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Abstract. We prove symmetry, and some related properties, of positive
solutions of second order elliptic equations. Our methods employ various
forms of the maximum principle, and a device of moving parallel planes to a
critical position, and then showing that the solution is symmetric about the
limiting plane. We treat solutions in bounded domains and in the entire space.

1. Introduction

1.1 In an elegant paper [8], Serrin considered solutions of second order elliptic
equations satisfying over-determined boundary conditions. For equations with
spherical symmetry he proved that the domain on which the solution is defined is
necessarily a ball and that the solution is spherically symmetric. The proof is based
on the maximum principle and on a device (which goes back to Alexandroff; see
Chap. 7 in [3]) of moving parallel planes to a critical position and then showing
that the solution is symmetric about the limiting plane.

In this paper we will use the same technique to prove symmetry of positive
solutions of elliptic equations vanishing on the boundary -- as well as related
results (including some extensions to parabolic equations). Some of the equations
we treat are related to physics and our techniques should be applicable to other
physical situations. We study solutions in bounded domains and in the entire
space. The simplest example in a bounded domain is

Theorem 1. In the ball Ω\\x\<R in R", let u>0 be a positive solution in C2{Ω) of

Au + f(u) = 0 with u = 0 on \x\ = R. (1.1)

Here f is of class C1. Then u is radially symmetric and

du

τ < 0 , for 0<r<R.
or
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The point of interest is that the result holds no matter what / is. We should
note that /(w)^0 for all u, implies that any nontrivial solution is automatically
positive in Ω.

Theorem 1 is a special case of Theorem Γ in Sect. 2. Another simple special
result is:

Theorem 2. Let u>0 be a C2 solution of(lΛ) in a ring-shaped domain

Then

g < 0 for ^ί\x\<R. (1.2)

This implies that u can have no critical point in this larger half of the ring. Note
that no condition is imposed at the boundary | x | = £ ' .

A third simple result (see Theorem 3' in Sect. 3 for a more general form) is:

Theorem 3. Let u(x) be a C2 solution of the ordinary differential equation

ii + b(x)ύ + f(u) = 0 on 0 < x < l , (1.3)

with u continuous on 0 < x ^ l and u(x)>u(l) for 0 < x < i . Here feC1, and b(x) is
continuous in 0 < x < l . Ifb(x)}zO everywhere then

ύ<0 on \<x<\. (1.4)

Furthermore ifύ(j) = 0 then u is symmetric about \ and b(x) is necessarily identically
zero.

As an example: u = Ί — cos 2πx is a solution of

satisfying all the conditions of the theorem.

1.2 Our interest in these questions grew out of a study of positive solutions in R",
n>2 (n = 4 in particular) of the equation

n + 2
2=0. (1.5)

This is the Euler equation for the function ("action")

/I uβ\ In
U ~ R l \ 2 l g r a U β) *' ~ n-2'

Equation (1.5) and the associated action are conformally invariant in the sense
that if u is a solution, then after a conformal mapping x-^y the function

υ(y) = u{x)J 2n (x), (1.6)

where J is the Jacobian, is also a solution. For n = 4, Eq. (1.5) as well as the
n+ 2

corresponding, but simpler, equation Au = un~2 studied in [5], and the linear
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equation w = 0, give rise to bona-fide solutions of the classical Euclidean Yang-
Mills equations via 'tHooft's Ansatz [1,9]. Equation (1.5) has the explicit
solutions (replace x by ix in the solutions of page 250 of [5])

n-2

for λ>0, xoeRn. These solutions yield the well-known one-instanton solutions in a
regular gauge of the Yang-Mills equations. We used the same methods as in the
proofs of the preceding results to show that these are the only positive solutions in
Rn with reasonable behaviour at infinity, namely u = 0(\x\2~n). This behaviour
follows from the finiteness of the action - as was proved by K. Uhlenbeck (private
communication). This uniqueness result together with the well known properties
(see [5]) of Δu = u{n + 2)l{n~2) and of Δu = 0 ([4]) show that any finite action solution
of the full Yang-Mills equations given by ct Hooft's Ansatz is self-dual.

Subsequently it was brought to our attention by R. Schoen that our uniqueness
result is equivalent to the following geometric result due to Obata [6] : A
Riemannian metric on Sn which is conformal to the usual ont and having the same
constant scalar curvature, is in fact the pullback of the usual one under a
conformal map of Sn to itself.

As a demonstration of the use of our methods in the full space we present a
related result for equations which are rotationally, but not necessarily confor-
mally, invariant. For convenience we suppose n > 2.

Theorem 4. Let v>0 be a C2 solution of an elliptic equation

F(v, |grad v\2, £ VjVkvjk, tr A,trA2,..., tr An) = 0 in Rn (1.8)

where A = the Hessian matrix {vi}), here FeC1 for v>0 and all values of the other
arguments.

Assume that near infinity, v and its first derivatives admit the asymptotic
expansion (using summation convention) :

(1.9)

for some m, a0 >0. Then v is rotationally symmetric about some point and vr<0for
r > 0 where r is the radial coordinate about that point.

Here, to say that an equation G(x, v, v{, vjk) = 0 is elliptic means G is a positive
definite matrix for all values of the arguments.

It is natural to ask under what conditions one can assert that expansions of the
form (1.9) hold. Here is an example:

Proposition 1. Let ve C2 + μ, 0 < μ < l , be a positive solution of

Δυ + f{v) = 0 (1.8')
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with v(x) = O(\x\2~~n) as x-^oo. Assume that for some k^ -, g(v) = f(v)v~k is

Holder continuous on O^v^v0 where v0 is the maximum of our solution. Then
expansions (1.9), with m = n — 2, hold for \x\ large.

Example. The function

v(x) = {l + \x\4y{n~2)l*

satisfies (1.8)' with
l/2

n + 4
This satisfies the conditions of the proposition with k= .

1.3 Our results are based on a well-known form of the maximum principle [7] for
a C2 solution wrgO of the differential inequality (we use summation convention)

Lu = aij{x)uXχXj + bf(x)MXi + c(x)u ̂  0 (1.10)

in a domain Ω (open connected subset of Rn\ and the corresponding Hopf
boundary lemma [7]. Here L is a uniformly elliptic operator, i.e., for some
constant co>O

α ζ ^ c o l ς l 2 , (1.11)

and the coefficients of L are uniformly bounded in absolute value.

Maximum Principle. If u vanishes at some point in Ω then u = 0.

We use the Hopf lemma in the form:

Lemma H. Suppose there is a ball B in Ω with a point PedΩ on its boundary and
suppose u is continuous in ΩuP and u(P) = 0. Then if wφO in B we have for an
outward directional derivative at P,

in the sense that if Q approaches P in B along a radius then

This is well known in case c(x)^0 (see Theorem 7, p. 65 of [7]) but, as already
observed by Serrin in [8] p. 310, the more general result follows by the same
argument used to prove the maximum principle in the form above. For the
convenience of the reader we include the derivation, using the well known result
for case c = 0.

Proof With

v==e-xxiu α > Q
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one obtains

where L is an elliptic operator containing no zero-order term. Thus

0 g L'v + v(allv
2 Jrb1ot + c) = L'v + cfv.

For a sufficiently large, c'^.0. Hence, since v^O,

L'v^O in Ω.

As v(P) = 0 we have by the usual form of the Hopf lemma,

and the desired result follows since uv(P) = e*Xίvγ(P).

We shall also use the following consequence of the maximum principle.

Corollary. Suppose in (1.10) that for some positive constants m, b, ci

α n ^ m > 0 , bx^—b, c^cι.

Assume that Ω lies in a narrow region

and u is a solution of the inequality (1.10) in Ω with u^O on dΩ. Then u^O in Ω
provided

cι exp (2bc/m) rg c1 + 2b2/m.

The proof makes use of arguments in [2] pages 330-331 for convenience we
present it here. See also [7] pages 73-74.

Proof For α = 2b/m the function

g = eaa-eaXί

is positive in Ω and satisfies

- L ^ = (fl11α
2 + b 1 α ) e Λ X l - φ β α - β a x i )

^(mα2 -buy*1 - c^e™ - eaxi).

Thus

— e~axιLg^ma2 — bot + c1 — cxe
a&

2b2

= \-cί—c1e
aε (since α

^ 0 by our hypothesis.

Consequently the function

u

9
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satisfies

L'v + υ— ^ 0 in Ω
9

where L is an elliptic operator with no zero-order term. Since Lg/g^O and i rgO
on dΩ, the usual form of the maximum principle yields v^O, and hence w^O in Ω.

In Sect. 3 we will also make use of an extension of the Hopf boundary lemma,
at a corner, due to Serrin (Lemma 2 in [8]). Since it may be of further interest we
present a slightly more general form (requiring however a bit more smoothness of
the coefficients):

Lemma S. Let Ω be a domain in W with the origin 0 on its boundary. Assume that
near 0 the boundary consists of two transversally intersecting C2 hypersurfaces ρ = 0
and σ = 0. Suppose ρ, σ < 0 in Ω. Let w be a function in C2(Ω), with w<0 in Ω,
w(0) = 0, satisfying the differential inequality (1.10) in Ω with uniformly bounded
coefficients satisfying (1.11). Assume

ciijQxσ^O at 0. (1.12)

If this is zero assume furthermore that a^eC2 in Ω near 0, and that

D(aijρxσXj) = 0 at 0, (1.12')

for any first order derivative D at 0 tangent to the submanifold {ρ = 0}n{σ = 0}.
Then, for any direction s at 0 which enters Ω transversally to each hyper surf ace,

— < 0 at 0 in case of strict inequality in (1.12),

(1-13)
dw δ w
-T— < 0 or -r-τ < 0 at 0 in case of equality in (1.12)
OS OSZ

Note that conditions (1.12) and (1.12') are invariant under change of coor-
dinates, and of the choices of the particular functions ρ and σ representing the
bounding hypersurfaces. The proof will be presented in the Appendix together
with a rough extension in case (1.12) is weakened (see Lemmas A.I and A.2).

1.4 In addition to the maximum principle and Lemmas H and S we use the
procedure of moving up planes perpendicular to a fixed direction as in [8], and we
shall now describe it geometrically.

In the following Ω is a bounded domain in W with smooth boundary. (Some
domains with corners will be discussed in § 3.)

Let y be a unit vector in 1R" and let Tλ be the hyperplane y -x — λ. For λ = λ large,
T is disjoint from Ω. Let the plane move continuously toward Ω, preserving the
same normal, i.e., decrease λ, until it begins to intersect Ω. From that moment on,
at every stage the plane Tλ will cut off from Ω an open cap Σ(λ),, the part of Ω on
the same side of T; as 7j. Let Σ'(λ) denote the reflection of Σ(λ) in the plane Tλ. At
the beginning, Σ\λ) will be in Ω and as λ decreases, the reflected cap Σ\λ) will
remain in Ω, at least until one of the following occurs:

(i) Σ'(λ) becomes internally tangent to dΩ at some point P not on Tλ

or
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(ii) Tλ reaches a position where it is orthogonal to the boundary of Ω at some
point Q.

We denote by Tλi:y-x = λ1 the plane Tλ when it first reaches one of these
positions and we call Σ(λί) = Σy the maximal cap associated with y. Note that its
reflection Σ' in Tλι lies in Ω.

One of our main results will be that if u > 0 is a solution of an elliptic equation
in Ω satisfying certain conditions, with w = 0 on dΩ, then y gradii<0 in Σy.

It may be that if we decrease λ below λγ the reflection Σ\λ) of Σ(λ) in the plane
Tλ continuous to belong to Ω as in the following example:

Fig. 1

In that case Σ'(λ) will remain in Ω for λ in a maximal interval

We will call the cap Σ(λ2) the optimal cap corresponding to the direction y. Clearly
either Σ'(λ2) is internally tangent to dΩ at some point not on Tλ2, or Tλi is
orthogonal to dΩ at some point.

A word on notation: For a set S in dΩ, by a neighbourhood of S in Ω we mean
Ωn (an open neighbourhood of S in Rn).

Section 2 contains the main results for general second order elliptic equations -
including the proofs of Theorem 1-3. Some extensions are given in 3 and
straightforward extensions to parabolic equations are briefly described in Sect. 5.
Section 4 is concerned with the proofs of Theorem 4 and Proposition 1. This may
be read independently of the other sections. The Appendix contains the proof of
Lemma S.

2. Principal Results and Proofs

2.1. Theorems 1 and 2 follow from a single result which, for simplicity, we first
present in a special form. The more general form is presented in Theorem 2.Γ.

Consider a solution ueC2(Ω) of

) = 0 in Ω (2.1)
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with b1eC{Ω) and feC1. Here Ω is bounded with smooth boundary dΩ; for
xedΩ, v(x) is the exterior unit normal.

In our construction of caps in the introduction, let y be the unit vector

(1,0,...,0) and assume maxx 1=/l 0. Let Σ = Σ., = Σ(λ1) be the corresponding
xeΩ *

maximal cap; the corresponding plane Tλι containing part of its boundary is

The reflection of Σ in the plane Tλι is called Σ''.
Concerning the solution u we now require
(a) u>0 in Ω, ueC2{Ωrλ{xι >λί}\ and w = 0 on dΩrλ{x1 >λ1}.
Note that no condition on u is required on the rest of the boundary.
For any x in Ω we use xλ to denote its reflection in the plane Tλ :x1=λ.

Theorem 2.1. Let u be as above, satisfying condition (a) and assume

b^x^O in Σ u Γ . .

For any λ in λγ <λ<λ0 we have

uXί(x)<0 and u(x)<u(xλ) for xeΣ(λ). (2.2)

Thus uXi <0 in Σ. Furthermore if uXί—0 at some point in Ω on the plane Tλι then
necessarily u is symmetric in the plane Tλi,

(Tλ inΩ), (2.3)

and ί?1(x) = 0.

Theorems 1-3 are immediate consequences.

Proof of Theorems 1. Applying Theorem 2.1 we see that

ux <0 if x, >0

- for any choice of our x1 axis. It follows that uXί>0 if xx <0. Hence uXι=0 on
xx =0. By the last assertion of Theorem 2.1 we infer that u is symmetric in xv Since
the direction of the x1 axis is arbitrary it follows that u is radially symmetric and
ur<0ϊoΐ 0<r<R.

Proof of Theorem 2. We may again choose any direction 7 as positive xx axis. It
follows from Theorem 2.1 that in the corresponding maximal cap Σy, y gradu<0.
The union of these maximal caps is the region (Rf+ R)/2<\x\<R.

Suppose for some point y with \y\ = (R' + R)/2, ur(y) = 0. Then with y = y/\y\ we
conclude from the last assertion of Theorem 2.1 that Ω — Σy\jΣ'y which is
impossible.

The proof also shows that for |X|>(.R' + JR)/2, v gradw(x)<0 for any vector v
making an angle less than (π/2 — θ) with the vector x (see Fig. 2).

Proof of Theorem 3. There are sequences εw, ^^->0 such that u(x)>u(i—εn) on the
interval δn<x<l— εn. Applying Theorem 2.1 to u(x) — u(l—εn) on that interval
and then letting n^co we easily obtain the result.
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Fig. 2

2.2. For convenience we write ux=ui etc. Before proving Theorem 2.1 we first
apply the maximum principle and Lemma H to derive two preliminary results.

Lemma 2.1. Let xoedΩ with v 1(xo)>0. For some ε > 0 assume u is a C2 function in
Ωε where Ωε = Ωn{\x — xo\ <ε}, u > 0 in Ω and u = 0 on dΩn{\x — x o |<ε} . Then
3(5>0 such that in Ωn{\x-xo\<δ], uXί<0.

Proof. Since u>0 in Ώ, necessarily, wv^0, on dΩn{\x — xo\ <ε} = 5, and hence
u

Xί=Q on 5, for vί>0 everywhere there, which we may assume, by decreasing ε if
necessary.

If the lemma were false there would be a sequence of points xj->x0, with
w^x 7) ̂ 0 . For j large the interval in the x± direction going from xj to dΩ hits S at a
point where ux^0. Consequently, by the theorem of the mean,

M1(x0) = 0 and M U ( X 0 ) = 0 .

Suppose /(0) ^ 0. Then in Ωε, u satisfies

Λu + b.u^ + m-f (0)^0

or, by the theorem of the mean, for some function

(ίϊ)

Applying Lemma H to the function — u we find

wv(x0)<0, and so w1(xo)<0

- a contradiction. So suppose /(0)<0. From (2.1) we see that at x0, gradu =
Au= -/(0) . But then it follows that

and

a t x

o-
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In particular w n ( x 0 ) > 0 - again a contradiction. The lemma is proved.

Lemma 2.2. Assume that for some λ in Λ1 ^λ<λ0 we have

u^xJ^O and u{x)Su{xλ) but tφc)φw(x; ) in Σ{λ). (2.2')

Then u(x)<u(xλ) in Σ(λ) and w1(x)<0 on ΩnTλ.

Proof. In Σ'(/l) = the reflection of Σ(λ) in the plane T;, consider

υ(x) = u(xλ);

note xλeΣ{λ). In Σ\λ) v satisfies the equation

Δv-b1{xλ)vί+f(v) = 0

and v1 ^ 0 . If we subtract (2.1) we find

^ 0 (2.4)

in Σ'(λ\ since vx ^ 0 and b 1 ^0 . Using the theorem of the mean in integral form we
see that in Σ\λ)

and

w^:0 (2.1)

for some function c(x). Since w = 0 on TλnΩ it follows from the maximum principle
and Lemma H that w<0 in Σ'(A) and w2 > 0 on TA. But on 7 ,̂ vv̂  =ί ; : — wx = — 2w1?

and the lemma is proved.

Proof of Theorem 2.1. It follows from Lemma 2.1 that for λ close to λ0, λ<λ0, (2.2)
holds. Decrease λ until a critical value μ^λt is reached, beyond which it no longer
holds. Then (2.2) holds for / > μ , while for λ = μ we have by continuity,

M 1 ( X ) < 0 and iφc^iφc**) for xeΣ(μ).

We will show that μ = λv Suppose μ>λv For any point xoedΣ(μ)\Tμ we have
xgeΩ. Since 0 = w(xo)<w(xg) we see that φ ) φ φ μ ) in Σ(μ). We may therefore
apply Lemma 2.2 and conclude that

u(x)<w(xμ) in Σ(μ) and M ^ O on ΩnTμ.

Thus (2.2) holds for λ = μ. Since ιιι < 0 on ΩnTμ we see with the aid of Lemma 2.1
that for some β>0

ux<0 in Ωnix^μ-ε}. (2.5)

From our definition of μ we must then have the following situation. For
j = l,2,... there is a sequence λ\

and a point Xj in Σ(λj) such that



Symmetry via the Maximum Principle 219

A subsequence which we still call Xj will converge to some point x in Σ(μ) then
x*J -+xμ and u(x)^u(xμ). Since (2.2) holds for λ = μ we must have xedΣμ. If x is not
on the plane Tμ then xμ lies in Ω and consequently

0 = u{x)<u(xμ)

which is impossible. Therefore xeTμ and xμ = x. On the other hand, for j
sufficiently large, the straight segment joining Xj to x*1 belongs to Ω and by the
theorem of the mean it contains a point _y; such that

Since y, ->x we obtain a contradiction to (2.5). Thus we have proved that μ = λ}

and that (2.2) holds for λ>λv By continuity, w1(x)^0 and u(x)^u(xλl) in Σ.
To complete the proof of the theorem suppose u1 =0 at some point in Ω on Tλi.

By Lemma 2.2 we infer that

u(x) = u(xλl) in Σ.

Since w(x) = 0 if xedΩ and x ^ / ^ it follows that ιι(x/i) = 0 at the reflected point
and thus (2.3) holds. Finally, suppose b1>0 at some point xeΩ (we may take
xφTλί). Then from the Eq. (2.1) and the (now proved) symmetry of the solution in
the plane Tλi we see that

If xeΓ, the left-hand side is negative while the right-hand side is nonnegative -
impossible; similarly if xeΣ'. Q.e.d.

Theorem 2.1 admits various generalizations and applications.

2.3. Remark 1. (This was pointed out to us by Spruck.) In some equations of
interest, of the form (1.1), the function f(u) is not in C1. For example, in a certain
plasma problem, f(u) = (u —1)+ =the positive part of (w —1). In case / is
monotone increasing the result of Theorem 1 still holds i.e. we have, more
generally:

The results of Theorems 2.1 and 7,, and of Lemmas 2.1, 2.2 hold if f(u) = fi(u)
+ f2(u) where fxeCι andf2 is monotone increasing. In particular the results hold if
f is locally Lipschitz continuous.

The proofs are the same as before. We have only to verify that Lemmas 2.1, 2.2
continue to hold; it was only there that the C1 hypothesis on / was used. In the
proof of Lemma 2.1 the CMiypothesis was used in the argument assuming /(0) ̂  0.
In that case in place of (2.1) we have

since f2 is increasing, and the argument proceeds as before. Similarly in the proof
of Lemma 2.2 we have from (2.4)

-u)^ f^v)- f^u^f^u)- f2(υ)

>0
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and the proof proceeds as before. In fact if / is monotone increasing (i.e., we take
fx = 0) we need only the usual form of the Hopf boundary lemma.

It is natural to ask whether Theorems 1 and 2.1 hold if the condition u > 0 in Ω
is replaced by the condition: w^O, wφO in Ω. This is not the case in general as we
see from the example after Theorem 3. If however /(0)^0 in both theorems, then
u^O, wφO in Ω implies u>0 in Ω. For, with f = f1 + / 2 , / i e C 1 , f2 increasing, we
have, from (2.1),

and the results follow with the aid of the maximum principle. In particular if/ is lo-
cally Lipschitz continuous, /(O) ̂  0, and u ̂  0, u φ 0 in Ω then the results of Theorem
2.1 hold. If the condition of Lipschitz continuity is weakened to Holder continuity
the results need not hold. For example, if p > 2 , the function w(x) = (l — |x|2)p in

^ l , w = 0in | x | > l , i s i n C2{Rn) and satisfies (1.1) with

The function / is Holder continuous with exponent 1 — 2/p, and /(0) = 0. However
the function

u(x) = w{x) + w(x - x 0 ),

with some fixed x 0 satisfying |χo | = 3, satisfies (1.1) in | x |<5 with the same /.
Obviously u does not satisfy the conclusions of Theorem 1.

2.4. Theorem 2.1 extends to a class of nonlinear elliptic second order equations.
With £2, Σ(λ) etc. as before, consider a C 2 solution u in Ω of such an equation

F ( X , M5 W ! , . . . , MM, U ! j , . . . , Unn) = 0 ( 2 . Γ )

which is elliptic, i.e., for positive constants m, M

The function F{x,u,pi,pjk) is assumed to be continuous and to have continuous
first derivatives with respect to u, pt and pjk for all values of these last arguments,
and xeΩ, and to satisfy the following conditions:

(b) On dΩn{xί>λ1} the function g(x) = F(x,0, ...,0) satisfies

or g

(c) For every λ in λγ ^λ<λ0 and for xeΣ(λ), and all values of the arguments u,

Pp Pjk w ^ n w >0> Pi <0?

F(x;,w, -pl9p2, . . . ,p n ,p 1 1 ? - p l a , ...iPβJ^Fix^p^PvPij). (2.6)

Here i, j range from 1 to n and α, jβ, 7 from 2 to n. Note that condition (b) is
automatic in case F is independent of x. Furthermore, in the first case in
condition (b), it follows from condition (c) that g(x) ^ 0 for x in a neighbourhood in
Ω of dΩn{x1 >λγ] - because g(x) is a decreasing function of xx there.
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Theorem 2.Γ. Let u satisfy condition (a), and F satisfy conditions (b) and (c). Then
(2.2) holds, and uι<0 in Σ. Furthermore if uλ = 0 at some point in Ω on T)i then,
necessarily, u is symmetric in the plane Tλχ and (2.3) holds.

The proof of this is exactly the same as that of Theorem 2.1, in particular
Lemmas 2.1, 2.2 hold, and is left to the reader. As an immediate application we
have the following symmetry result:

Corollary 1. With Ω as before, suppose that λλ = 0, and that Ω is symmetric about the
plane x 1 = 0 . Suppose our solution u>0 in Ω, u = 0 on δΩ. Assume F satisfies
condition (b) and, in place of condition (c), conditions

(c'x) F is symmetric in xv and decreasing in xγ for xi >0.
(c2) F(x,u, -pvPvPlλ, -p l α ,^ jΞF(x,w,p 1 ,p α ? p j) if u>0.

Then u is symmetric in x1 and uXί<0for xί >0.

Proof. Conditions (c'J, (c'2) imply condition (c) since, by (c\\ for λλ ^λ, the left-
hand side of (2.6) §: the left-hand side of (c'2). By Theorem 2.Γ we find

ul(x)<0 and u( — xl9x')^.u(xl9x') for xί>0.

If we replace xλ by —x l5 i.e., reverse the x r axis, we may apply the theorem again
and obtain just the opposite inequalities. Here χ' = (χ2,..., xn).

2.5. We also obtain generalizations of Theorems 1 and 2.

Theorem Γ. Theorems ί and 2 hold for f = f(r,u) depending also on r, with /, fu

continuous, provided f is decreasing in r.

One might ask whether positive solutions u in a ball \x\^R, vanishing on the
boundary, of

are necessarily spherically symmetric - even if / is not decreasing in r. This is not
the case in general. For example, let w be an eigenfunction of

z4w + λw = 0, w = 0 on |X|=JR,

which is not spherically symmetric. Then for ε > 0 small, the function u = R2 — \x\2

+ εw, is positive in \x\ <R, vanishes on the boundary and satisfies

2-R2) + 2n = 0 in \x\<R;

but u is not spherically symmetric.
Using Theorem 2.Γ one may prove further symmetries. The following, whose

proof is left to the reader, is an example. See also Remark 2 at the end of Sect. 3.
Let Ω be the unit ball in IR2π and denote the points in R2" by (x,y), x,yeW.

Corollary 2. Let ueC2(Ω), u>0 in Ω, be a solution of

f(x,y\u) = Q in Ω, u = 0 on dΩ.
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Assume f and fu are continuous in Ω x {ι/^0} and
(i) /(x,y,O)^O everywhere on dΩ, or f(x,y,O)<O everywhere on dΩ.

(ii) f{x,y,u) = f{y,x,u).
(iii) For every point (x, x)eΩ and for every vector zelR" and \/u >O, f/ie function

f(x + sz, x — sz, u)

as a function of s>0 is nonincreasing (wherever defined).

Then u(x, y) = u(y, x) and for χ,ze W, \x\ < 1/ |/2

— u(x + sz, x — sz) < 0
ds

for

The function f(x, y, u) — g(\x — y\, u) with g(t, u) decreasing in ί, for t > 0, satisfies
the conditions (ii) and (iii).

Theorem Γ admits extension to still more general rotationally symmetric
equations. In particular, if Ω is rotationally symmetric with respect to some of the
x variables, say (x1 ?...,xk) and the Eq. (2.Γ) also has this property, then one may
prove an extension of Theorem 2.Γ showing, under suitable hypotheses, that u is a

k

function of (ρ,x k + l J ...,xj for ρ= Σx2

g, and uρ<0 for ρ>0.
1

2.6. We also have the following extension of Theorem 3.

Theorem 3'. Let u be as in Theorem 3 but satisfying a more general equation than
(1.3):

ύ + f(x,u,ύ) = 0 on

Here /(x,w,p), fu and fp are continuous. Then ύ(x)<0 for ^ < x < l provided f
satisfies

f(y,u9-p)^f(x,u,p) (2.6')

whenever u>u{\\ p^O, and J; + X > 1 , y<x. Furthermore if ύ{^) =0 then u is
symmetric about x = \.

The following is a simple consequence:

Theorem 3". Let ueC2{Rλ) be a positive function satisfying

M + /(W,M) = 0 onR1

with feC1 and f(u9p) = f(u, —p) for u>0. If u(x)^0 as x->± oo and u assumes its
maximum at the origin, then u is symmetric in x and ώ(x)<0 for x>0.

2.7. Here is another application of Theorem 2.1 with a novel conclusion.

Corollary 3. Let Ω be a convex domain which is close to a ball |X|<JR in the sense
that their boundaries are close in the C2 topology. In Ω let ube a positive solution of

Δu + f(u) = 0, u = 0 on dΩ. (2.7)
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Then all stationary points of u in Ω, in particular wherever u takes its maximum, lie
in a small neighbourhood of the origin.

Proof. According to Theorem 2.1 u has no stationary point in any maximal cap.
Their union covers all of Ω except for a small region about the origin.

This result suggests the following:

Problem: Suppose u>0 is a solution of (2.7) in a bounded domain Ω in IR", u = 0
on dΩ, say ue C2(Ω). Is there some ε > 0 depending only on Ω (i.e., independent of /
and u) such that u has no stationary point in an ^-neighbourhood of cΩΊ

This is true for n = 2 in case f(u) ̂  0 for u §: 0, but for n > 2 the problem is open.

Proof. Given any boundary point x 0 of Ω we will show that there is a
neighbourhood of it in Ω, determined solely by the geometry, which contains no
stationary point of u. The desired result then follows. Let D be a closed disc
touching Ω only at the point x0. For convenience we suppose it is the unit disc with
centre at the origin.

We perform a reflection in the unit circle

and set

u{x) = υ(y).

The image Ω of Ω, lies inside D, and Ω touches the boundary only at x0. A simple
calculation shows that in Ω, v(y) satisfies

Av + \y\~4f(v) = 0; (2.7)

for n > 2 the equation has additional terms.
Let Σ = ΣXQ be the maximal cap of Ω corresponding to the direction x 0 which

we may take to be (1,0). Since Ω is strictly convex near x0, Σ contains a full
neighbourhood of x 0 in Ω. Since / ^ 0 for w^O, we see that condition (c) of
Theorem 2.1' is satisfied. We may therefore apply the theorem and infer that
gradυ + 0 in Σ. Hence grad wφO in the image of Σ under the reflection in the unit
circle. This image contains a full neighbourhood of x 0 in Ω, in fact it is Ωn{a
circle passing through the origin with some radius > 1}, and the proof is finished.

As a direct application of this and Theorem 2, whose details we leave to the
reader, we have:

Example. Suppose u is a positive solution of (here / is locally Lipschίtz):

(u) = 0 in R'^\x\SR, inIR2,

which vanishes on the boundary. Suppose /(w)^0 for u^O. Then all the critical
points of u are in the region

2R'R R'
< x < .R' + R 2
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Remark Γ. As in Remark 1, the results of Theorem 2.Γ, Corollary 1 (Theorems Γ,
y and Corollaries 2, 3 respectively) hold if F = F1+F2 (f=j\+f2 respectively),
where F ^ / J has continuous first derivatives with respect to w, pt , p/k, and F2(f2) has
continuous first derivatives with respect to p ί? pj7c,and F 2 is monotone increasing
in u\ both Fv F 2 are to satisfy conditions (b) and (c).

2.8. Theorem 1 yields a positive response to a question put us by C. Holland. For
p > 1, is the positive solution u of

= 0 in |x |<fl, w = 0 on \x\=R (2.8)

unique? (The question is still open for other domains.) According to Theorem 1
the solution is spherically symmetric, and so satisfies

urr + ~— ur + up = 0, 0 < r < R, ur(0) = 0, (2.9)

with u(R) = 0, and u r(r)<0 for r > 0 . We use

L e m m a 2.3. Let u and v be positive solutions of (2.9). For λ 2 / { p ~ l ) = u{0)/υ(0\

u(r) = λ2Kp'l)v(λr).

Proof. The function w(r) = /2lip~ 1)v(λr) is also a solution of (2.9) and at r = 0 it
agrees with w(0).

As solutions of the elliptic Eq. (2.8), u and w are analytic, i.e., they are analytic
functions of r2. But in fact all their derivatives at r = 0 may be computed in terms of
w(0) showing that \v = u. For example if we let r—>0 in (2.9) we find

By further differentiation we may compute all the derivatives, and the lemma is
proved.

From the lemma it follows easily that the positive solution of (2.9) vanishing at
R is unique.

3. Further Results

3.1. In this section we take up extensions of results of Sect. 2 to optimal caps and to
special domains with corners. We shall use the same notation.

We first try to extend Theorem 2.Γ to optimal caps. Consider a solution u of
(2.1') with F independent of w l α for α > 1:

F{x,u,Uj,uίί,uΛβ) = 0 (3.1)

here j ranges from 1 to n and α, β from 2 to n. This includes Eq. (2.1).
Assume that u satisfies, in place of (a) of Sect. 2.1:
(A) ueC2(Ω\ M > 0 in Ω, u = 0 on dΩ.

We assume that F satisfies conditions (b), (c) as before but in an optimal cap:
(B) On dΩn{x1>λ2} the function g(x) = F{x,0, ...,0) satisfies

or g(x)<0Vx.
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(C) For every λ in λ2 ^λ<λ0 and for xeΣ(λ) and all values of the arguments
w, Pp pjk with u>0, pγ <0,

F(x\u,-pvp2,...,pn,pιvpΛβ)'£F(x,u9p1,...,pn9paβ). (3.2)

Theorem 3.1. Assume conditions (A), (B) and (C) are satisfied. Then for λ2 </,<λ 0,

w1(x)<0 and w(x)<M(xλ) /or xeΣ(λ). (3.3)

Furthermore, if ux =0 at some point on ΩnTλi, then u is symmetric in the plane Tλi

and

Ω = Σ(λ2)uΓ(λ2MTλ2nΩ). (3.4)

Proof of Theorem 3.1. The proof begins like that of Theorem 2.1. By Lemma 2.1
(see Sect. 2.4), for λ close to λ0, λ<λ0, we find that (3.3) holds.

Decrease λ until a critical value μ^λ2 is reached beyond which it no longer
holds. Then for λ = μ we have

M 1 ( X ) < 0 and u(x)^u(xμ) for xεΣ(μ). (3.5)

We will show that μ = λ2. Suppose μ>λ2. For some point x0edΣ(μ)\Tμ we have
x^eΩ. Since O = w(xo)<w(xg) we see that φ ) φ φ μ ) in Σ(μ). In Σ'(μ) we set

u(xμ), w(x) = v(x)-u(x) (3.6)

so that w^O, wφO. The function v satisfies, v1>0 and

= F(x,u(xμ)9 -u,{xμ\u^Xu^ixη,uΛβ(xμ)). (3.7)

Since xμeΣ(μ) and w1(x/i)<0 we see from (3.2) that the last expression is

u(x ' t ) j U /x ' t ) ,M 1 1 (x^«^))
= Q (3.8)

Using F(x,w5 ...) = 0 in Z"(μ) we may apply the theorem of the mean in integral
form and conlcude that w satisfies a differential inequality of the form (1.10) in
Σ'(μ) with aly = 0 for α > l .

By the maximum principle, w<0 in Γ^μ), and by Lemma H9 since w achieves
its maximum, zero, at every point of Tμ,

0<w1 = -2u1 on μ

Thus

u(x)<u{xμ) for xeΣ(μ) and ux < 0 on β n T ^ ; (3.9)

in particular (3.3) holds for λ = μ. Furthermore, by Lemma S, at any point
QedΩnTμ where T is orthogonal to 9Ω,

^ - < 0 or -^τ-<0 at Q
OS OS"
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for any direction s at Q entering Σ\μ) nontangentially. At Q however the functions
v and u have the same normal derivative to dΩ and zero tangential derivatives, so
that Bw(Q)/ds = 0. Hence

d2w

( β ) ° (3 1 0 )

From our definition of μ one of the following holds:
(i) There is a sequence y} converging to some point y on Tμ with

or
(ii) There are sequences λ\ λ2<λJs μ, and XjeΣ(λj) such that

} . (3.11)

Consider case (i). Clearly ^ ( y ^ O . By (3.9), y must lie on dΩ. Suppose Tμ is not
orthogonal to dΩ at y. Then necessarily v1(y)>0, and by Lemma 2.1, u1 < 0 in a
neighbourhood in Ω of y - a contradiction. Thus Tμ must be orthogonal to dΩ at y
we may suppose v(y) = (0,... ,0, l) = eM. Choose the direction s to be
(-l/j/2,0, ...,0, -1/1/2). Then according to (3.10)

id d \2

(- - — w<0 at y

i.e.,

But Ϊ; 1 1 = w n , vnn = unn, vln= —uln at y, so

w l n >0 at y and hence near y.

If we integrate this on the segment in the en direction from ŷ  (j large), to the point x
where it hits dΩ we find that ι/1(x)>0. But for xeΣ(λ2)ndΩ we have v x(x)^0 and
hence uί(x)^0. Thus case (i) is impossible.

On to case (ii). We may suppose Xj converges to x in Σ(μ) then ιι(x)^u(xμ). By
(3.9), xedΣ(μ). If x lies on Tμ then for j large the segment from Xj to xf lies in Ω,
and then contains a point ŷ  satisfying the conditions of case (i) - which we know
to be impossible. Thus xφTμ. If xμeΩ then 0 = u(x)<u(xμ), a contradiction, so we
also have xμedΩ. Since μ>λ2 it follows that v(x) = v(x;l) and these are orthogonal
to (1,0,..., 0). We may suppose these normals are en = (0,..., 0,1). But then in Σ'(μ)
the function w(x) defined in (3.8) achieves its maximum, zero, at xμ and hence by
Lemma H

wn(xμ)>0. (3.12)

On the other hand, since Σ'(λj)CΩ, the segment Ij in the en direction from Xj to
dΩ is not longer than that, /., from xf to dΩ. Using the fact that u = 0 on dΩ it
follows from the theorem of the mean that Ij and I} contain points z ; , ϊj respectively
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such that

Here |/ | denotes the length of ϊr Hence

and since

Letting 7-^oo we find

contradicting (3.12). Thus case (ii) is impossible.
We have proved that μ = λ2, and hence (3.3) for λ2<λ<λ0. The remainder of

the proof of the theorem is the same as for Theorem 2.1 and will be omitted.
Theorem 3.1 admits various applications as in Sect. 2. We mention only one:

Corollary 1. Let Ω be symmetric about x1=0 and convex in the xλ direction. Suppose
ueC2(Ω) is a solution of

(x,u) = 0 in Ω,

satisfying condition (A). Assume f and fu are continuous for xeΩ, and f is symmetric
in xx with f decreasing in xx for x1>0. Then u is symmetric in xι and uXι<0 for
xx>0.

3.2. Our results have required smoothness of dΩ. Next we consider a special
domain with corners, namely a finite cylinder: Ω = ( — a,a)xG where G is a
bounded domain in R""1 with dG smooth. (It will be clear that this result can be
extended to more general situations.) Corresponding to y = eί we have A 2=0, i.e.,
the optimal cap is Ωn{x1 >0}. We consider a solution u in Ω of (3.1) satisfying

(A') ueC2(Ω), u>0 in Ω, u = 0 on dΩ.

The function F in (3.1) is assumed to be independent of uλ, i.e., (3.1) has the form

F ( X , M , M 2 , ...,un,ulί,uβy) = 0.

Also F is to satisfy condition (C) which now just takes the form:

(C) F is decreasing in xί for xι > 0 .

We do not require condition (B).

Theorem 3.2. Under the preceding conditions on u and F the results of Theorem 3.1
hold.

Proof It is the same as that of Theorem 3.1 except at the very beginning, when we
assert that for λ less than, but close to, λQ conditions (3.3) hold. We cannot rely
here on Lemma 2.1 since the boundary is not smooth. To get around this difficulty
we will use the corollary of the maximum principle of § 1 to prove:
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Lemma 3.1. For λ less than but close to λ0, (3.3) holds.

Proof. For λo — ε<λ<λo the region Σ'(λ) has width <ε in the direction
e1 =(1,0, ...,0). In Σ\λ) the function v(x) = u(xλ) satisfies

F(x, v(x), vΛ{x\ « n ( 4 V/*)) = F(x;, v(x\ vΛ(x)9 v^x), vβy(x)) = 0.

Hence w = v(x) — u(x) satisfies an inequality of the form (1.10) with bounded
coefficients in Σ'(λ). Also w ^ O o n dΣ'(λ). It follows from the maximum principle
and its corollary that for ε small, w<0 in Σ'(λ); by Lemma H, on Tλ,
0 < w 1 = — 21^. Consequently (3.3) holds for λ close to λ0. Q.e.d.

Theorems 3 and 3' are essentially special cases of Theorem 3.2.
Using the same argument one proves the following results.

Theorem 3.2'. Let Ω be an isosceles triangle in the plane with base on the x axis,
centered at the origin. Let ue C2(Ω\comers)nC(Ω) satisfy

Au + f(u) = 0 in Ω, u = 0 on dΩ,

withf locally Lipschitz continuous. Ifu>0 in Ω, then u is symmetric about the y axis,
and ux<0for x>0 in Ω.

Theorem 3.2". Let u and f be as in Theorem 3.2', but with Ω an infinite angular sector
0<θ<θo<π. Then for any fixed angle φ in θo-π/2<φ< π/2, ux cos φ + uy sin φ > 0
at every point of Ω.

Both results admit various extensions to higher dimensions.

3.3. Let us specialize this still further and suppose that G is a ball |x'| <b in Rn~1

here x/ = (x2, ...,xM), and that the equation has rotational symmetry in G.
Can we conclude the same of the solution? We will take up a simple case: u > 0

is a solution in Ω of

with ueC2(Ω), u = 0 on oΩ and/, fu continuous in Ω x R +. Assume conditions (B)
and (C) in the following form:

(B) /(x l 5b,0) = 0 for \

or

/(x 1,b,0)<0 for \

(C) /(x1?ρ,w) is decreasing in ρ for 0<ρ<b.

Theorem 3.3. Under the conditions above, u is radially symmetric in the variables x\
i.e., u = u(x1, \x'\), and

uρ(x1,ρ)<0 for | x 1 | < α , 0<ρ<b.

The proof uses the analogue of Lemma 2.1:

Lemma 3.2. The set ^ = {|x1[gα} x(δGn{xM>0}) has a neighbourhood in Ω in
which t/ <0.
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Proof. Lemma 2.1 (with the variable xn in place of xt) applies to any point
xoe{x1<a} x(dGn{xn>0}) and gives the desired result. Thus we need only
consider a point x0 in Σ with x 0 1 = + α ; suppose x 0 1 =α. So

j
2

Consider the first case in (B). By (C), for x = (x1?x') close to xo,we have

Consequently by the theorem of the mean we see that in such a neighbourhood of
x0, u satisfies

aίluu+ Σ u
α> 1

for some continuous function c. We may therefore apply Lemma S to — u and
conclude, since grad w(xo) = 0, that (dί +dn)

2u>0 at x0. Since ulλ =unn = 0 there we
have

uln(xo)>0.

Hence w l w >0 near x 0 and since un = 0 on x1 =a the desired conclusion follows.

In the second case of (B) we have aιιu11 4- Σ uxa>® a t x o ^ u t m ^ a c t t n i s

α> 1

expression is zero at x 0 so that the case does not apply. The lemma is proved.

Proof of Theorem 3.3. We will prove u is symmetric in xw and un<0 for xn >0. Since
we may rotate the coordinates x' the general result will follow. Using Lemma 3.1,
we see that for λ<b but λ close to 6, the analogue of (3.3) holds, i.e.,

wn(x)<0 and M(X)<M(XΛ) for λ<xn<b; (3.3)

here xλ is the reflection of x in the plane xn = λ. It suffices to prove that (3.3) holds
for every λ>0. To do this we proceed as in the proo£of Theorem 3.1. Decrease λ
until a critical value μ^O is reached beyond which (3.3) no longer holds. Then we
have

un(x)<0 and u{x)^u{xμ) for xn>μ. (3.7)

We wish to show that μ = 0. Suppose μ > 0 . We follow the proof of Theorem 3.1,
and have to consider cases (i) or (ii) there (with xn in place of x t). In case (i) we also
have to look at the possibility that y lies on Tμn{dG x [ — a, a]}. This is excluded
by Lemma 3.2. Case (ii) is treated as before and we may regard the proof as
complete.

Remark 1. All the preceding results remain valid if we replace F (respectively/) by
Fι

JrF2 (f1+f2) where Fι,F2{fί,f2) are as in Remark V in Sect. 2 - under the
additional condition (3.1).

3.4. We conclude with an analogue of Corollary 2 of Theorem 2.Γ.
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Remark 2. Let Ω = (— 1,1) x (— 1,1) in IR2 and let w(x, y) be a positive solution in Ω
belonging to C2{Ω) of

Au + f(x,y,u) = Q in w = 0 on dΩ

where ffu are continuous in Ω x R +. Assume / satisfies
(i) / is symmetric in x and y and nonincreasing on each segment S perpendicu-

lar to the diagonal D: x = y as we go from the diagonal to dΩ
(ii)/(x,y,0)^0 for all (x,y)edΩ or /(x, y, 0) < 0 for all (x,y)edΩ.
Then u is symmetric in x and y and is strictly decreasing on each such interval

S.

Proof. For convenience we set Ω as in the figure so that /(x, y, u) is symmetric in x
and nonincreasing in x for x>0.

The proof is then identical to that of Theorem 2.1, moving lines x = λ, once we

can get it started, i.e., for λ less than but close to l/]/2.

Fig. 3

We have only to show that ux < 0 in a neighbourhood in Ω of P, and the proof
then proceeds as before. This is proved as in the proof of Theorem 3.1 using
Lemmas H and S.

4. The Proof of Theorem 4

First, the

Proof of Proposition 1. Under the change of variables

x) = \y\"-2u(y)
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The Eq, (1.8') transforms to the equation in yφO

(4.1)

and u(y) is bounded near y = 0. Furthermore

F(y) = \yΓn-2A\yΓ My)) = ukg{\y\n ~ 2u(y))\y\k{n ~2)'{n+2)

is bounded near y = 0. It is then easy to see that u is a distribution solution of (4.1)
in Rn including the origin. Since F(y) is bounded near the origin we see that
ueW2'p, Vp<oo; thus ueC1. But then F(y) is Holder continuous near the origin
and it follows that u has Holder continuous second derivatives. From the
maximum principle it follows that u(0) = ao>0. Consequently near the origin we
have

u(y) = ao + Ui{0)yi + \uij{ϋ)yiyj + o(\y\2)

and

2~n[^These yield (1.9) for v{x) = \x\2~nu
M

Proof of Theorem 4. We shall apply the procedure of moving planes from infinity
but in order to get it started we first shift the origin in order to simplify the
expansions (1.9). Replace x by x — x 0 where

xOj=--^-. (4.2)

J ma0

Since, for g>0,

1 1\x-xo\* \x\

we find

with different coefficients atj. Similarly

m + 2

|xp
a 2χ.

|xΓ
(4.30
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In these new coordinates we will prove that v is rotationally symmetric about
the origin and that vr<0 for r > 0 . Note that the equation is rotationally invariant.
For any unit vector y we will prove symmetry of υ in the plane y x = 0 and
y gradixO if y x>0. Performing a rotation we may suppose 7 = (1,0, . ..,0).
Observe that from (4.3') we find that for suitable constants Co, JRX,

for and (4.4)

As a consequence of (4.3) and (4.4) we first derive

Lemma 4.1. For any λ>0, 3R = R(λ) depending only on min(l,Λ) (as well as on υ)
such that for x = (x1,x

/), y = {y1,x') satisfying

(4.5)

we have

v(x)>v(y).

Proof We shall show that if we have a pair of points x = (x1?x
/), y = (yvy') with

M ^ ^ 1 ϊι >*i , J7! +^1 =2/1, and for which the inequality opposite to (4.5) holds,
i.e.,

v(x)^υ(y), (4.5')

then necessarily |x|, |j/|<some R depending only on min(l,λ). Note that |y |>|x|.
The proof just involves a bit of tedious calculation using (4.3), (4.4). We will use C,
Cx etc. to denote various constants independent of λ, x and y. From (4.3) we have
(using summation convention)

1

jx| f" \y\'"/ J \\y\n' ^ \x[

Observe that for p _ 1, since |y|>|x|,

\y\W p \y\p~\χΓ1]

As a first consequence of (4.6) we find then

C

\y\) = \χ\m l y f < ~

(47)

\xr
so that

Hence if

m - \ χ \ m + 2

^ ^ we find

and |y |^ (4.
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Inequality (4.8) has been proved assuming |x|2 ^2C. We may assume this from
now on; for if | x | 2 ^2C, then since v(y)-+0 as |y|—>oo, it follows from (4.5') that
\y\^R for some R independent of λ.

We will now improve the estimate (4.8) by using it in (4.6). Returning to (4.6) we
have

<aΛ

J J

x|m

' ^ r k | v im + 4

As before we may infer that

1

c

V2 — Ύ2 C ( \ 1

<cyi * + '

c

Using (4.8) we find easily that

C

M 3 M 2

Multiplying by |y| + |x| and recalling that

we find

c

Once again, if | x | 2 ^ - as we may assume - it follows that

C

(4.9)

Hence, by (4.9),
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Thusif2;,-C|xΓ1^Λ, i.e.,

M^y (4.10)

we see that

Consequently, since yι ^.2λ — xv we find

... , . C

or

1

1 - 2Λ|X|

But (see (4.4) for Co)

provided.

Thus if (4.11) and (4.10) hold we conclude that

But then (4.4) implies that v is strictly decreasing on the straight segment going
from xtoy- contradicting (4.5;). Thus either (4.10) or (4.11) cannot hold and the
lemma is proved.

As in Sect.2, for any Λ > 0 and for any x = (xl5jc'),we denote by xA its reflection
in the plane X 1 = Λ , i.e., xλ = (2λ — x1,x

f).

Lemma 4.2. There exists λo^l such that VI^Λ 0 ,

v(x)>v(xλ) if x1<λ. (4.12)

Proof. Set R 1 =max{l ,R(l) of Lemma 4.1}. By Lemma 4.1, if | x | > R l 5 λ^l and
x1 <λ we have

v(x)>v(xλ). (4.120

But

>O for I x l ^ ^ ! .



Symmetry via the Maximum Principle 235

Furthermore for 1 < J R 2 sufficiently large we have

v(y)<c0 for

Thus (4.12) holds if λ^R2 and Ixl^R^ Combining this with (4.127) we obtain
(4.12) with λo = R2. Q.e.d.

Lemma 4.2 asserts the desired reflection property (4.12) for planes Tχ'.x^—λ
with λ sufficiently large. Now we may begin our procedure of moving the plane Tλ

by decreasing λ. First we have the analogue of Lemma 2.2.

Lemma 4.3. Assume that for some λ>0

v(x)^v(xλ), v(x)ή=v(xλ) for x1<λ,

Then v(x)>v(x/) ifxγ<λ, and

ι;1(x)<0 on Tλ. (4.13)

Proof. The function w(x) = i;(xλ) is also a solution of (1.8) in x1 <λ and vvrgy there.
Thus the function

zφO

satisfies an elliptic equation of the form

Lw = 0 in xγ^λ

with L as in (1.10), and it achieves its maximum, namely zero, at every point on T?.
By the maximum principle and Lemma H, z < 0 and

0<z1 = -2v1 on Tλ.

The lemma is proved.

Lemma 4.4. The set of positive λfor which (4.12) holds is open.

Proof Suppose (4.12) holds for jl = I > 0 . Set R = R(λ/2) of Lemma 4.1; then (4.12)
holds for / §; λ/2 provided |x| > R. We have only to consider |x| ^ R. If (4.12) did not
hold for all λ in some neighbourhood of / there would be a sequence {xJ},
; = 1,2,... in |x j |^.R and a sequence λj-+λ, λj^λ/2, with x{ <)J and

l). (4.14)

Then a subsequence, which we still call x\ converges to some x in |x|^,R and

In view of (4.12) it follows that x1=λ. But then from (4.14) we must have

- contradicting Lemma 4.3. Q.e.d.
From Lemmas 4.2, 4.4 and 4.3 we may conclude that (4.12) and (4.13) hold for

all λ in some maximal open interval OrgAj </,<oo. In particular we also have

for xt>/n. (4.15)
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In addition, by continuity

v(x)^v(xλι) if x1<λ1. (4.16)

Corresponding to the direction y which we took to be (1,0, ...,0), we have
found a maximal open interval

such that the reflection property (4.12) holds for all λ in the interval.
Suppose for some vector y, which we may take as (1,0, ...,0), ^ ( y ^ O . By

Lemma 4.3 we either have

or else property (4.12) holds for λv The former cannot occur, by Lemma 4.1, while
the latter cannot, by Lemma 4.4 and the definition of λv Hence for all unit vectors
y, λ1(y) = 0. It follows from (4.16) that v is symmetric about each plane y x = 0.
Hence it is radially symmetric about the origin, as was to be proved.

The remainder of the theorem follows from (4.15).

Remark. Theorem 4 yields rotational symmetry of our solution. If we wish to prove
symmetry in only one direction, say with respect to xί then it is clear that the
argument extends to more general equations than (1.8). For example we may
consider elliptic equations of the form (here α, β range from 2 to n)

F ( x 2 9 . . . , x n , v , v 2

ί 9 v 2 , . . . , v n 9 υ l v v Λ β ) = 0 (4.17)

Theorem 4 . Letυ>0bea C2 solution o/(4.17) in Rn with F, Fv, Fvh ..., F ^ e C and

v satisfying (1.9). Then v is symmetric with respect to the plane x1 = — and
mar

aΛυ* <0for χλ >

5. Parabolic Equations

For parabolic equations the maximum principle as well as its Corollary 1, and the
Hopf boundary lemma (see [7], Chapter 3, § 3) hold. Therefore all our results
admit extensions to such equations with essentially the same proofs. We shall
content ourselves with the statement of several results for functions w(ί, x) defined
in a cylinder Ω = (0 < t < T) x G, G is a bounded domain in IR" with dG smooth. By
a (maximal) cap of Ω we always mean [ 0 < ί < T) x [a (maximal) cap of G].

Condition I. With G = R' <\x\ <R, let u be a positive solution of

,u) = 0, M = 0 on \x\ = R (5.1)

with uv up uke belonging to C in the closure. Here / and fu are continuous in
GxR +. Assume that/ is decreasing in r and that u(0,x), is rotationally symmetric
and decreasing in r.
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Theorem 5.1. Assume Condition I. Then

R -A- R1

ur<0 for ^r<R.

If in addition, u is a solution in \x\<R, then Vί, 0 < ί <T, u is radially symmetric and
ur<0for0<r<R.

The next result extends Theorem 2. Γ in which we consider a maximal cap

Condition II. Consider a positive solution in G of

— ut + F(t,x,u,ui,ujk) = 0, u = 0 on δG

with F as in Section 2.4 satisfying in particular condition (c), and assume w(0, x)
satisfies condition (2.2).

Theorem 5.2. Assume Condition II. Then Vί in 0<t<T, u(t,x) satisfies con-
dition (2.2). Furthermore if u1=0 at some point (x,t0) in Ωn{xi=λi} then for

ί5^ί0, u is symmetric about the plane x1 —λx and (2.3) holds.

The results in Sect. 3 also admit extensions to parabolic equations.

Appendix. Lemma 5 and Related Results

One may ask what happens if condition (1.12) in Lemma S is dropped. The
following example shows that it is essential. In R2, using polar coordinates, the
function

nlθ • π θ

w = _ r π / θ o s i n —

is negative in the angle Ω \0<θ<θo<π/2, vanishes on the boundary and satisfies
Aw = 0. But it does not satisfy (1.13); here α ̂ ρ.σ^O at the origin.

Since it may be of interest we will also prove a rather primitive extension of
Lemma S to the case where condition (1.12) does not hold. The preceding example
is then seen to be typical.

Lemma A.I. Let Ω be as in Lemma S. Let weC2(Ω)r\C(Ω), with w<0 in Ω, w(0) = 0,
be a solution of the elliptic differential inequality (1.10) in Ω. Assume that the leading
coefficients a^eCφ), and satisfy (1.11), and that the others are bounded. In place of
(1.12) assume that

Σaijqiσj = μ]/YjaijQiQj l A / ^ at 0, (A.I)

for some constant μ; clearly — l < μ < l . Set θ0 =arccos( — μ).
Suppose
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Let ^ be a closed cone with vertex at the origin such that for some β>0,
^n{O<|x | <ε} lies in Ω. Then there is a positive constant δ and a neighbourhood in
^ of 0 in which

In particular if μ>0 we may take p<2 and it follows that if weCι(Ω) and
gradw(O) = O, then on any ray from 0 entering Ω transversally to the surface, the
second derivative of w cannot be bounded near the origin. On the other hand, if μ<0
and weCr in Ω1 near 0, for r>π/Θ0, then at least one of the derivatives

is negative at 0.

The following may also prove useful.

Lemma A.2. Let Ω be a component of a cone: φ = bιjxixj>0. Assume
weC2(Ω)nC(Ω) near the origin, that w<0 in Ω except at the origin, w(0) = 0, and
that w satisfies (1.10) in Ω. Let p be such that the quadratic form

>0, xφO, xeΩ. (A.Γ)

Then there is a δ>0 and a neighbourhood of 0 in Ω in which

w + δφp<0.

Both lemmas will be proved at the end of the Appendix.
Our proof of Lemma S is an extension of Serrin's it makes use of suitable

comparison functions.

Proof of Lemma S. We first remark that it suffices to prove it in case c(x) = 0. The
general case then follows by the same argument we presented for Lemma H. The
case of strict inequality in (1.12) follows from Lemma A.I. So we just consider the
case of equality.

We may suppose that w < 0 in Ω\0 for we may simply replace the hypersurfaces
by spheres tangent to them at 0 and lying, otherwise entirely in Ω.

In the closure Ωε of Ωε = Ωn{\x\ <ε} we will construct a C 2 function z with the
properties:

z:gθ on Q = 0 and on σ = 0,

0) = z5(0) = 0, z s s(0)>0, ( ' }

Lz^O. (A.3)

Using such a function the proof is easily carried out. Set

1 If r is not an integer this means: wεC[r\ and the derivatives of w of order [r] satisfy a Holder
condition with exponent r — [r]



Symmetry via the Maximum Principle 239

with t>0 so small that w-htz^O on the part of the boundary of Ωε where \xj = e;
recall that w < 0 on that compact set. On the other parts of the boundary of Ωε we
have v^w. Thus u ^ O o n the whole boundary of Ωε. In Ωε we have

Lυ^O. (A.4)

By the maximum principle v achieves its maximum on the boundary - in
particular at the point 0. Thus ϋ s(0)^0 and if us(0) = 0 then υ s s(0)^0. Now υs(0)
= ws(0) and υ JO) = wss(0) + ίzw(0) > wss(0), and (1.13) follows.

After a C2 change of variables we may suppose that the new surfaces are given
by χχ =0 and xn = 0 and Ω is in {x1 <0}n{x π <0}. Condition (1.12) now takes the
form

alB(0) = 0. (A.5)

We proceed in several steps.
(i) First we make a linear change of variable so that in the new variables we

also have

flia(0) = fla|i(0) = 0 for l < α < n . (A.6)

Set

with constants cα, da to be chosen. The boundaries x1 = 0, xn=0 become y\ =0,
yn = 0. Let us compute, using summation convention (α, β, y are summed from 2 to
n-1):

aijdXιdXj = alt(dyi + cΛdyJ(dyi + cpdyp)

Thus

α = 2,... ,n.

We now require that these be zero - determining the cα and da.
For convenience we will continue to call the new variables x and the

coefficients of L, a^ etc. They now satisfy (A.6). In the new coordinates condition
(1.12') means that

(A.7)
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(ii) We will now replace Ω by a slightly smaller region. With k to be chosen
suitably large, set

n- 1

2

Consider the smaller region G = Ωcλ{φ<0}n{ψ<0}. In G near 0 we will use the
comparison function

z = gh (A.8)

with

g = e~aφ-l, h = e~Cίψ-l

and a suitably large. Clearly

z > 0 ,

z = 0 on φ = 0 and on ip = 0 }

zs(0) = 0, zs&(0)>0.

We will choose /c, α and an ε neighbourhood Gε of 0 in G so that z satisfies
(A.3) in Gt.
(iii) Computing, we have

Lz = gLh + /zL# + 2aijgihj. (A.9)

Here gί = gXι etc. Now (here /?, y are summed from 2 to n— 1) for α large:

= aijφiφj - X- (fl. .0.. + b^,) ̂  c0 > 0.

(A. 10)

= α l n + 2kalyxy + 4k2aγβxyxβ + 2kanyxγ.

We first choose fe so that / is nonnegative on {φ=0}n{ip = 0}, i.e., for points of
the form

At such points, because of (A.7) we have

KJgcφcj + w+ΣX2)

with some constant C. C will denote various constants independent of k and α.
Therefore, supposing fcg l,

In addition, from (A.6) we see that
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provided we require

Inserting these in (A.IO) we find

x^ for some c o >O

by uniform ellipticity. We now fix k ̂  C/c0 and infer

J^O on {φ = 0}n{ψ = 0}n{ΣK\<k'1}.

It follows that, with k so fixed

in Gn{\x\<δ} (A.ll)

for some small δ independent of α.
(iv) Next, for α large, we have

for some positive constant c0. A similar estimate holds for Lh. Inserting these in
(A.9) and using (A.IO) and (A.ll) we find

in Gn{\x\<δ}.
By the theorem of the mean, for φrgO,

Let us now restrict ourselves to the region

<φ, φ ^ O , α large.
α

Then

e

Inserting these in (A.12) we find
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for α large - in the region

With α so fixed, in the region Ga δ, the function z has all the desired properties.
The proof is complete.

We turn now to Lemmas A.I and A.2. As before it suffices to consider the case
that c(x) = 0.

First, the

Proof of Lemma A.2. We need only show that near 0 in Ω the function

satisfies Lz^O. Then the proof proceeds as before.
A computation yields [see (A.Γ)]

-φt-'Lz^-Vat φiφj

= β + O(|x|3)

^ 0 in Ω near 0

by (A.I'). Q e.d.

Proof of Lemma Λ.l. As before, we may suppose w < 0 in Ω\0. After a smooth
change of variable we may suppose that the boundary hypersurfaces are hyper-
planes x1=0 and xn = 0. By a further linear transformation of the variables x l 5xM

we may suppose that at 0,

and that Ω is the wedge:

xπ>0, xι>xncotθ0

where μ= — cosθ0. After these changes of variables the cone ^ has become a
deformed cone, but it suffices to prove the result in the new Ω for any closed cone
in Ω as before - which we still denote as (β.

Near the origin in Ω we shall construct a function zeC2(Ω)nC(Ω) satisfying

z = 0 on 3Ω (A.13)

z(x)^co\x\p i n # , with c o >O (A.14)

Lz^O i n Ω . (A.15)

As in the proof of Lemma S we find that for some small t > 0, w + tz ̂  0 in Ωc, and
the desired conclusion follows.

Introduce the complex variable
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The wedge Ω is then given by 0 < a r g ζ < θ0 and on Ω the function

v = Im(ζπ/θ°)

is harmonic in the variables {xvxn) and vanishes on dΩ. For k = pθo/π>l set

z = vk.

Then z satisfies (A. 13) and (A. 14), and we will prove that z satisfies (A. 15) - the
proof of the lemma will then be complete.

Near the origin in Ω we have, for ij = 1, n,

Thus

^ c i lCl p ~ 2 for some c ^ O .

Since Lz = zJCiλi + zJCnJCn at 0, and the leading coefficients of L are continuous, with
the others bounded, it follows that

in Ω near the origin.
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