in any direction z;, i=1,...,N
and show how a very simple application of the maximum principle gives

some interesting results on w. Note that this kind of domains need not
be convex.
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"More precisely, using some sufficient condition, described for exarnple
in [6], we show that the maximum principle holds for the operators (1.2)
in certain subdemains ;, ¢ = 1,..., N determined by the symmetry of
(namely ; is "half of Q”, see Section 2 and 3). This simple information
is the key to get all the main results of this paper.

For example we deduce the symmetry of any solution of the problem

Lp=0 inQ
{1.3)
=0 on 50}

which, in other words, means the symmetry of any eigenfunction of (1.2)

‘corresponding to the zero eigenvalue.

This result was already known for the eigenfunctions corresponding to
any negative .ﬁmgz_&c@m u of L ([4]) and, in the case of the ball, was
proved in [14] for any p < 0, when A, = 0, using a different argoment
(see Remark 2.1).

Other important consequences of the validity of the maximum principle
for L in Q; are some properties of the nodal set of any: solution of (1.3)
{Theorem 3.1) as well as some properties of the coincidence set of two
possible solutions of (1.1) in the case f is also convex (see Theorem 3.2).
From this we deduce some results which show that the solutions of (1.1),
in the symmetric domain considered, behave very much like the solutions
of the same problem in a ball. For example, in Theorem 3.2 we show
that if f is convex and IV = 2 there cannot exist two solutions of (1.1)
which have the same maximum; this is a generalization of the uniqueness
theoremn for o.d.e’s.

Exploiting a generalization of this result (Theorem 3.3), we also show
that if f(u) = «®, N = 2 and A = 0 then (1.1) has only one solution. The
proof is based only on Theorem 3.3 and does not use the nondegeneracy
of the solution of (1.1}, However we also show that in this case solutions
of (1.1} are nondegenerate and from this we deduce again, as done in {13]
for least energy solutions, the uniqueness of the solution to (1.1).

This last result has already been proved by Dancer in [9] as a consequence
of a general theorem contained also in [9] and of the known uniqueness
result for the ball. However our approach is different and does not rely on
the uniqueness result for the ball. Actually the same proof also applies to
the case of the ball in R”, giving so an alternative proof.

At this point we would like to quote here that, in the case f(u) = v* +Au,
the uniqueness result for the ball was proved by Adimurthi and Yadava ([2]),
Srikanth ([177) and Zhang ([18]) using an o.d.e. approach, Other partial
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uniqueness results are due to Damascelli ([8]) for star-shaped domains, Lin
([£3]) and Zhang ([19]) for convex set in R? and flu) = vP.

We end the paper by considering the case of f(u) = w? + uuf, p >
1, 0 < g < 1, ie. when f is a sum of a convex and a concave nonlinearity.
This problem has been extensively studied by Ambrosetti, Brezis and
Cerami ([3]) who showed, among other things, that for some values of
& and p there are at least two positive solutions. In Section 5 we show
that in certain symmetric domains and for some small values of u there
are exactly two solutions, This result extends to other domain and with a
different proof a previous theorem of Adimurthi, Pacella and Yadava ([1])
for the case of the ball.

2. SYMMETRY RESULT FOR THE LINEARIZED EQUATION

Let D be a bounded domain in B, N > 2. Before proving the main
result we need to recall a few facts about the maxirnum principle for
second order elliptic cperators of the form Lu = Au 4 clzju  with
e(z) € L=(D), uw € W2 nC(D).

loc
DErINITION 2.1. — We say that the maximum principle holds for L in D if
Lu<0inDand w2 0on 8D imply w 2 0 in 1.

Two well known sufficient conditions for the maximum principle to hold
are the following (see [12],[16]}

2.1) cl) £0 inD

2.2
there exists a function g& W2 NC(D), g>0 in T such that Ly £ 0 in D
Now we denote by A {L, D) the principal eigenvalve of L in D. The
meaning and the properties of A;(L, D} are, of course, well known when
81 is smooth; however in order not to be worried in the sequel about the
regularity of the domains involved we prefer to refer to the general definition
of principal eigenvalue given by Berestycki, Nirenberg and Varadhan in [6].
This definition is the following

M{L, D) = sup{XA: there exists ¢ > 0 in D satisfying (L + )¢ < 0}

In [6] they show that even with this definition all the main properties of
the “classical” principal eigenvalue continue to hold. In particular we have
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Proposrrion 2.1. - The principal eigenvalue ML, D) is strictly
decreasing in its dependence on I and on the coefficient ¢(x). Moreover
p.._mm :sﬂam " maximum principle holds for L in I if and only if M (L, D)
15 postive.

We refer to [6] for the definition of "refined” maximum principle which
is a generalized formulation of the maximum principle in the case when
one cannot prescribe boundary values of the functions involved.

It is important to notice that, by using this generalized definition of the
first eigenvalue, it is possible to prove that also the following condition,

which is slightly different from (2.2), is sufficient for the maximum principle
to hold.

there exists g € W2 nC(D), g > 0
{2.3) in D such that Lg < 0in D but g 2 0
on some regular part of 8D.

.éd also recall the following sufficient condition for the maximum
principle (see [3], [6D)

.5639.302 22. ~ There exists § > 0, depending only on N,
diam(D), ||cl|z~(py such that the maximum principle holds for L in any
domain D' C D with |D'| < §

Finally we remark that regardless of the sign of ¢ if Lu <0 in I and

w2 0in Dthenu>0in D unless u =0 (Strong Maximum Principle).
Now we consider a solution u € C3(£2) N C1({}) of the problem

—Ou+ Au= flu) inQ

(2.4) %>0 in

= { on 9%}

where £ is a smooth bounded domain in R N Z22and f: IR — Ris

a C'-function with £(0) > 0. We are interested in studying the linearized
problem

Ay 4w = f'lu)y inQ2
(2.5) v
v=1_ on 90
We have
. TeEOREM 2.1. — Let u be a solution of (2.4) and assume that §) is convex
in the - direction and symmetric with respect to the hyperplane {z, = 0).
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u..mmzmnu;&:uose&Qm.&&@.ﬁ&mﬁn?ﬁ?H..m. @Aeraw“:;.ﬁsz
v(—D1, T2, - -, TN )- :

Proof. - The proof is the same as the one shown in a lecture of
" L. Nirenberg in a slightly different case {see also the remark after the
proof). _ : et .

Let us denote a point x in RY by (z1,y),y € R" . Applying
the symunetry result of Gidas, Ni, Nirenberg ([10]) to wonwE Aw.e
we get that u is symumetric with respect o 2 and m|h.w > 0 in
0] = {z = (z1,9) € @ suchthat z; < 0}

We consider the operator

(2.6) L=A—X+f(u)

and want to prove that the maximum principle holds for L in 2. To do
this we show that the sufficient condition (2.3) is satisfied.
Hmémmoﬁ :

Su
= — in97
(2.7) g B in €3
we have that g satisfies (2.3) since by the Hopf Lemma 2n < 0 on

9z
a0 M AN (note that we assumed f{0) > 0 in (24) ). So the maximum

principle holds for L in §7.
Now we consider the function

AMH_.OV ﬁvmﬂv u\cﬁn«r@v ldﬁ|9wu@uq

where v is a solution of (2.5). By easy calculation, using that w is symmetric
in =4, we get

z = (z1,y) € Iy

Lp =0 in Qf
(2.11)
=10 in 807
and hence % = 0 in Q] because of the maximum principle. S0 v is
symmetric in zy. : O
Remark 2.1. — Let us consider the following eigenvalue problem
—Av4+ = filujpp+ur in Q2
(2.12) _
v=0 on 952
where o is a solution of (2.4). o
If A =0 and u < 0 in [4] it is shown that v is symmetric 5 z7.
Of course if ) is a ball, the previous theorem gives the radial quﬁﬁﬁa\
of v. This was already shown by Lin and Ni in [14], using a different
arguraent, for any # < 0 and A = 0. :
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3. SOME PROPERTIES OF THE COINCIDENCE SET
OF TWO SOLUTIONS AND AN UNIQUENESS RESULT

In this sectior we assume that § is a smooth bounded domain in RV
convex in the direction x;, ¢ = 1,..., N and symmetric with respect to
the hyperplanes =; = 0, 1 = 1,...,N.

Let us consider a solution u of (2.4), where f is a C*-function with
Ff(0) > 0, and a nontrivial solution v of the corresponding linearized
problem (2.5).

‘We make now some important rernarks about the nodal set of v that will
also be used in the sequel. Let us set

N = {z & Q such that v(z) = 0}

mﬂﬁam@“dﬁu&%ou.
£, ={z=(x,...,2n) € Qsuch thatz; <0} i=1,...,N
We have

THEOREM 3.1. — The following properties hold
i} there cannot exist amy component of ) all contained in one Q,
i=1,....N.
ii} if N = 2 then the origin (0,...,0) does not belong to N
i) if N = 2 then N N 8Q = 0.
Proaof.

1) Suppose that there exists a component D of £ all contained in Q7
and v > 0 in D, Then A (L, D) = O (where I is the operator defined
in {2.6)) since v is an eigenfunction of L in D corresponding to the zero
eigenvalue and does not change sign in D-(being v = 0 on 8 we have
v = 0 on &D). On the other hand, in the proof of Theorem 2.1 we have
shown that L satisfies the maximum principle in €2 and this implies, by.
Proposition 2.1, that A; (L, ;") > 0. Then, by monotonicity, also A; (L, D)
should be positive which gives a contradiction.

i) We will show that if v(0) = O then v = 0. Suppose v(0) = 0 and

v # 0 and set Uy = 2, Since v # 0 and v(0) = 0 by the Strong Maximum
Principle it cannot be v < 0in 2, so that U5™ = {z € Up : w(z) > 0}

is open and nonempty. Choose a component 4, of Us™. If S;, i = 1,2 is
the operator that sends a point to the symumetric one with respect to the
z;-axis, we have that 5;(A;) is also a component of U because of the
symmetry of v. It cannot happen that 4; N51 (A1} = @ or 4; N 52(A4;) =0
for otherwise A; or 51(A4;) would be contained in 27", which is impossible
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by ). So A; = S:(A,) = S2(Ay) is symmetric with respect to the
coordinate axes and is open and connected, therefore arcwise connected. If
we choose four symmetric points P;, 7 € {1,...,4} and join them with
simple polygonal curves symmetric in pairs, we can costruct a simple closed
polygonal curve ¢; C A; which is symmetric with respect to the axes. By
the Jordan Curve Theorem Uy \ €} has two components and, because G is
symrnetric, the origin belongs to the component which has not 80y as part
of the boundary. Let us denote by U3 the component that contains 0 and
call it the interior of Ci, while by the exterior of €'y we mean the other
component. On dU; = 1 we have v > 0, so that v ¥ 0 in Uy and, by
the Strong Maximum Principle, it is not possible that v > 0 in Us, since
v{0) = 0, so that U7 = {x € U; : w(z) < 0} is open and nonempty.
Taking a component A, of U] we observe that v = 0 on 84, because
v 2 0 on 8U; so that A, is also a component of . As before we can
costruct a closed symmetric simple curve Cp € Ay and in the interior Uy
of ¢ ( the component of U/; \ C» to which the origin belongs) we can
choose a component As of Ui = {&x € Up : v{z) > 0} which is also
a component of 2. Moreover A3 is disjoint from A; because A; contains
Cy = 98 which belongs to the exterier of Cj. Proceeding in this way
we obtain infinitely many disjoint components {A,},»1 of €. This is not
possible because by Proposition 2.2 there exists § > 0 such that [4,]| > §
for each n, otherwise by the Maximum Principle v would be 0 in A, since
v=10on dA, and Lv = 0 in A, with [ = A — A + f(v). Hence there
are only finitely many components A, which gives a contradiction.

iif} We will show that in a neighboorhood of &€ we have v > 0
or v < 0. Suppose the contrary and choose a component A; of
Uf ={z €U, : vi{z) >0} Since v = 0 on & we have v = 0 on
8A; and as in (ii) we costruct a closed simple curve C; C A; symmetric
with respect to the axes. In the exterior Uy of i, i.e. in the component
containing &€} there are points where v < 0 by what we assumed., So
we can costruct a closed simple curve Cy C-A; where Ay is a nonempty
component of U = {z &€ Uy : v(z) <'0}. Proceeding as in the proof of
(ii) we obtain infinitely many components of £ which is not possible by
Proposition 2.2, as we remarked before.

Remark 3.1. — ¥ § is a ball in R”, the properties 1) - iii) are easy
consequences of the radial symmetry of w.

Now we consider two solutions u; and up of the problem (2.4) and set
M=z € such that u;(z) = uz(x}}, $L={z € such that u; # uy}

The next theorem contains some information on M and a partial
uniqueness result.
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TueoreM 3.2. — Suppose that f is convex. Then we have

there cannot exist any component D space of {1

(3.1) all contained inone Q7 , i=1,...,N.

(3.2) fN=2 then MN=0
(3.3) N=2 and mexu(z)=maxug(z) then u1=ug
] e
Proof. — Set w(x) = u1(z) —ue(z), © € Q. Since f is convex w satisfies

Aw — Aw + f{ug)w <0 in

(3.4) .
w =10 on 912
and
Aw — dw+ Flug)w = 0 in 2
(3.5)

w =71 on 962

* First we notice that if w > 0 by (3.4) and the strong maximum principle
w > 0in Q so that @ = £2. Thus we assume that w changes sign in €.
To prove (3.1) let us argue by contradiction supposing that there exists
a component D of §) all contained in § for some ¢ € {1,..., N} and
w > 0in D.

Since in Theorem 2.1 we proved that in £ the maximum principle
holds for the operators Ly = A — A+ f/(u;) 4= 1,2, by Proposition 2.1
we have that X (L1,€;) > 0, for ¢ = 1,2. Hence also ALy, D) >0

and, again by Proposition 2.1, the "refined” maximum principie holds for

L, in D. This last fact together with (3.5) would imply that w < 0 in D

against what we assumed. If instead we suppose w < 0 in D then we argue
in the same way using the operator Lo and (3.4).

To prove (3.2) it is enough to observe that, by the Gidas, Ni and Nirenberg
symmetry result, u; and uy are symmetric in any z; and hence so is w. Thus
arguing as in iii) of the previous theorem the assumption M N ]
would bring a contradiction.

Finally, to prove (3.3), we notice that, again by the Gidas, Ni and

Nirenberg result, max u;(z) = u;(0), ¢ = 1,2; therefore if the two maxima
Hmm e - .
coincide the origin belongs to M. As in ii) of Theorem 3.1 this gives 2

contradiction. a
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Now we prove a generalization of (3.3) of Theorem 3.2 that will be used
in the proof of Theorem 4.1.

Let Q be as before and N = 2. Let us call a function u € C* €2)
symmetric and monotone if w is symmetric in 1, 2z and Ww =01 Q,
i=1,2 and let f : R — R be a C*-function.

TreoreM 3.3. ~ Suppose that N = 2, f is convex and Ui, U2 €
30 N CH{QY) are symmetric and monotone functions that salisfy the
equation

{(3.6) ~Autdu=flu) in Q

If u1(0) = un{0) and uy < uz on 9% then uy and up coincide.

Proof. — As in the proof of Theorem 2.1 we deduce that the operators
L= A=X+F(w), i = 1,2 satisfy the maximum principle in 7, 7 = 1, 2.

Since the difference w = u; — o satisfies a linear equation Aw — Aw +
e(z)w = 0 with ¢ € L®(Q) and f € C* we have that Proposition 2.2 and
the strong maximurm principle apply to-w. Arguing as in Theorem 3.1 we
first deduce that cannot exist any component D of { = {z-€Q 1 uy # us2}
such that u; = up on 8D and contained in 07, i=1,2

Then we can follow exactly the proof of Theorem 3.1 with the
only remark that in the first step we choose a component A; of
Of = {z € Q@ : wlz) > 0} and we have w =0 on 8A;, because
of the hypothesis w(z} < 0 on dQ. So A, is also a component of 2 with
uy = ug on JA;. The same property holds, by construction, also for the
other components Ay, Az; therefore we conclude as in Theorem 3.1.

Remark 3.2. - If § is a ball then any solution u of (2.4) is radial and
hence the claim (3.3) follows immediately from the theory of ordinary
differential equation. Therefore this result can be seen as 2 generalization
of the uniqueness theorem for an o.d.e.

Nevertheless it is instructive to see how we can get <m@ easily this result
in a ball without using the underlaying- ordinary equation but exploiting
only maximum principles. Therefore suppose Q) = Br(0} C RY and
u; € G, i = 1,2, satisfying —Au = f(u) in $2. Let us prove that if
u1(0) = uz(0) then u; = uz. In fact the difference w = up — Up Satisfies
a linear equation Aw -+ c(=)w = 0. By Proposition 2.2 there exists § > 0
such that if 0 < 7, < 73 < R and ry — ) < § then the Maximum Principle
holds for A +cin By, \ By,. We claim that u; and u coincide on 8B, for
any 7 < &. In fact it cannot be u; > uz On 8B, because by Proposition 2.2
and the strong maximum principle it would be uy > uz on B.., against the
assumption % (0) = u2(0). In the same way it is not possible that w; < u2
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on 8B, So uy = uz in Bs. Making the same reasoning in By, \ By, (that
has 8B; in the interior) we get u; = uy in mwa and after a finite number
of steps we get u; = uy in Bg. O

4. THE CASE OF f(u) = u?

Here we assume {3 ¢ R” as in the previous section and consider the
case of f{u) = ¥, p > 1, so that (2.4) and (2.5) become, respectively

A Ay = uP in &
(4.1) u>0 in 02
y =10

on 3%
and

~Ay + Ay = puFTt i
(12) v = puf~ty in £2

v=0 on 91

ﬁ..a recall that u mm said to be a nondegenerate solution of (2.4) if (2.5)
admits only the trivial solution v = 0, ie. if zero is not an eigenvalue for
the operator L = ~A + X — puF~t. )

We have

THEOREM 2.1. — Let A = 0. If N = 2 or Q is a ball in R then
problem (4.1) has only one solution.

Proof. — Let u, v be solutions of the problem (4.1) with A = 0 and suppose
Em.ﬁ u(0) < v(0). For each k, 0 < k < 1 the function vx(z) = k7 rv{kz)
satisfies the same equation —Aw, = 2§ in m Moreover since u and v are

symmetric and monotone functions (in the sense of section 3) so is vg. If

we choose k = Ammwvwmlp €]0,1] we have that u(0) = vz(0), u = 0 < g

on 0% and u,v; are symmetric and monotone solutions to the equation
=An = %7 in 2. Therefore, by Theorem 3.3 u and v must coincide in Q.
If £ < I then 0 = u < vg on & so that it must be & = 1 which means
u=vy; =vin L a

Now we state a nondegeneracy result

.Hmmoxmz 42 —Let A = 0. If N = 2 or Q is @ ball in RY then any
solution of (4.1) is nondegenerate.
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Proof. — As in [13] we deduce a useful integral identity.
Multiplying (4.1) by v and (4.2) by « and integrating we get

(4.3) .\. uPudy = 0
, o

Zo%Hoﬁcmoouamo:so?uomou n AHVHa.dﬁ?u.mm@o&nc?ﬁos@mwoé
that ¢ solves _

(4.4 ~Al = puP T L P
and from (4.1)-(4.4) we get
Bu dv NG o
(4.5) \%AS.S%\‘M‘N&Q! ” WH&Q:aw\q.uﬁ vdz =0

where v is the outer normal to 912,

On the other hand since we are in dimension two by iii) of Theorem 3.1
we know that the nodal set of v does not intersect 852 hence near the
boundary of 2 v has always the same sign, say v > 0. Hence by the Hopf
boundary lemma £2 < 0 on 89 unless v = 0. Also g« < 0 on 9% for the
same teason while (x - v} > 0 and (z-v) # 0 on 80 by the geometric
assumption on £2. This makes the identity (4.5) impossible unless v = 0
in © as we wanted to prove. The same argument applies to the case of a
ball  in RY, using the radial symmetry of v. ]

Next theorem gives an uniqueness result for p near 1: it was already
proved by Lin {13] in the case A = 0, assuming 2 convex but not
necessarily symmetric. For sake of completeness we state the proof here
for & > —A (A, Q) and our domain .

THEOREM 4.3. — There exists pg > 1, po < 522 if N > 3 such that the
problem (4.1) has only one solution for any p €]1,pol and A > =),

Proof. - If u; and us are two distinct solutions of (4. 1) then w = uy —uy
must change sign otherwise the identity v
(4.8)

0= \ ur(—Dug + M) — up{—Auy + duy) = ,\ uy g (uh T~ i
2 . Ja

deduced from (4.1), would imply 4y = usg.
Now let u, be a solution of (4.1} with p = pn, pn ~ 1. As already
recalled, by the theorem of Gidas, Ni and Nirenberg (see [10])

gsﬁbgmm.gsﬁavﬁﬁuﬁov
2e{2 -
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We claim that
ag 7 e 00

(4.7) Mt A+ A

First of all we show that A7~ is bounded. Suppose that MZ»~* —— +00
and set

(4.8) L m(m) = e )

By standard elliptic estimates 1, converges uniformly to a function

% & C?(K), for any compact set K in RY and m.mm&mmmm

~Ati=% inRY
(4.9)
%> 0 in RY
Let Ar and ¢r be respectively the first eigenvalue mﬂ.a the relative
eigenfunction of —A in Br(0) with respect to the zero Dirichlet boundary
condition. .
For R large we have

0> [ @Rde=(1-a)
3

B ﬁﬁh&ﬂ > 0
Br(0) v Bg(0)

a contradicion which shows that ME~~1 is .UoEﬂo@. ,H,:nmw up to a
subsequence, MFr—% —— p Let T = 32, which is a solution of the
» n n .

problem _ .
ATy, + Ny, = M2 1ulr inQ

4.10
( ) T, = 0 on 30

By elliptic estimates T, converges to T in C2(2) N (1)) and % satisfies
: — AT+ AT = pm in &

) z=0 on 802

Hence p = A + A and & = ¢ the first eigenfunction of —A. So the

claim {4.7) is proved. : ,
Now suppose that the assertion of the theorem is false, i.e. let us assume

that u,, and v, are two distinet solutions of (4.1) ﬁw& D= Prny Pn Oy L
From (4.7), since &, —- ¢; uniformly we get 75~ —— 1 and hence

(4.12) uP*"1 —s A + A uniformly in any compact set of {2
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Obviously the same happens to the sequence wrt where T,
The functions w, =

Uy —U

= olle

e vallLee satisfy
- AWy + Ay, = gpt, in
(4.13)
Wy, =0 on 59
where g, = %Al

Un —Tn

— A: + A Since w, is uniformly bounded and
[lwnllz=(a) = 1, from (4.13) and standard elliptic estimates we deduce
that wy, ~- ¢; uniformly. This is not possible since ¢; does not change

sign while we showed at the beginnning of the proof that w,, must change

sign. a
From the nondegeneracy. of the solutions of (4.1) it also follows the

uniqueness of the solution.

THEOREM 4.4. —~ Suppose that for any p €)1, 8521 if N > 3, or for any

ﬁVH“%ZHNn@q&zh&m&nﬁﬁtH.M:Q:%Mmamwﬁm.nﬁwmm for any such
exponent p, (4.1) has only one solution.

Progf. — Let us consider the case IV > 3, for N = 2 the argument is the
same. From the previous theorem we know that there exists Po > 1 such

that (4.1) has an unique solution for p €1, po[. Let ]1,7] be the maximal

interval with this uniqueness property. If 7 = %ZI,._”IW the assertion is proved

otherwise, since all solutions are nondegenerate, using the implicit function
theorem we deduce that there is only one solution of (4.1) also for p = 7.

Arguing by contradiction let us assume that there exists a sequence
Pn NT, Pn < %n.lw and two distinct solutions u,,, v, of (4.1) with = .
By elliptic estimates (see [11] or also Remark 5.1 of next section) we have

that 4., vn both converge in C2(Q) to the unique solution % of (4.1)
for p = . Set

{(4.14) Wy = Uy ~ VU, and W, = _Wn
:E::mo;nv
Then w, satisfies
— AW, = o,W, in 0
(4.15) .
Wy, = 0 on mb .

where on,(z) = %OH P (tun(m) + (1 — v, (2))Pn1dt.

Moreover @, — W weakly in H3(S2) and T # 0. In fact, by (4.15)
we have

(4.16) 1= \ [V, |2 dr = \ o Tedr =P \ T - o(1)
Q «Q Q
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which implies @ # 0. Passing to the limit in (4.15) we get

—AT=FF % il
(4.17) W0 in 0
w=70 on &8

which is a contradiction since we assumed that T was nondegenerate, O

CoroLLARY 4.1. — If N = 2 and A = O then problem (4.]) has only
orie solution

Proof. — The assertion follows from Theorem 4.2 and 4.4 providing so a
proof different from that of Theorem 4.1. o

CoroLLARY 4.2. — [f N = 2 there exists an interval | N, X[ with

=A1 < XN <0 < X' such that (4.1) has only one solution for any A €)X, N

Proof. — 1t is a consequence of the nondegeneracy of the only solution
in correspondence of A = 0. o

Remark 4.1. — Of course the statement of the corollaries above apply

Emo.ﬁoﬁavmmbwaﬁz giving in this way an alternative proof of well
known results.

5. THE CASE OF f(u) = P + pu?

Let £2 be a smooth domain in R”Y, N > 2 and let us consider the problem

—Au = uP + pud in 2
(5.1} @ >0 in
u=0 on 99

where ju is a real parameter, ¢ €]0,1[and p > 1if N =2 or 1 < p < {42
if N > 3.

Problem (5.1) has been extensively studied in [3] and, among other
results, they obtained the following theorem

TueoreMm 5.1 [3] ~ For all ¢, p, in the range indicated above there
exists A > O such that for any u €]0, A| problem (5.1) has two solutions
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