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i. A symmetry problem in potential theory

This paper appeared in 1971, and can be considered a pioneering work on the theory of
symmetry of solutions of elliptic problems. It concerns the following easily formulated
question about an overdetermined problem:

Let Ω be a bounded smooth connected open domain in ℝ𝑛𝑛 and suppose that
there exists a function 𝑢𝑢 = 𝑢𝑢(𝑥𝑥) satisfying the Poisson equation

−Δ𝑢𝑢 = 1 in Ω

together with the boundary conditions

𝑢𝑢 = 0 , 𝑢𝑢𝜈𝜈 = constant on ∂Ω

where 𝜈𝜈 is the outer normal to ∂Ω. Must then Ω be a ball?

Serrin answered this question affirmatively and also showed that the solution must

be radially symmetric and equal to 𝑏𝑏2−𝑟𝑟2

2𝑛𝑛 , where 𝑏𝑏 is the radius of the ball and 𝑟𝑟 denotes
the distance from the center.

Like many other results of Serrin, this one has important consequences in applica-
tions. For example for a viscous incompressible fluid moving in straight parallel stream-
lines through a straight pipe of given cross sectional form Ω it states that “the tangential
stress on the pipe wall is the same at all points of the wall if and only if the pipe has a
circular cross section”. Another applications was given in the linear theory of torsion of
a solid straight bar of cross section Ω in which case Serrin’s theorem states that “when
a solid straight bar is subject to torsion, the magnitude of the resulting traction which
occurs at the surface of the bar is independent of position if and only if the bar has a
circular cross section”. It also applies to the study of a liquid rising in a straight capillary
tube of cross section Ω.

From a mathematical point of view, in spite of its simple formulation, the question,
and hence the result, is important in understanding how the boundary conditions can
determine the shape of the domain and of the solution.
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Equally important and innovative was Serrin’s proof of this result. It is, in fact, in
this paper that the, by now classical, “moving plane method” was introduced into the
theory of partial differential equations. It had previously been used by A.D. Alexandroff
in differential geometry.

This efficient and elegant method is based on the moving parallel planes1 up to a
critical position and showing, via the maximum principle, that the solution is symmetric
about the limiting plane. Since then, this method has been used, mainly to prove mono-
tonicity and symmetry results, in a large variety of differential equation problems. To
understand its importance, it is enough to think of the famous symmetry result of Gidas,
Ni and Nirenberg.

Another important tool used by Serrin in his proof is an extension of Hopf’s bound-
ary point Lemma to domains with corners, which he derived in the same paper. This
result is known as Serrin’s lemma.

Finally, the paper also contains extensions of the above result to more general elliptic
equations or to more general boundary conditions involving the mean curvature of the
boundary surface ∂Ω, which lead to other consequences in applications.

ii. Symmetry of ground states of quasilinear elliptic equations

This paper addresses the problem of radial symmetry of non-negative solutions of elliptic
equations of the general form

div(𝐴𝐴(∣𝐷𝐷𝐷𝐷∣)𝐷𝐷𝐷𝐷) + 𝑓𝑓(𝐷𝐷) = 0 in ℝ𝑛𝑛, 𝑛𝑛 ≥ 2,

under the ground state condition

𝐷𝐷(𝑥𝑥) → 0 as ∣𝑥𝑥∣ → ∞
Two cases have to be considered:

a) the “regular” case when [𝑡𝑡𝐴𝐴(𝑡𝑡)]′ > 0 for all 𝑡𝑡 ≥ 0,

b) the “singular” case when either 𝐴𝐴(𝑡𝑡) is undefined at 𝑡𝑡 = 0 or fails to satisfy a) at
𝑡𝑡 = 0.

The first case includes, in particular, the mean curvature operator, while a relevant
example for the second one is the 𝑚𝑚-Laplace operator, when 𝑚𝑚 > 1.

On the nonlinearity 𝑓𝑓(𝐷𝐷) only the following hypotheses are assumed:

i) 𝑓𝑓 is continuous for 𝐷𝐷 ≥ 0 and locally Lypschitz continuous for 𝐷𝐷 > 0,

ii) 𝑓𝑓(0) = 0 and 𝑓𝑓 is nonincreasing near zero.

Serrin–Zou’s symmetry results are the following:

Case a) Any non-negative 𝐶𝐶1-weak ground state solution whose (open) support is con-
nected must be radially symmetric about some point and radially decreasing.

Case b) Any non-negative 𝐶𝐶1-weak ground state solution with only one critical point
where it is positive must be radially symmetric about that point and radially decreasing.

These results are nontrivial extensions of previous theorems, including the classi-
cal result by Gidas, Ni and Nirenberg for the Laplace operator (𝐴𝐴(𝑡𝑡) ≡ 1). Among the
significant improvements of Serrin–Zou’s results are weaker requirements on the nonlin-
earity 𝑓𝑓(𝐷𝐷) which permit the existence of non-negative solutions with zeros. This is very

1by moving parallel planes we mean the motion of a single plane with the property that the plane remains
parallel to its initial orientation
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important, since it can be proved that solutions with compact support in ℝ𝑛𝑛 do exist.
Indeed, necessary and sufficient conditions on 𝑓𝑓(𝑢𝑢) can be given (as shown in a paper by
Pucci and Serrin) for such phenomenon to appear. This is related to the celebrated paper
of Vazquez for the 𝑚𝑚-Laplace operator. As a consequence, Serrin–Zou’s theorems show
that the condition of positivity used in several previous papers can be dropped without
affecting the conclusion.

For Case b) some counterexamples, involving the 𝑚𝑚-Laplace operator, with 𝑚𝑚 𝑚 2,
are presented to show that some assumption on the critical set of the solution is needed
in order to get the radial symmetry. On the other hand, when the operator is singular
at 𝑡𝑡 = 0 (which, for the 𝑚𝑚-Laplace operator corresponds to the assumption 1 < 𝑚𝑚 < 2)
the hypothesis on the critical set of the non-negative solution can be replaced by a
connectivity assumption. It was shown by Damascelli, Pacella and Ramaswamy that if
1 < 𝑚𝑚 < 2 and the solution is positive, then no connectivity condition is needed.

Finally Serrin–Zou’s approach also applies to more general nonlinearities and even
allows to consider singular ground states.

Filomena Pacella
Dipartimento di Matematica
University of Roma “Sapienza”
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Pages 280–285 have been removed for the sake of brevity.
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