Top-level heading

Generalized Fractional Telegraph Equations

Data e ora inizio evento
Data e ora fine evento
Sede

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, via A. Scarpa 16

Aula
Altro (Aula esterna al Dipartimento)
Aula esterna
Aula 1B1 (Palazzina RM002)
Speaker ed affiliazione
Jerome A. Goldstein
Think of \begin{center} \( u_{tt} + 2au_t + Au = 0 \) \end{center} as a wave equation. Bounded solutions of this equation tend to solutions of the heat equation \begin{center} \( 2av_t + Av = 0. \) \end{center} This asymptotic parabolicity result is due to Furth, Ornstein and Taylor (1917-1922). In 2002 Cascaval, Eckstein, Frota and J. Goldstein [CEFG] replaced \( A = -D^2 =-\left(\frac{d}{dx}\right)^2 \) by \( A^{\alpha} \), \( 0 < \alpha < 1 \). Included were calculations which allowed the friction to be replaced by a stronger friction term. This leads to a different limiting equation \begin{center} \( 2aA^b v_t + Av = 0 \) \end{center} for \( 0 < b < \frac{1}{2} \). The stronger friction term leads to a number of complications.
Contatti/Organizzatori
simone.creo@uniroma1.it