Categoria:
Altro (categoria non censita)
Categoria non censita:
Seminario "PDE a Tutto SBAI"
Data e ora inizio evento:
Data e ora fine evento:
Sede:
Sapienza Università di Roma
Aula esterna:
Aula 1BI, Dipartimento SBAI
Speaker:
Francesca Gladiali
Given a complete d-dimensional Riemannian manifold (M,g) I will prove that, for any p∈M),anynonlinearity\(f(q,u) with f(p,0)>0 and for any integer n≥2, there exists a sequence of smooth bounded domains \Omk⊂M containing p and corresponding positive solutions uk:\Omk→\R+ to the Dirichlet boundary problem \({−Δguk=f(⋅,uk) in \Omk,uk=0 on ∂\Omk.\) such that the solution uk have exactly 2n-1 nondegenerate critical points in \Omk (specifically, n nondegenerate maxima and n-1 nondegenerate saddles). Moreover the domains \Omk are star-shaped with respect to p and become ``nearly geodesically convex'', in a precise sense, as k→+∞. The proof relies on similar results in \Rd$,$d≥3, for the torsion problem. The talk is based on past and ongoing results involving A. Enciso. and M. Grossi.
Contatti/Organizzatori:
massimo.grossi@uniroma1.it