Top-level heading

Discounted Hamilton-Jacobi equations with and without monotonicity

Categoria
Altro (categoria non censita)
Categoria non censita
Seminario di Equazioni Differenziali
Data e ora inizio evento
Data e ora fine evento
Aula
Altro (Aula esterna al Dipartimento)
Sede

Dipartimento di Matematica, Università di Roma "Tor Vergata"

Aula esterna
Aula Dal Passo
Speaker
Maxime Zavidovique (Sorbonne Université)
We are interested in (viscosity) solutions of Hamilton-Jacobi equations of the form $G( \lambda u_\lambda(x),x,D_x u_\lambda) = cst $ where $u_\lambda : M \to \mathbb{R}$ is a continuous function defined on a closed manifold and $G$ verifies convexity and growth conditions in the last variables. Such solutions carry invariant sets for the contact flow associated to $G$. The parameter $\lambda>0$ is aimed to be sent to $0$. It has been known that when $G$ is increasing in the first variable, $u_\lambda$ exists, is unique and the family converges as $\lambda \to 0$. We will explain that when this hypothesis is dropped, there can be non uniqueness of solutions $u_\lambda$ at $\lambda>0$ fixed. Moreover, there can be coexistence of converging families of solutions $(u_\lambda)_\lambda$ and diverging ones. (Collaboration with Davini, Ni and Yan) Note: This talk is part of the activity of the MIUR Department of Excellence Project MatMod@TOV (2023–2027).
Contatti/Organizzatori
sorrentino@mat.uniroma2.it