Seminario di Dipartimento - 28/09/2020

28 settembre, in sala di Consiglio e in modalità meet


ore 14:30
Vito Crismale (vincitore della procedura selettiva RTDB nel SSD MAT/05)
Studio di modelli di meccanica della frattura con tecniche di Calcolo delle Variazioni
Nel seminario richiamerò le idee generali dell’approccio variazionale alla meccanica della frattura nei solidi, basato sulla competizione fra opportune energie di superficie e di volume, e presenterò risultati recenti di esistenza relativi a modelli di frattura fragile e coesiva.

ore 15:15
Giulio Galise (vincitore della procedura selettiva RTDB nel SSD MAT/05)
Convexity: a key to fully nonlinear equations
I will present some recent results concerning highly degenerate elliptic equations of fully nonlinear type. In particular I will speak about the singular Dirichlet problem, the strong maximum principle and the critical exponents for significant examples of local and nonlocal elliptic equations. The leitmotiv of the whole seminar will be the convexity.

ore 16:00
Giuseppe Visconti (vincitore della procedura selettiva RTDA nel SSD MAT/08)
Modeling, Analysis and Numerics of PDEs in Applications
In this talk I will give a broad presentation of my research interests which are in the interplay of modeling, analysis and numerical treatment of Partial Differential Equations (PDEs) describing collective and emerging behavior of phenomena with a possible enormous impact on society, applications and engineering community. For instance, this is the case of traffic flow models, clustering and data flow problems, etc.
Mathematical models provide an elegant and robust tool to give important contributions in this direction. My work is mostly based on kinetic and macroscopic scale models which can be formally and rigorously derived from microscopic considerations in a multiscale paradigm, e.g. via mean-field limits and asymptotic or hydrodynamic limits.
The typical integro-differential setting and the large phase space associated with a kinetic equation, coupled with the necessity of computing high-order accuracy solutions and handling the stiffness of collision kernels, make the numerical treatment of kinetic and hydrodynamic models another key and challenging aspect of my research. My expertise concerns in particular the study and the analysis of high-order finite volume schemes.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma