Loading [MathJax]/jax/output/HTML-CSS/jax.js

Top-level heading

Solutions to general elliptic equations with many critical points on nearly geodesically convex domains

Categoria
Altro (categoria non censita)
Categoria non censita
Seminario "PDE a Tutto SBAI"
Data e ora inizio evento
Data e ora fine evento
Sede

Sapienza Università di Roma

Aula esterna
Aula 1BI, Dipartimento SBAI
Speaker
Francesca Gladiali
Given a complete d-dimensional Riemannian manifold (M,g) I will prove that, for any pM),anynonlinearity\(f(q,u) with f(p,0)>0 and for any integer n2, there exists a sequence of smooth bounded domains \OmkM containing p and corresponding positive solutions uk:\Omk\R+ to the Dirichlet boundary problem \({Δguk=f(,uk) in \Omk,uk=0 on \Omk.\) such that the solution uk have exactly 2n-1 nondegenerate critical points in \Omk (specifically, n nondegenerate maxima and n-1 nondegenerate saddles). Moreover the domains \Omk are star-shaped with respect to p and become ``nearly geodesically convex'', in a precise sense, as k+. The proof relies on similar results in \Rd$,$d3, for the torsion problem. The talk is based on past and ongoing results involving A. Enciso. and M. Grossi.
Contatti/Organizzatori
massimo.grossi@uniroma1.it