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1 Symmetry in tensor spaces
With all the preliminary work done this will be now a short section, it serves as

an introduction to the first fundamental theorem of invariant theory, according

to the terminology of H.Weyl.

1.1 Intertwiners and invariants We have seen in Chap 1. 2.4 that, given two
actions of a group G, an equivariant map is just an invariant under the action of G on
maps.

For linear representations the action of G preserves the space of linear maps, so if U, V
are 2 linear representations

HomG(U, V ) = Hom(U, V )G.

For finite dimensional representations, we have identified, in a G equivariant way

Hom(U, V ) = U∗ ⊗ V = (U ⊗ V ∗)∗.

This last space is the space of bilinear functions on U × V ∗.
Explicitly a homomorphism f : U → V corresponds to the bilinear form

< f |u⊗ ϕ >=< ϕ|f(u) > .

We have thus a correspondence between intertwiners and invariants.
We will find it particularly useful, according to the Aronhold method, to use it when the

representations are tensor powers U = A⊗m; V = B⊗p and Hom(U, V ) = A∗⊗m ⊗B⊗p.
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220 Chap. 9, Tensor Symmetry

In particular when A = B; m = p we have:

(1.1.1) End(A⊗m) = End(A)⊗m = A∗⊗m ⊗A⊗m = (A∗⊗m ⊗A⊗m)∗.

Thus in this case

Proposition. We can identify, at least as vector spaces, the G endomorphisms of A⊗m

with the multilinear invariant functions on m variables in A and m variables in A∗.

Let V be an m−dimensional space. On the tensor space V ⊗n we consider 2 group
actions, one given by the linear group GL(V ) by the formula:

(1.1.2) g(v1 ⊗ v2 ⊗ . . .⊗ vn) := gv1 ⊗ gv2 ⊗ . . .⊗ gvn,

and the other of the symmetric group Sn given by:

(1.1.3) σ(v1 ⊗ v2 ⊗ . . .⊗ vn) = vσ−11 ⊗ vσ−12 ⊗ . . .⊗ vσ−1n.

We will refer to this second action as to the symmetry action on tensors. By the very
definition it is clear that these two actions commute.

Before we make any further analysis of these actions recall that in Chap. 5, §2.3 we
have studied symmetric tensors. Let us recall the main points of that analysis. Given a
vector v ∈ V the tensor vn = v ⊗ v ⊗ v . . .⊗ v is symmetric.

Fixed a basis e1, e2, . . . , em in V the basis elements ei1⊗ei2 . . .⊗ein are permuted by Sn
and the orbits are classified by the multiplicities h1, h2, . . . , hm with which the elements
e1, e2, . . . , em appear in the term ei1 ⊗ ei2 . . .⊗ ein .

The sum of the elements of the corresponding orbit are a basis of the symmetric tensors.
The multiplicities h1, h2, . . . , hm are non negative integers subject only to

∑
i hi = n.

If h := h1, h2, . . . , hm is such a sequence we denote by eh be the sum of elements in the
corresponding orbit. The image of the symmetric tensor eh in the symmetric algebra is(

n

h1 h2 . . . hm

)
eh1
1 eh2

2 . . . ehm
m .

If v =
∑
k xkek we have:

vn =
∑

h1+h2+...+hm=n

xh1
1 xh2

2 . . . xhm
m eh.

A linear function φ on the space of symmetric tensors is defined by < φ|eh >= ah and
computed on the tensor vn gives:

< φ|(
∑
k

xkek)n >=
∑

h1+h2+...+hm=n

xh1
1 xh2

2 . . . xhm
m ah.

We have that the dual of the space of symmetric tensors of degree n is identified with the
space of homogeneous polynomials of degree n.

Let us recall that a subset X ⊂ V is Zariski dense if the only polynomial vanishing on
X is 0, a typical example that we will use is, when the base field is infinite, the set of
vectors where a given polynomial is non zero (easy to verify).
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Lemma. i) The elements v⊗n, v ∈ V span the space of symmetric tensors.
ii) More generally, given a Zariski dense set X ⊂ V the elements v⊗n, v ∈ X span the

space of symmetric tensors.

Proof. Given a linear form on the space of symmetric tensors we restrict it to the tensors
v⊗n, v ∈ X obtaining the values of a homogeneous polynomial on X. Since X is Zariski
dense this polynomial vanishes if and only if the form is 0 hence the tensors v⊗n, v ∈ X
span the space of symmetric tensors. �

Of course the use of the word symmetric is coherent to the general idea of invariant
under the symmetric group.

1.2 Schur–Weyl duality We want to apply the general theory of semisimple algebras
to the two group actions introduced in the previous section. It is convenient to introduce
the two algebras of linear operators spanned by these actions; thus

(1) We call A the span of the operators induced by GL(V ) in End(V ⊗n).
(2) We call B the span of the operators induced by Sn in End(V ⊗n).

Our aim is to prove:

Proposition. If V is a finite dimensional vector space over an infinite field of any char-
acteristic B is the centralizer of A.

Proof. We start by identifying:

End(V ⊗n) = End(V )⊗n.

The decomposable tensor A1 ⊗A2 ⊗ . . .⊗An corresponds to the operator:

A1 ⊗A2 ⊗ . . .⊗An(v1 ⊗ v2 ⊗ . . .⊗ vn) = A1v1 ⊗A2v2 ⊗ . . .⊗Anvn.

Thus, if g ∈ GL(V ), the corresponding operator in V ⊗n is g⊗g⊗ . . .⊗g. From the Lemma
1.1 it follows that the algebra A coincides with the symmetric tensors in End(V )⊗n, since
GL(V ) is Zariski dense.

It is thus sufficient to show that, for an operator in End(V )⊗n, the condition to commute
with Sn is equivalent to be symmetric as a tensor.

It is sufficient to prove that the conjugation action of the symmetric group on End(V ⊗n)
coincides with the symmetry action on End(V )⊗n.

It is enough to verify the previous statement on decomposable tensors since they span
the tensor space, thus we compute:

σA1⊗A2⊗ . . .⊗Anσ−1(v1⊗ v2⊗ . . .⊗ vn) = σA1⊗A2⊗ . . .⊗An(vσ1⊗ vσ2⊗ . . .⊗ vσn) =

σ(A1vσ1 ⊗A2vσ2 ⊗ . . .⊗Anvσn) = Aσ−11v1 ⊗Aσ−12v2 . . . Aσ−1nvn =

(Aσ−11 ⊗Aσ−12 . . . Aσ−1n)(v1 ⊗ v2 ⊗ . . .⊗ vn).

This computation shows that the conjugation action is in fact the symmetry action and
finishes the proof. �

We draw now a main conclusion:
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Theorem. If the characteristic of F is 0, the algebras A,B are semisimple and each is
the centralizer of the other.

Proof. Since B is the span of the operators of a finite group it is semisimple by Maschke’s
theorem (Chap 6. 1.5), therefore, by the double centralizer Theorem (Chap. 6, Theorem
2.5) all statements follow from the previous Theorem which states that A is the centralizer
of B. �

Remark If the characteristic of the field F is not 0, in general the algebras A,B are
not semisimple, nevertheless it is still true (at least if F is infinite or big enough) that each
is the centralizer of the other (cf. Chap. 13, Theorem 7.1).

1.3 Invariants of vectors We formulate Theorem 1.2 in a different language.
Given two vector spaces V,W we have identified hom(V,W ) with W ⊗ V ∗ and with the

space of bilinear functions on W ∗ × V by the formulas (A ∈ hom(V,W ), α ∈W ∗, v ∈ V ):

(1.3.1) < α|Av > .

In case V,W are linear representations of a group G, A is in homG(V,W ) if and only if
the bilinear function < α|Av > is G invariant.

In particular we see that for a linear representation V the space of G linear endomor-
phisms of V ⊗n is identified to the space of multilinear functions of n covector2 and n
vector variables f(α1, α2, . . . , αn, v1, v2, . . . , vn) which are G invariant.

Let us see the meaning of this for G = GL(V ), V an m dimensional vector space. In this
case we know that the space of G endomorphisms of V ⊗n is spanned by the symmetric
group Sn, we want to see which invariant function fσ corresponds to a permutation σ. By
the formula 1.3.1 evaluated on decomposable tensors we get

fσ(α1, α2, . . . , αn, v1, v2, . . . , vn) =< α1 ⊗ α2 ⊗ . . .⊗ αn|σ(v1 ⊗ v2 ⊗ . . .⊗ vn) >=

< α1 ⊗ α2 ⊗ . . .⊗ αn|vσ−11 ⊗ vσ−12 ⊗ . . .⊗ vσ−1n >=
n∏
i=1

< αi|vσ−1i >=
n∏
i=1

< ασi|vi >

We can thus deduce:

Proposition. The space of GL(V ) invariant multilinear functions of n covector and n
vector variables is spanned by the functions:

(1.3.2) fσ(α1, α2, . . . , αn, v1, v2, . . . , vn) :=
n∏
i=1

< ασi|vi > .

1.4 First fundamental theorem for the linear group (FFT) Up to now we have
made no claim on the linear dependence or independence of the operators in Sn or of the
corresponding functions fσ, this will be analyzed in the chapter 13, §8.

2covector means linear form
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We want to drop now the restriction that the invariants be multilinear.

Take the space (V ∗)p×V q of p covector and q vector variables as representation of GL(V )
(dim(V ) = m). A typical element is a sequence (α1, α2, . . . , αp, v1, v2, . . . , vq), αi ∈
V ∗, vj ∈ V.

On this space consider the pq polynomial functions < αi|vj > which are clearly GL(V )
invariant, we prove:3

FFT First fundamental theorem for the linear group.
The ring of polynomial functions on V ∗p × V q which are GL(V ) invariant is generated

by the functions < αi|vj >.

Before starting to prove this theorem we want to make some remarks on its meaning.

Fix a basis of V and its dual basis in V ∗, with these bases V is identified with the set
of m dimensional column vectors and V ∗ to the space of m dimensional row vectors.

The group GL(V ) is then identified to the group Gl(m,C) of m×m invertible matrices.

Its action on column vectors is the product Av, A ∈ Gl(m,C), v ∈ V while on the row
vectors the action is by αA−1.

The invariant function < αi|vj > is then identified to the product of the row vector αi
with the column vector vj .

In other words identify the space (V ∗)p of p−tuples of row vectors to the space of p×m
matrices (in which the p rows are the coordinates of the covectors) and (V q) with the
space of m× q matrices, thus our representation is identified to the space of pairs:

(X,Y )|X ∈Mp,m, Y ∈Mm,q.

The action of the matrix group is by:

A(X,Y ) := (XA−1, AY ).

Consider the multiplication map:

(1.4.1) f : Mp,m ×Mm,q →Mp,q, f(X,Y ) := XY

the entries of the matrix XY are the basic invariants < αi|vj > thus the theorem can also
be formulated as:

Theorem. The ring of polynomial functions on Mp,m×Mm,q which are Gl(m,C) invari-
ant is given by the polynomial functions on Mp,q composed with the map f .

Proof. We will now prove the theorem in its first form by the Aronhold method.
Let g(α1, α2, . . . , αp, v1, v2, . . . , vq) be a polynomial invariant, without loss of gener-

ality we may assume that it is homogeneous in each of its variables, then we polarize
it with respect to each of its variables and obtain a new multilinear invariant of the

3at this moment we are in characteristic 0, but in Chapter 13 we will generalize our results to all

characteristics.



224 Chap. 9, Tensor Symmetry

form g(α1, α2, . . . , αN , v1, v2, . . . , vM ) where N,M are the total degrees of g in the α, v
respectively.

First we show that N = M . In fact, among the elements of the linear group we have
scalar matrices, given a scalar λ by definition it transforms v in λv and α in λ−1α and thus,
by the multilinearity hypothesis, it transforms the function g in λM−Ng, the invariance
condition implies M = N .

We can now apply Proposition 1.3 and deduce that g is a linear combination of functions
of type

∏N
i=1 < ασi|vi > .

We now apply restitution to compute g from g. It is clear that g has the desired form.
�

The study of the relations among invariants will be the topic of the second funda-
mental theorem, SFT. Here we only remark that, by elementary linear algebra, the
multiplication map f has, as image, the subvariety Dp,q(m) of p× q matrices of rank ≤ m.
This is the whole space if m ≥ min(p, q) otherwise it is a proper subvariety, called a deter-
minantal variety defined, at least set theoretically, by the vanishing of the determinants of
the m+ 1×m+ 1 minors of the matrix of coordinate functions xij on Mp,q.

It will be the content of the second fundamental theorem to prove that these determi-
nants generate a prime ideal which is thus the full ideal of relations among the invariants
< αi|vj >.

In fact it is even better to introduce a formal language, suppose that V is an affine
algebraic variety with the action of an algebraic group G. Suppose that p : V → W is a
morphism of affine varieties, inducing the comorphism p∗ : k[W ] → k[V ].

Definition. We say that p : V →W is a quotient under G and write W := V//G if p∗ is
an isomorphism of k[W ] to the ring of invariants k[V ]G.

Thus the FFT says in this geometric language, that the determinantal variety Dp,q(m)
is the quotient under GL(m,C) of (V ∗)⊕p ⊕ V ⊕q.

2 Young symmetrizers

2.1 Young diagrams We discuss now the symmetric group. The theory of cycles (cf.
Chap. 1, §2.2) implies that the conjugacy classes of Sn are in one to one correspondence
with the isomorphism classes of Z actions on [1, 2, . . . , n] and these are parameterized by
partitions of n.

As in Chap. 1, we express that µ := k1, k2, . . . , kn is a partition of n by µ ` n.
We shall denote by C(µ) the conjugacy class in Sn formed by the permutations decom-

posed in cycles of length k1, k2, . . . , kn, hence Sn = tµ`nC(µ).

Consider the group algebra R := Q[Sn] of the symmetric group, we wish to work over
Q since the theory has really this more arithmetic flavor. We will (implicitly) exhibit a
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decomposition as a direct sum of matrix algebras over Q:4

(2.1.1) R = Q[Sn] := ⊕µ`nMd(µ)(Q),

The numbers d(µ) will be computed in several ways from the partition µ.
Recall that, from the theory of group characters we know at least that

RC := C[Sn] :=
∑
i

Mni
(C),

where the number of summands is equal to the number of conjugacy classes, hence the
number of partitions of n. For every partition λ ` n we will construct a primitive
idempotent eλ in R so that R = ⊕λ`nReλR and dimQ eλReλ = 1.

In this way the left ideals Reλ will exhaust all irreducible representations. The descrip-
tion of 2.1.1 then follows from Chap. 6, Theorem 3.1, part 5).

In fact we will construct idempotents eλ, λ ` n so that dimQeλReλ = 1 and eλReµ = 0
if λ 6= µ. By the previous results we have that R contains a direct summand of the form
⊕µ`nMn(µ)(Q), or R = ⊕µ`nMn(µ)(Q) ⊕ R′. We claim that R′ = 0 in fact otherwise,
once we complexify, the algebra RC = ⊕µ`nMn(µ)(C) ⊕ R′C would contain more simple
summands than the number of partitions of n, a contradiction.

For a partition λ ` n let B be the corresponding Young diagram, formed by n boxes
which are partitioned in rows or in columns, the intersection between a row and a column
is either empty or it reduces to a single box.

In a more formal language consider the set N+ ×N+ of pairs of positive integers. For a
pair (i, j) ∈ N× N set Ci,j := {(h, k)|1 ≤ h ≤ i, 1 ≤ k ≤ j} (this is a rectangle).

These rectangular sets have the following simple but useful properties:
(1) Ci,j ⊂ Ch,k if and only if (i, j) ∈ Ch,k.
(2) If a rectangle is contained in the union of rectangles then it is contained in one of

them.

Definition. A Young diagram is a subset of N+ × N+ finite union of rectangles Ci,j.

In the literature this particular way of representing a Young diagram is also called a
Ferrer’s diagram, sometimes we will use this expression when we want to stress the formal
point of view.

There are two conventional ways to display a Young diagram (sometimes referred to as
the French and the English way) either as points in the first quadrant or in the fourth:
Example: partition 4311:

French

.

.

. . .

. . . .

English

. . . .

. . .

.

.

4so in this case all the division algebras coincide with Q.
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Any Young diagram can be written uniquely as a union of sets Ci,j so that no rectangle
in this union can be removed, the corresponding elements (i, j) will be called the vertices
of the diagram.

Given a Young diagram D (in French form) the set Ci := {(i, j) ∈ D}, i fixed, will be
called the ith column, the set Rj := {(i, j) ∈ D}, j fixed, will be called the jth row.

The lengths k1, k2, k3, . . . of the rows are a decreasing sequence of numbers which
determine completely the diagrams, thus we can identify the set of diagrams with n boxes
with the set of partitions of n, this partition is called the row shape of the diagram.

Of course we could also have used the column lengths and the so called dual partition
which is the column shape of the diagram.

The map that to a partition associates its dual is an involutory map which geometrically
can be visualized as flipping the Ferrer’s diagram around its diagonal.

The elements (h, k) in a diagram will be called boxes and displayed more pictorially as
(e.g. diagrams with 6 boxes, french display):

�
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�
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�
�

�
�
�
�
��

�
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���

�
��
���

���
���
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2.2 Symmetrizers

Definition 1. A bijective map from the set of boxes to the interval (1, 2, 3, . . . , n − 1, n)
is called a tableau. It can be thought as a filling of the diagram with numbers. The given
partition λ is called the shape of the tableau.

Example: partition 43115:

French

3
1
5 2 7
4 9 6 8

,

7
4
3 6 8
1 2 5 9

The symmetric group Sn acts on tableaux by composition:

σT : B T−−−−→ (1, 2, 3, . . . , n− 1, n) σ−−−−→ (1, 2, 3, . . . , n− 1, n).

A tableau induces two partitions on (1, 2, 3, . . . , n− 1, n).
The row partition defined by:
i, j are in the same part if they appear in the same row of T .

5the reader will notice the peculiar properties of the right tableau which we will encounter over and

over in the future
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Similarly for the column partition.

To a partition π of (1, 2, 3, . . . , n−1, n)6 one associates the subgroup Sπ of the symmetric
group of permutations which preserve the partition. It is isomorphic to the product of
the symmetric groups of all the parts of the partition. To a tableau T one associates two
subgroups RT ,CT of Sn.

(1) RT is the group preserving the row partition.
(2) CT the subgroup preserving the column partition.

It is clear that RT ∩ CT = 1 since each box is an intersection of a row and a column.
Notice that, if s ∈ Sn, the row and column partitions associated to sT are obtained

applying s to the corresponding partitions of T thus:

(2.2.1) RsT = sRT s−1, CsT = sCT s−1.

We define two elements in R = Q[Sn]:

(2.2.2) sT =
∑
σ∈RT

σ the symmetrizer on the rows

aT =
∑
σ∈CT

εσσ the antisymmetrizer on the columns.

Recall that εσ denotes the sign of the permutation. The two identities:

s2T =
∏
i

hi!sT , a2
T =

∏
i

ki!aT

where the hi are the lengths of the rows and ki the length of the columns, are clear.
It is better to get acquainted with these two elements from which we will build our main

object of interest.

(2.2.3) psT = sT = sT p, ∀p ∈ RT ; qaT = aT q = εqaT , ∀q ∈ CT .

It is then an easy exercise to check

Proposition. The left ideal Q[Sn]sT has as basis the elements gsT as g runs over a
set of representatives of the cosets gRT and it equals, as representation, the permutation
representation on such cosets.

The left ideal Q[Sn]aT has as basis the elements gaT as g runs over a set representatives
of the cosets gCT and it equals, as representation, the representation induced to Sn by the
sign representation of CT .

Now the remarkable fact comes, consider the product:

(2.2.4) cT := sTaT =
∑

p∈RT , q∈CT

εqpq

we will show that:
6there is an ambiguity in the use of the word partition. A partition of n is just a non increasing sequence

of numbers adding to n, while a partition of a set is in fact a decomposition of the set into disjoint parts.
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Theorem. There exists a positive integer p(T ) such that the element eT := cT

p(T ) is a
primitive idempotent.

Definition 2. The idempotent eT := cT

p(T ) is called the Young symmetrizer relative to the
given tableau.

Remark

(2.2.5) csT = scT s
−1.

We have thus, for a given λ ` n several conjugate idempotents which, we will show to be
primitive, associated to tableaux of row shape λ. Each of them will generate an irreducible
module associated to λ which will be denoted by Mλ.

For the moment let us remark that, from 2.2.4 follows that the integer p(T ) depends
only on the shape λ of T and thus we will denote it by p(T ) = p(λ).

2.3 The main Lemma The main property of the element cT which we will exploit
is the following, clear from its definition and 2.2.2.

(2.3.1) pcT = cT , ∀p ∈ RT ; cT q = εqcT , ∀q ∈ CT .

We need a fundamental combinatorial lemma, consider the partitions of n as decreasing
sequences of integers (including 0) and order them lexicographically.7

E.g. the partitions of 6 in increasing lexicographic order:

111111, 21111, 2211, 222, 3111, 321, 411, 42, 51, 6.

Lemma. Let S, T be two tableaux of row shapes

λ = h1 ≥ h2 ≥ . . . ≥ hn, µ = k1 ≥ k2 ≥ . . . ≥ kn

with λ ≥ µ, then one and only one of the two following possibilities holds:
i) Two numbers i, j appear in the same row in S and in the same column in T .
ii) λ = µ and pS = qT where p ∈ RS , q ∈ CT .

Proof. We consider the first row r1 of S. Since h1 ≥ k1, by the pigeon hole principle either
there are two numbers in r1 which are in the same column in T or h1 = k1 and we can act
on T with a permutation s in CT so that S and sT have the first row filled with the same
elements (possibly in a different order).

Remark that two numbers appear in the same column in T if and only if they appear
in the same column in sT or CT = CsT .

We now remove the first row in both S, T and proceed as before. At the end we are
either in case i) or λ = µ and we have found a permutation q ∈ CT such that S and qT
have each row filled with the same elements.

7We often drop 0 in the display.
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In this case we can find a permutation p ∈ RS such that pS = qT .

In order to complete our claim we need to show that these two cases are mutually
exclusive. Thus we have to remark that, if pS = qT as before then case i) is not verified.
In fact two elements are in the same row in S if and only if they are in the same row
in pS while they appear in the same column in T if and only if they appear in the same
column in qT . Since pS = qT two elements in the same row of pS are in different columns
of qT . �

Corollary. i) Given λ > µ partitions, S, T tableaux of row shapes λ, µ respectively, and
s any permutation, there exists a transposition u ∈ RS and a transposition v ∈ CT such
that us = sv.

ii) If, for a tableau T , s is a permutation not in RTCT then there exists a transposition
u ∈ RT and a transposition v ∈ CT such that us = sv.

Proof. i) From the previous lemma there are two numbers i, j in the same row for S
and in the same column for sT . If u = (i, j) is the corresponding transposition we have
u ∈ RS , u ∈ CsT . We set v := s−1us, we have v ∈ s−1CsT s = CT by 2.2.1. By definition
sv = uv.

ii) The proof is similar, we consider again a tableau T , construct s−1T and apply the
Lemma to s−1T, T .

If there exists a p′ ∈ Rs−1T , q ∈ CT with p′s−1T = qT since p′ = s−1ps, p ∈ RT we
would have that s−1p = q, s = pq−1 against the hypothesis. Hence there is a transposition
v ∈ CT and v ∈ Rs−1T or v = s−1us, u ∈ RT as required. �

2.4 Young symmetrizers 2 We draw now the conclusions relative to Young sym-
metrizers.

Proposition. i) Let S, T be two tableaux of row shapes λ > µ.
If an element a in the group algebra is such that:

pa = a, ∀p ∈ RS , and aq = εqa, ∀q ∈ CT

then a = 0.
ii) Given a tableau T and an element a in the group algebra such that:

pa = a, ∀p ∈ RT , and aq = εqa, ∀q ∈ CT

then a is a scalar multiple of the element cT .

Proof. i) Let us write a =
∑
s∈Sn

a(s)s, for any given s we can find u, v as in the previous
lemma.

By hypothesis ua = a, av = −a then a(s) = a(us) = a(sv) = −a(s) = 0 and thus a = 0.

ii) Using the same argument as above, we can say that, if s /∈ RTCT then a(s) = 0.
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Instead let s = pq, p ∈ RT , q ∈ CT then a(pq) = εqa(1) hence a = a(1)cT . �

Before we conclude let us recall some simple facts on algebras and group algebras.

If R is a finite dimensional algebra over a field F we can consider any element r ∈ R as
a linear operator on R (as vector space) by right or left action. Let us define tr(r) to be
the trace of the operator x→ xr,8 clearly tr(1) = dimFR. For a group algebra F [G] of a
finite group G an element g ∈ G, g 6= 1 gives rise to a permutation x→ xg, x ∈ G of the
basis elements without fixed points, hence: tr(1) = |G|, tr(g) = 0 if g 6= 0.

We are now ready to conclude. For R = Q[Sn] the theorems which we aim at are:

Theorem 1. i) cTRcT = cTRaT = sTRcT = sTRaT = QcT .
ii) c2T = p(λ)cT with p(λ) 6= 0 a positive integer.
iii) dimQRcT = n!

p(λ) .
iv) If U, V are two tableaux of shapes λ > µ then sURaV = aVRsU = 0.
v ) If U, V are tableaux of different shapes λ, µ we have cURcV = 0 = sURaV .

Proof. i) We cannot have cTRcT = 0 since R is semisimple, hence it is enough to prove
sTRaT = QcT . We apply the previous proposition and get that every element of sTRaT
satisfies ii) of that proposition, hence sTRaT = QcT .

ii) In particular we have c2T = p(λ)cT . Now compute the trace of cT , for the right
regular representation, from the previous discussion we have tr(cT ) = n! hence c2T 6= 0.
Since c2T = p(λ)cT we have that p(λ) 6= 0.

iii) eT := cT

p(λ) is idempotent and n!
p(λ) = tr(cT )

p(λ) = tr(eT ). The trace of an idempotent
operator is the dimension of its image. In our case ReT = RcT , hence n!

p(λ) = dimQRcT .

iv) If λ > µ we have, by part i) of the same proposition, sURaV = 0.

v) If λ > µ we have, by iv), cURcV = sUaURsV aV ⊂ sURaV = 0. Otherwise cVRcU = 0,
which since R has no nilpotent ideals, implies cURcV = 0 (Chap. 6, 3.1). �

From the general discussion perrformed in 2.1 we finally obtain:

Theorem 2. i) The elements eT := cT

p(λ) are primitive idempotents in R = Q[Sn].
ii) The left ideals ReT give all the irreducible representations of Sn explicitly indexed by

partitions.
iii) These representations are defined over Q.

We will indicate by Mλ the irreducible representation associated to a (row-)partition λ.

Remark The Young symmetrizer a priori does not depend only on the partition λ but
also on the labeling of the diagram, but to two different labelings we obtain conjugate
Young symmetrizers which therefore correspond to isomorphic irreducible representations.

8prove in fact that also the operator x→ rx has the same trace
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We could have used, instead of the product sTaT , the product aT sT in reverse order.
We claim that also in this way we obtain a primitive idempotent aT sT

p(λ) , relative to the
same irreducible representation.

The same proof could be applied but also we can argue applying the antiautomorphism
a→ a of the group algebra which sends a permutation σ to σ−1. Clearly:

aT = aT , sT = sT , sTaT = aT sT .

Thus 1
p(T )aT sT = eT is a primitive idempotent.

Since clearly cTaT sT = sTaTaT sT is non zero (a2
T is a non zero multiple of aT and so

(cTaT sT )aT is a non zero multiple of c2T ) we get that eT and eT are primitive idempotents
relative to the same irreducible representation and the claim is proved.

We will need in the computation of the characters of the symmetric group two more
remarks.

Consider the two left ideals RsT , RaT , we have given a first description of their structure
as representations in 2.2. They contain respectively aTRsT , sTRaT which are both 1
dimensional. Thus we have

Lemma. Mλ appears in its isotypic component in RsT , resp RaT with multiplicity 1. If
Mµ appears in RsT then µ ≤ λ and if it appears in RaT then µ ≥ λ.9

Proof. To see the multiplicity with which Mµ appears in a representation V it suffices to
compute the dimension of cTV or of cTV where T is a tableau of shape µ. Therefore the
statement follows from the previous results. �

In particular we see that the only irreducible representation which appears in both RsT ,
RaT is Mλ.

2.5 Duality There are several deeper informations on the representation theory of
the symmetric group of which we will describe some.

A first remark is about an obvious duality between diagrams.

Given a tableau T relative to a partition λ we can exchange its rows and columns
obtaining a new tableau T̃ relative to the partition λ̃ which in general is different from λ.
It is thus natural to ask in which way are the two representations tied.

Let Q(ε) denote the sign representation.

Proposition. Mλ̃ = Mλ ⊗Q(ε).

Proof. Consider the automorphism τ of the group algebra defined on the group elements
by τ(σ) := εσσ.

9we shall prove a more precise theorem later
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Clearly, given a representation % the composition %τ equals to the tensor product with
the sign representation; thus, if we apply τ to a primitive idempotent associated to Mλ we
obtain a primitive idempotent for Mλ̃.

Let us thus use a tableau T of shape λ and construct the symmetrizer, we have

τ(cT ) =
∑

p∈RT , q∈CT

εpτ(pq) = (
∑
p∈RT

εpp)(
∑
q∈CT

q).

We remark now that, since λ̃ is obtained from λ by exchanging rows and columns we have:

RT = CT̃ , CT = RT̃ .

thus τ(cT ) = aT̃ sT̃ = cT̃ , hence τ(eT ) = eT̃ . �

Remark. From the previous result follows also that p(λ) = p(λ̃).

3 The irreducible representations of the linear group 1

3.1 Representations of the linear groups We apply now the theory of symmetriz-
ers to the linear group.

Let M be a representation of a semisimple algebra A, B its centralizer. By the structure
theorem (Chap. 6) M = ⊕Ni ⊗∆i

Pi with Ni, Pi irreducible representations respectively
of A,B. If e ∈ B is a primitive idempotent then the subspace ePi 6= 0 for a unique
index i0 and eM = Ni0 ⊗ ePi ∼= Ni is irreducible as representation of A (associated to the
irreducible representation of B relative to e).

Thus, from Theorem 2 of 2.4, to get a list of the irreducible representations of the linear
group Gl(V ) appearing in V ⊗n, we may apply to tensor space the Young symmetrizers eT
and see when is eTV ⊗n 6= 0.

Assume we have t columns of length n1, n2, . . . , nt, and decompose the column preserving
group CT as a product

∏t
i=1 Sni of the symmetric groups of all columns.

By definition we get aT =
∏
ani

, the product of the antisymmetrizers relative to the
various symmetric groups of the columns.

Let us assume, for simplicity of notations, that the first n1 indices appear in the first
column in increasing order, the next n2 indices in the second column and so on, so that:

V ⊗n = V ⊗n1 ⊗ V ⊗n2 ⊗ . . .⊗ V ⊗nt ,

aTV
⊗n = an1V

⊗n1 ⊗ an2V
⊗n2 ⊗ . . .⊗ antV

⊗nt = ∧n1V ⊗ ∧n2V ⊗ . . .⊗ ∧ntV.

Therefore we have that, if there is a column of length > dim(V ), then aTV ⊗n = 0.

Otherwise we have ni ≤ dim(V ),∀i, and we prove the equivalent statement that
aT sTV

⊗n 6= 0. Let e1, e2, . . . , em be a basis of V and use for V ⊗n the corresponding
basis of decomposable tensors; let us consider the tensor:

(3.1.1) U = (e1 ⊗ e2 ⊗ . . .⊗ en1)⊗ (e1 ⊗ e2 ⊗ . . .⊗ en2)⊗ . . .⊗ (e1 ⊗ e2 ⊗ . . .⊗ ent).
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This is the decomposable tensor having ei in the positions relative to the indices of the
ith row. By construction it is symmetric with respect to the group RT of row preserving
permutations hence sTU = pU, p 6= 0.

Finally

(3.1.2) aTU = (e1 ∧ e2 ∧ . . . ∧ en1)⊗ (e1 ∧ e2 ∧ . . . ∧ en2)⊗ . . .⊗ (e1 ∧ e2 ∧ . . . ∧ ent) 6= 0.

Recall that the length of the first column of a partition λ (equal to the number of its
rows) is called the height of λ and indicated by ht(λ). We have thus proved:

Proposition. If T is a tableau of shape λ then eTV ⊗n = 0 if and only if ht(λ) > dim(V ).

For a tableau T of shape λ define:

(3.1.3) Sλ(V ) := eTV
⊗n, the Schur functor associated to λ.

We are implicitly using the fact that for two different tableaux T, T ′ of the same shape
we have a unique permutation σ with σ(T ) = T ′. Hence we have a canonical ismorphism
between the two spaces eTV ⊗n, eT ′V ⊗n.

Remark We shall justify the word functor in 7.1.
As a consequence, we thus have a description of V ⊗n as representation of Sn ×GL(V ).

Theorem.

(3.1.4) V ⊗n = ⊕ht(λ)≤dim(V )Mλ ⊗ Sλ(V )

Proof. We know that the two algebras A,B spanned by the linear and the symmetric
group are semisimple and each the centralizer of the other. By the structure theorem we
have thus V ⊗n = ⊕iMi ⊗ Si where the Mi are the irreducible representations of Sn which
appear. We have proved that the ones which appear are the Mλ, ht(λ) ≤ dim(V ) and
that Sλ(V ) is the corresponding irreducible representation of the linear group.

4 Characters of the symmetric group
As one can easily imagine the character theory of the symmetric and general

linear group are intimately tied together. There are basically two approaches,

a combinatorial approach due to Frobenius, computes first the characters of the

symmetric group and then deduces those of the linear group, and an analytic

approach, based on Weyl’s character formula which proceeds in the reverse order.

It is instructive to see both. There is in fact also a more recent algebraic approach

to Weyl’s character formula which we will not discuss (cf. [Hu]).

4.1 Character table Up to now we have been able to explicitly parameterize both
the conjugacy classes and the irreducible representations of Sn by partitions of n. A way
to present a partition is to give the number of times that each number i appears.
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If i appears ki times in a partition µ, the partition is indicated by:

(4.1.1) µ := 1k12k23k3 . . . iki . . . .

Let us indicate by

(4.1.2) a(µ) := k1!k2!k3! . . . ki! . . . , b(µ) := 1k12k23k3 . . . iki . . .

(4.1.3) n(µ) = a(µ)b(µ) := k1!1k1k2!2k2k3!3k3 . . . ki!iki . . .

We need to interpret now the number n(µ) in terms of the conjugacy class C(µ):

Proposition. If s ∈ C(µ), n(µ) is the order of the centralizer Gs of s and |C(µ)|n(µ) = n!.

Proof. Let us write the permutation s as a product of a list of cycles ci. If g centralizes s
we have that the cycles gcig−1 are a permutation of the given list of cycles.

It is clear that in this way we get all possible permutations of the cycles of equal length.
Thus we have a surjective homomorphism of Gs to a product of symmetric groups

∏
Ski ,

its kernel H is formed by permutations which fix each cycle.
A permutation of this type is just a product of permutations, each on the set of indices

appearing in the corresponding cycle, and fixing it.
For a full cycle the centralizer is the cyclic group generated by the cycle, so H is a

product of cyclic groups of order the length of each cycle. The formula follows. �

The computation of the character table of Sn consists, given two partitions λ, µ, to
compute the value of the character of an element of the conjugacy class C(µ) on the
irreducible representation Mλ. Let us denote by χλ(µ) this value.

The final result of this analysis is expressed in compact form through symmetric func-
tions. Recall that we denote ψk(x) =

∑n
i=1 x

k
i . For a partition µ ` n := k1, k2, . . . , kn

set:
ψµ(x) := ψk1(x)ψk2(x) . . . ψkn(x).

Using the fact that the Schur functions are an integral basis of the symmetric functions
there exist (unique) integers cλ(µ) for which:

(4.1.4) ψµ(x) =
∑
λ

cλ(µ)Sλ(x).

We interpret these numbers as class functions cλ on the symmetric group

cλ(C(µ)) := cλ(µ)

and have.

Theorem Frobenius. For all partitions λ, µ ` n we have

(4.1.5) χλ(µ) = cλ(µ).

The proof of this Theorem is quite elaborate, and we divide it in 5 steps.



4.1 Characters of the symmetric group 235

Step 1 First we transform the Cauchy formula in a new identity.
Step 2 Next we prove that the class functions cλ are orthonormal.
Step 3 To each partition we associate a permutation character βλ.
Step 4 We prove that the matrix expressing the functions βλ in terms of the cµ is
triangular with 1 on the diagonal.
Step 5 We formulate the Theorem of Frobenius in a more precise way and prove it.

Step 1 In order to follow Frobenius approach we go back to symmetric functions in n
variables x1, x2, . . . , xn. We shall freely use the Schur functions and the Cauchy formula
for symmetric functions: ∏

i,j=1,n

1
1− xiyj

=
∑
λ

Sλ(x)Sλ(y)

proved in Chap. 2, §4.1.
We change its right hand side as follows. Compute:

log(
n∏

i,j=1

1
1− xiyj

) =
n∑

i,j=1

∞∑
h=1

(xiyj)h

h
=

(4.1.6)
∞∑
h=1

n∑
i,j=1

(xiyj)h

h
=

∞∑
h=1

ψh(x)ψh(y)
h

.

Taking the exponential we get the following expression:

(4.1.7) exp(
∞∑
h=1

ψh(x)ψh(y)
h

) =
∞∑
k=0

1
k!

(
∞∑
h=1

ψh(x)ψh(y)
h

)k =

(4.1.8)
∞∑
k=0

1
k!

∑
P∞

i=1 ki=k

(
k

k1 k2 . . .

)
ψ1(x)k1ψ1(y)k1

1
ψ2(x)k2ψ2(y)k2

2k2
ψ3(x)k3ψ3(y)k3

3k3
. . . .

then from 4.1.3 we deduce

(4.1.9)
∑
µ

1
n(µ)

ψµ(x)ψµ(y) =
∑
λ

Sλ(x)Sλ(y).

Step 2 Consider two class functions a, b as functions on partitions, their Hermitian
product is thus:∑

µ`n

1
n!

∑
g∈C(µ)

a(g)b(g) =
∑
µ`n

1
n!
|C(µ)|a(µ)b(µ) =

∑
µ`n

1
n(µ)

a(µ)b(µ).

Let us now substitute in the identity 4.1.9 the expression ψµ =
∑
λ cλ(µ)Sλ, and get:

(4.1.10)
∑
µ`n

1
n(µ)

cλ1(µ)cλ2(µ) =
{

0 if λ1 6= λ2

1 if λ1 = λ2

.
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We have thus that the class functions cλ are an orthonormal basis, completing Step 2.

Step 3 We consider now some permutation characters.
Take a partition λ := h1, h2, . . . , hk of n.
Consider the subgroup Sλ := Sh1 × Sh2 × . . .× Shk

and the permutation representation
on:

(4.1.11) Sn/Sh1 × Sh2 × . . .× Shk
.

We will indicate by βλ the corresponding character.

A permutation character is given by the formula χ(g) =
∑
i
|G(g)|
|H(gi)| (1.4.3 of Chap. 8).

Let us apply it to the case G/H = Sn/Sh1 × Sh2 × . . . × Shk
and for a permutation g

relative to a partition µ := 1p12p23p3 . . . ipi . . . npn .
A conjugacy class in Sh1×Sh2× . . .×Shk

is given by k partitions µi ` hi of the numbers
h1, h2, . . . , hk. The conjugacy class of type µ, intersected with Sh1 ×Sh2 × . . .×Shk

, gives
all possible k tuples of partitions µ1, µ2, . . . , µk of type

µh := 1p1h2p2h3p3h . . . ipih . . .

and:
k∑
h=1

pih = pi.

In a more formal way we may define a direct sum of two partitions λ = 1p12p23p3 . . . ipi . . . ,
µ = 1q12q23q3 . . . iqi . . . as the partition:

λ⊕ µ := 1p1+q12p2+q23p3+q3 . . . ipi+qi . . .

and remark that, with the notations of 4.1.2, b(λ+ µ) = b(λ)b(µ).
When we decompose µ = ⊕ki=1µi, we have b(µ) =

∏
b(µi).

The cardinality mµ1,µ2,... ,µk
of the class µ1, µ2, . . . , µk in Sh1 × Sh2 × . . .× Shk

is:

mµ1,µ2,... ,µk
=

k∏
j=1

hj !
n(µj)

=
k∏
j=1

hj !
a(µj)

1
b(µ)

Now
k∏
j=1

a(µj) =
k∏
h=1

(
n∏
i=1

pih!)

So we get:

mµ1,µ2,... ,µk
=

1
n(µ)

k∏
j=1

hj !
n∏
i=1

(
pi

pi1pi2 . . . pik

)
.

Finally for the number βλ(µ) we have:

βλ(µ) =
n(µ)∏k
i=1 hi!

∑
µ=⊕k

i=1µi, µi`hi

mµ1,µ2,... ,µk
=

∑
µ=⊕k

i=1µi, µi`hi

n∏
i=1

(
pi

pi1pi2 . . . pik

)
.
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This sum is manifestly the coefficient of xh1
1 xh2

2 . . . xhk

k in the symmetric function ψµ(x).
In fact when we expand

ψµ(x) = ψ1(x)p1ψ2(x)p2 . . . ψi(x)pi . . .

for each factor ψk(x) =
∑n
i=1 x

k
i one selects the index of the variable chosen and constructs

a corresponding product monomial.
For each such monomial denote by pij the number of choices of the term xij in the pi

factors ψi(x), we have
∏
i

(
pi

pi1pi2...pik

)
such choices and they contribute to the monomial

xh1
1 xh2

2 . . . xhk

k if and only if
∑
i ipij = hj .

Step 4 If Σλ denotes the sum of all monomials in the orbit of xh1
1 xh2

2 . . . xhk

k we get the
formula:

(4.1.12) ψµ(x) =
∑
λ

βλ(µ)Σλ(x).

We wish to expand now the basis Σλ(x) in terms of the basis Sλ(x) and conversely:

(4.1.13) Σλ(x) =
∑
µ

pλ,µSµ(x), Sλ(x) =
∑
µ

kλ,µΣµ(x).

In order to explicit some information about the matrices:

(pλ,µ), (kλ,µ)

recall that the partitions are totally ordered by lexicographic ordering.
We also order the monomials by the lexicographic ordering of the sequence of exponents

h1, h2, . . . , hn of the variables x1, x2, . . . , xn.
We remark that the ordering of monomials has the following immediate property:
If M1,M2, N are 3 monomials and M1 < M2 then M1N < M2N .
For any polynomial p(x) we can thus select the leading monomial l(p) and for two

polynomials p(x), q(x) we have:
l(pq) = l(p)l(q).

For a partition µ ` n := h1 ≥ h2 ≥ . . . ≥ hn the leading monomial of Σµ is

xµ := xh1
1 xh2

2 . . . xhn
n .

Similarly the leading monomial of the alternating function Aµ+%(x) is:

xh1+n−1
1 xh2+n−2

2 . . . xhn
n = xµ+%.

We compute now the leading monomial of the Schur function Sµ:

xµ+% = l(Aµ+%(x)) = l(Sµ(x)V (x)) = l(Sµ(x))x%

we deduce that:
l(Sµ(x)) = xµ.

This computation has the following immediate consequence:
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Corollary. The matrices P := (pλ,µ), Q := (kλ,µ) are upper triangular with 1 on the
diagonal.

Proof. A symmetric polynomial with leading coefficient xµ is clearly equal to Σµ plus a
linear combination of the Σλ, λ < µ this proves the claim for the matrix Q. The matrix
P is the inverse of Q and the claim follows. �

Step 5 We can now conclude a refinement of the computation of Frobenius:

Theorem 2. i) βλ = cλ +
∑
φ<λ kφ,λcφ, kφ,λ ∈ N. cλ =

∑
µ≥λ pµλbµ.

ii) The functions cλ(µ) are a list of the irreducible characters of the symmetric group.
iii) χλ = cλ.

Proof. From the various definitions we get:

(4.1.14) cλ =
∑
φ

pφ,λbφ, βλ =
∑
φ

kφ,λcφ,

therefore the functions cλ are virtual characters. Since they are orthonormal they are ±
the irreducible characters.

From the recursive formulas it follows that βλ = cλ +
∑
φ<λ kφ,λcφ, mλ,φ ∈ Z.

Since βλ is a character it is a positive linear combination of the irreducible characters, it
follows that each cλ is an irreducible character and that the coefficients kφ,λ ∈ N represent
the multiplicities of the decomposition of the permutation representation into irreducible
components.10

iii) Now we prove the equality χλ = cλ by decreasing induction. If λ = n is one row
then the module Mλ is the trivial representation as well as the permutation representation
on Sn/Sn.

Assume χµ = cµ for all µ > λ. We may use Lemma 2.4 and know that Mλ appears
in its isotypic component in RsT with multiplicity 1 and does not appear in RsU for any
tableau of shape µ > λ.

We have remarked that RsT is the permutation representation of character βλ in which
by assumption the representation Mλ appears for the first time (with respect to the
ordering of the λ). Thus the contribution of Mλ to its character must be given by the
term cλ. �

Remark The basic formula ψµ(x) =
∑
λ cλ(µ)Sλ(x) can be multiplied by the Vander-

monde determinant getting

(4.1.15) ψµ(x)V (x) =
∑
λ

cλ(µ)Aλ+%(x).

Now we may apply the leading monomial theory and deduce that cλ(µ) is the coefficient
in ψµ(x)V (x) belonging to the leading monomial xλ+ρ of Aλ+%.

10The numbers kφ,λ are called Kostka numbers. As we shall see they count some combinatorial objects

called semistandard tableaux.
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This furnishes a possible algorithm, we will discuss later some features of this formula.

4.2 Frobenius character There is a nice interpretation of the theorem of Frobenius.

Definition. The linear isomorphism between characters of Sn and symmetric functions
of degree n which assigns to χλ the Schur function Sλ is called the Frobenius character.
It is denoted by χ→ F (χ).

Lemma. The Frobenius character can be computed by the formula:

(4.2.1) F (χ) =
1
n!

∑
σ∈Sn

χ(σ)ψµ(σ)(x) =
∑
µ`n

χ(µ)
n(µ)

ψµ(x).

Proof. By linearity it is enough to prove it for χ = χλ. From 4.1.4 and 4.1.10 we have:

F (χλ) =
∑
µ`n

cλ(µ)
n(µ)

ψµ(x) =
∑
µ`n

cλ(µ)
n(µ)

∑
γ

cγ(µ)Sγ(x) =
∑
γ

∑
µ

cλ(µ)cγ(µ)
n(µ)

Sγ(x) = Sλ(x).

�

Recall that n(µ) is the order of the centralizer of a permutation with cycle structure µ.
This shows the following important multiplicative behavior of the Frobenius character.

Theorem. Given two representations V,W of Sm, Sn respectively we have:

(4.2.2) F (IndSn+m

Sn×Sm
(V ⊗W )) = F (V )F (W ).

Proof. Let us denote by χ the character of IndSm+n

Sm×Sn
(V ⊗W ). Recall the discussion of

induced characters in Chap 8. There we proved (formula 1.4.2), χ(g) =
∑
i
|G(g)|
|H(gi)|χV (gi).

Where |G(g)| is the order of the centralizer of g in G, the elements gi run on representatives
of the conjugacy classes Oi in H, decomposing the intersection of the conjugacy class of g
in G with H.

In our case we deduce that χ(σ) = 0 unless σ is conjugate to an element (a, b) of Sn×Sm.
In term of partitions, the partitions ν ` n+m which contribute to the characters are the
ones of type λ⊕ µ. In the language of partitions the previous formula 1.4.2 becomes:

χ(ν) =
∑

ν=λ+µ

n(λ+ µ)
n(λ)n(µ)

χV (λ)χW (µ)

since ψλ⊕µ = ψλψµ we obtain for F (χ):

F (χ) =
∑

ν`m+n

χ(ν)ψν
n(ν)

=
∑
ν

ψν
n(ν)

∑
ν=λ+µ

n(λ+ µ)
n(λ)n(µ)

χV (λ)χW (µ) =

∑
λ`m,µ`n

χV (λ)χW (µ)
n(λ)n(µ)

ψλψµ = F (λ)F (µ)
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�

4.3 Molien’s formula We discuss a complement to the representation theory of Sn.
It will be necessary to work formally with symmetric functions in infinitely many vari-

ables, a formalism which has been justified in Chap. 2, 1.1.
With this in mind we think of the identities of §4, as identities in infinitely many

variables.

First of all a convention. If we are given a representation of a group on a graded vector
space U := {Ui}∞i=0 (i.e. a representation on each Ui) its character is usually written as a
power series with coefficients in the character ring in a variable q:11

(4.3.1) χU (t) :=
∑
i

χiq
i.

Where χi is the character of the representation Ui.

Definition. The expression 4.3.1 is called a graded character.

Graded characters have some formal similarities with characters. Given two graded
representations U = {Ui}i, V = {Vi}i we have their direct sum, and their tensor product

(U ⊕ V )i := Ui ⊕ Vi, (U ⊗ V )i := ⊕ih=0Uh ⊗ Vi−h.

For the graded characters we have clearly:

(4.3.2) χU⊕V (q) = χU (q) + χV (q), χU⊗V (q) = χU (q)χV (q).

Let us consider a simple example.12

Lemma Molien’s formula. Given a linear operator A on a vector space U its action on
the symmetric algebra S(U) has as graded character:

(4.3.3)
∞∑
i=0

tr(Si(A))qi =
1

det(1− qA)

Its action on the exterior algebra ∧U has as graded character:

(4.3.4)
dimU∑
i=0

tr(∧i(A))qi = det(1 + qA)

Proof. For every symmetric power Sk(U) the character of the operator induced by A is a
polynomial in A. Thus it is enough to prove the formula, by continuity and invariance,
when A is diagonal.

11It is now quite usual to use q as variable since it often appears coming from computations on finite

fields where q = pr or as quantum deformation parameter
12strictly speaking we are not treating now a group, but the set of all matrices under multiplication,

which is only a semigroup, for this set tensor product of representation makes sense but not duality.
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Take a basis of eigenvectors ui, i = 1, . . . , n with eigenvalue λi.

Then S[U ] = S[u1]⊗ S[u2]⊗ . . .⊗ S[un] and S[ui] =
∑∞
h=0 Fu

h
i .

The graded character of S[ui] is
∑∞
h=0 λ

h
i q
h = 1

1−λiq
hence:

χS[U ](q) =
n∏
i=1

χS[ui](q) =
1∏n

i=1(1− λiq)
=

1
det(1− qA)

.

Similarly ∧U = ∧[u1]⊗ ∧[u2]⊗ . . .⊗ ∧[un] and ∧[ui] = F ⊕ Fui hence

χ∧[U ](q) =
n∏
i=1

χ∧[ui](q) =
n∏
i=1

(1 + λiq) = det(1 + qA).

�

We apply the previous discussion to Sn acting on the space Cn permuting the coordinates
and the representation that it induces on the polynomial ring C[x1, x2, . . . , xn].

We denote by
∑∞
i=0 χiq

i the corresponding graded character.

If σ is a permutation with cycle decomposition of lengths µ(σ) = µ := m1,m2, . . .mk

the standard basis of Cn decomposes into k−cycles each of length mi. On the subspace
relative to a cycle of length m, σ acts with eigenvalues the m-roots of 1 and

det(1− qσ) =
k∏
i=1

mi∏
j=1

(1− e
j2π

√
−1

mi q) =
k∏
i=1

(1− qmi)

Thus the graded character of σ acting on the polynomial ring is

1
det(1− qσ)

=
∏
i

∞∑
j=0

qjmi =
∏
i

ψmi
(1, q, q2, . . . , qk, . . . ) =

ψµ(1, q, q2, . . . , qk, . . . ) =
∑
λ`n

χλ(σ)Sλ(1, q, q2, . . . , qk, . . . ).

To summarize

Theorem 1. The graded character of Sn acting on the polynomial ring is

(4.3.5)
∑
λ`n

χλSλ(1, q, q2, . . . , qk, . . . ).

Exercise Prove this formula directly.
(Hint) C[x1, . . . , xn] = C[x]⊗n = ⊕λMλ ⊗ Sλ(C[x]).

We have a corollary of this formula. If λ = h1 ≥ h2 · · · ≥ hn, the term of lowest degree
in q in Sλ(1, q, q2, . . . , qk, . . . ) is clearly given by the leading term xh1

1 xh2
2 . . . xhn

n computed
in 1, q, q2, . . . , qn and this gives qh1+2h2+3h3+···+nhn . We deduce that the representation
Mλ of Sn appears for the first time in degree h1 +2h2 +3h3 + · · ·+nhn and in this degree
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it appears with multiplicity 1. This particular submodule of C[x1, x2, . . . , xn] is called the
Specht module and it plays an important role.13

Now we want to discuss another related representation.
Recall first that C[x1, x2, . . . , xn] is a free module over the ring of symmetric functions

C[σ1, σ2, . . . , σn] of rank n!. It follows that, for every choice of the numbers a := a1, . . . , an,
the ring Ra := C[x1, x2, . . . , xn]/ < σi − ai > constructed from C[x1, x2, . . . , xn] modulo
the ideal generated by the elements σi − ai, is of dimension n! and a representation of Sn.

We claim that it is always the regular representation.

Proof. First we prove it in the case in which the polynomial tn − a1t
n−1 + a2t

n−2 − · · ·+
(−1)nan has distinct roots α1, . . . , αn. This means that the ring C[x1, x2, . . . , xn]/ <
σi−ai > is the coordinate ring of the set of the n! distinct points ασ(1), . . . , ασ(n), σ ∈ Sn.
This is clearly the regular representation.

We know that the condition for a polynomial to have distinct roots is open in the
coefficients and given by the non vanishing of the discriminant (Chap. 1).

It is easily seen that the character of Ra is continuous in a and, since the characters of
a finite group are a discrete set this implies that the character is constant. �

It is of particular interest (combinatorial and geometric) to analyze the special case
a = 0 and the ring R := C[x1, x2, . . . , xn]/ < σi > which is a graded algebra affording the
regular representation.

Thus the graded character χR(q) of R is a graded form of the regular representation.
To compute it notice that, as a graded representations, we have an isomorphism

C[x1, x2, . . . , xn] = R⊗ C[σ1, σ2, . . . , σn],

and thus an identity of graded characters.
The ring C[σ1, σ2, . . . , σn] has the trivial representation, by definition, and generators

in degree 1, 2, . . . , n; so its graded character is just
∏n
i=1(1− qi)−1. We deduce:

Theorem 2.

χR(q) =
∑
λ`n

χλSλ(1, q, q2, . . . , qk, . . . )
n∏
i=1

(1− qi).

Notice then that the series Sλ(1, q, q2, . . . , qk, . . . )
∏n
i=1(1−qi) represent the multiplicities

of χλ in the various degrees of R and thus are polynomials with positive coefficients with
sum the dimension of χλ.

Exercise Prove that the Specht module has non zero image in the quotient ring
R := C[x1, x2, . . . , xn]/ < σi >.

The ring R := Z[x1, x2, . . . , xn]/ < σi > has an interesting geometric interpretation as
the cohomology algebra of the flag variety. This variety can be understood as the space

13it appears in the Springer representation, for instance, cf. [DP2].
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of all decompositions Cn = V1 ⊥ V2 ⊥ · · · ⊥ Vn into orthogonal 1-dimensional subspaces.
The action of the symmetric group is induced by the topological action permuting the
summands of the decomposition (Chap. 10, 6.5).

5 The hook formula

5.1 Dimension of Mλ We want to deduce now a formula, due to Frobenius, for the
dimension d(λ) of the irreducible representation Mλ of the symmetric group.

From 4.1.15 applied to the partition 1n, corresponding to the conjugacy class of the
identity, we obtain:

(5.1.1) (
n∑
i=1

xi)nV (x) =
∑
λ

d(λ)Aλ+%(x).

Write the development of the Vandermonde determinant as
∑
σ∈Sn

εσ
∏n
i=1 x

σ(n−i+1)−1
i .

Letting λ+ ρ = `1 > `2 > · · · > `n, the number d(λ) is the coefficient of
∏
i x

`i
i in

(
n∑
i=1

xi)n
∑
σ∈Sn

εσ

n∏
i=1

x
σ(n−i+1)−1
i .

Thus a term εσ
(

n
k1 k2 ...kn

) ∏n
i=1 x

σ(n−i+1)−1+ki

i contributes to
∏
i x

`i
i if and only if ki =

`i − σ(n− i+ 1) + 1. We deduce

d(λ) =
∑

σ∈Sn|∀i
`i−σ(n−i+1)+1≥0

εσ
n!∏n

i=1(`i − σ(n− i+ 1) + 1)!
.

We change the term

n!
n∏
i=1

1
(`i − σ(n− i+ 1) + 1)!

=
n!∏n
i=1 `i!

n∏
i=1

∏
0≤k≤

σ(n−i+1)−2

(`i − k)

and remark that this formula makes sense, and it is 0, if σ does not satisfy the restriction
`i − σ(n− i+ 1) + 1 ≥ 0.

Thus

d(λ) =
n!∏n
i=1 `i!

d(λ), d(λ) =
∑
σ∈Sn

εσ

n∏
i=1

∏
0≤k≤

σ(n−i+1)−2

(`i − k).
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d(λ) is the value of the determinant of a matrix with
∏

0≤k≤j−2(`i − k) in the n− i+ 1, j
position. ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 `n `n(`n − 1) . . .
∏

0≤k≤n−2(`n − k)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
1 `i `i(`i − 1) . . .

∏
0≤k≤n−2(`i − k)

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
1 `1 `1(`1 − 1) . . .

∏
0≤k≤n−2(`1 − k)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This determinant, by elementary operations on the columns, reduces to the Vandermonde
determinant in the `i with value

∏
i<j(`i − `j). Thus we obtain the formula of Frobenius:

(5.1.2) d(λ) =
n!∏n
i=1 `i!

∏
i<j

(`i − `j) = n!
n∏
j=1

∏
i,i<j(`i − `j)

`j !
.

5.2 Hook formula We want to give a combinatorial interpretation of 5.1.2. Notice
that, fixing j, in

Q
i<j(`i−`j)
`j !

the j − 1 factors of the numerator cancel the corresponding
factors in the denominator, leaving `j − j + 1 factors. In all

∑
j `j −

∑n
j=1(j − 1) = n are

left.
These factors can be interpreted has the hook lengths of the boxes of the corresponding

diagram.
More precisely given a box x of a French diagram its hook is the set of elements of the

diagram which are either on top or to the right of x, including x. E.g. we mark the hooks
of 1, 2; 2, 1; 2, 2 in 4,3,1,1:

.

.

. � .

. � � �

�
�
� � �
. . . .

.

.

. � �

. . . .

The total number of boxes in the hook of x is the hook length of x, denoted by hx.
Frobenius formula for the dimension d(λ), can be reformulated into the hook formula.

Theorem. Denote by B(λ) the set of boxes of a diagram of shape λ:

(5.2.1) d(λ) =
n!∏

x∈B(λ)

hx
, hook formula.

Proof. It is enough to show that, the factors in the factorial `i! which are not canceled by
the factors of the numerator, are the hook lengths of the boxes in the ith row. This will
prove the formula.

In fact let hi = `i + i− n be the length of the ith row. Given k > i let us consider the
hk−1−hk numbers strictly between `i−`k−1 = hi−hk−1+k−i−1 and `i−`k = hi−hk+k−i.
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Remark that hk−1 − hk is the number of cases, in the ith row, for which the hook ends
vertically on the k − 1 row. It is easily seen, since the vertical leg of each such hook has
length k − i and the horizontal arm length goes from hi − hk to hi − hk−1 + 1, that the
lengths of these hooks vary between k− i+hi−hk−1 and k− i+hi−hk−1, the previously
considered numbers. �

6 Characters of the linear group

6.1 Tensor character We plan to deduce from the previous computations the
character theory of the linear group.

For this we need to perform another character computation. Given a permutation s ∈ Sn
and a matrix X ∈ GL(V ) consider the product sX as an operator in V ⊗n, we want to
compute its trace.

Let µ = h1, h2, . . . , hk denote the cycle partition of s, introduce the obvious notation:

(6.1.1) Ψµ(X) =
∏
i

tr(Xhi).

Clearly Ψµ(X) = ψµ(x) where by x we denote the eigenvalues of X.

Proposition. The trace of sX as an operator in V ⊗n is Ψµ(X).

We shall deduce this Proposition as a special case of a more general formula.
Given n matrices X1, X2, . . . , Xn and s ∈ Sn compute the trace of s◦X1⊗X2⊗ . . .⊗Xn

(an operator in V ⊗n).
Decompose explicitly s into cycles s = c1c2 . . . ck and, for a cycle c := (ip ip−1 . . . i1)

define the function of the n matrix variables X1, X2, . . . , Xn:

(6.1.2) φc(X) = φc(X1, X2, . . . , Xn) := tr(Xi1Xi2 . . . Xip).

The previous proposition then follows from:

Theorem.

(6.1.3) tr(s ◦X1 ⊗X2 ⊗ . . .⊗Xn) =
k∏
j=1

φcj (X).

Proof. We first remark that, for fixed s, both sides of 6.1.3 are multilinear functions of the
matrix variables Xi, therefore in order to prove this formula it is enough to do it when
Xi = ui ⊗ ψi is decomposable.

Let us apply in this case the operator s ◦X1 ⊗X2 ⊗ . . .⊗Xn to a decomposable tensor
v1 ⊗ v2 . . .⊗ vn we have:

(6.1.4) s ◦X1⊗X2⊗ . . .⊗Xn(v1⊗ v2 . . .⊗ vn) =
n∏
i=1

< ψi|vi > us−11⊗us−12 . . .⊗us−1n.
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This formula shows that:

(6.1.5) s ◦X1 ⊗X2 ⊗ . . .⊗Xn = (us−11 ⊗ ψ1)⊗ (us−12 ⊗ ψ2) . . .⊗ (us−1n ⊗ ψn)

so that:

(6.1.6) tr(s ◦X1 ⊗X2 ⊗ . . .⊗Xn) =
n∏
i=1

< ψi|us−1i >=
n∏
i=1

< ψs(i)|ui > .

Now let us compute for a cycle c := (ip ip−1 . . . i1) the function

φc(X) = tr(Xi1Xi2 . . . Xip).

We get:

tr(ui1⊗ψi1ui2⊗ψi2 . . .⊗uip⊗ψip) = tr(ui1⊗ < ψi1 |ui2 >< ψi2 |ui3 > . . . < ψip−1 |uip > ψip)

(6.1.7) =< ψi1 |ui2 >< ψi2 |ui3 > . . . < ψip−1 |uip >< ψip |ui1 >=
p∏
j=1

< ψc(ij)|uij >

Formulas 6.1.6 and 6.1.7 imply the claim. �

6.2 Character of Sλ(V ) According to Theorem 3.2 of Chapter 2, the formal ring of
symmetric functions in infinitely many variables has as basis all Schur functions Sλ. The
restriction to symmetric functions in m−variables sets to 0 all Sλ with height > m.

We are ready to complete our work, let m = dimV , for a matrix X ∈ GL(V ) and
a partition λ ` n of height ≤ m let us denote by Sλ(X) := Sλ(x) the Schur function
evaluated in x = (x1, . . . , xm) the eigenvalues of X.

Theorem. Denote ρλ(X) the character of the representation Sλ(V ) of GL(V ), paired with
the representation Mλ of Sn in V ⊗n. We have ρλ(X) = Sλ(X).

Proof. If s ∈ Sn, X ∈ GL(V ) we have seen that the trace of s ◦X⊗n on V ⊗n is computed
by ψµ(X) =

∑
λ cλ(µ)Sλ(X) (definition of the cλ).

If m = dimV < n only the partitions of heigth ≤ m contribute to the sum.
On the other hand V ⊗n = ⊕ht(λ)≤dim(V )Mλ ⊗ Sλ(V ) thus:

ψµ(X) = tr(s ◦X⊗n) =
∑

λ`n,ht(λ)≤m

tr(s |Mλ)tr(X⊗n |Sλ(V )) =
∑

λ`n,ht(λ)≤m

χλ(µ)ρλ(X).

If m < n the ψµ(X) with parts of length ≤ m (i.e. ht(µ̃) ≤ m) are a basis of symmetric
functions in m variables, hence we can invert the system of linear equations and get
Sλ(X) = ρλ(X) �

The eigenvalues of X⊗n are monomials in the variables xi and thus we obtain:
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Corollary. Sλ(x) is a sum of monomials with positive coefficients.

We will see in Chapter 13 that one can index combinatorially the monomials which
appear by semistandard tableaux.

We can deduce also a dimension formula for the space Sλ(V ), dimV = n. Of course its
value is Sλ(1, 1, . . . , 1) which we want to compute from the determinantal formulas giving
Sλ(x) = Aλ+%(x)/V (x).

Let as usual λ := h1, h2, . . . , hn and li := hi + n − i. Of course we cannot substitute
directly for the xi the number 1 else we get 0/0. Ths we first substitute to xi → xi−1 and
then take the limit as x→ 1. Under the previous substitution we see that Aλ+% becomes
the Vandermonde determinant of the elements xli hence

Sλ(1, x, x2, . . . , xn−1) =
∏

1≤i<j≤n

(xli − xlj )
(xn−i − xn−j)

.

If a > b we have xa − xb = xb(x− 1)(xa−b−1 + xa−b−2 + · · ·+ 1) hence we deduce that:

dimSλ(V ) = Sλ(1, 1, 1, . . . , 1) =
∏

1≤i<j≤n

(li − lj)
(j − i)

=
∏

1≤i<j≤n

(hi − hj + j − i)
(j − i)

.

6.3 Cauchy formula as representations We want to give now an interpretation,
in the language of representations, of the Cauchy formula.

Suppose we are given a vector space U over which a torus T acts with a basis of weight
vectors ui with weight χi.

The graded character of the action of T on the symmetric and exterior algebras, are
given by Molien’s formula, 4.5 and are respectively:

(6.3.1)
1∏

1− χiq
,

∏
1 + χiq.

As an example consider two vector spaces U, V with basis u1, . . . , um; v1, . . . , vn re-
spectively, we may assume m ≤ n.

The maximal torus of diagonal matrices has eigenvalues x1, . . . , xm; y1, . . . , yn respec-
tively for each of them. On the tensor product we have the action of the product torus
and the basis ui ⊗ vj has eigenvalues xiyj .

Therefore the graded character on the symmetric algebra S[U⊗V ] is
∏n
i=1

∏m
j=1

1
1−xiyjq

.

By Cauchy’s formula we deduce that the character of the nth symmetric power Sn(U⊗V )
equals

∑
λ∈`n, ht(λ)≤m Sλ(x)Sλ(y).

We know that the rational representations of GL(U)×GL(V ) are completely reducible
and their characters can be computed by restricting to diagonal matrices. Thus we have
the description:

(6.3.2) Sn(U ⊗ V ) =
⊕

λ`n, ht(λ)≤m

Sλ(U)⊗ Sλ(V ).
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This is also referred to as Cauchy’s formula.

Remark that, if W ⊂ V is a subspace which we may assume formed by the first k basis
vectors, then the intersection of Sλ(U) ⊗ Sλ(V ) with S(U ⊗W ) has as basis the part of
the basis of weight vectors of Sλ(U) ⊗ Sλ(V ) relative to weights in which the variables
yj , j > k do not appear. Thus its character is obtained by setting to 0 these variables in
Sλ(y1, y2, . . . , ym) thus we clearly get that

(6.3.3) Sλ(U)⊗ Sλ(V ) ∩ S(U ⊗W ) = Sλ(U)⊗ Sλ(W )

Similarly it is clear, from the definition 3.1.3: Sλ(V ) := eTV
⊗n, that:

Proposition. If U ⊂ V is a subspace then Sλ(U) = Sλ(V ) ∩ U⊗n.

6.4 Multilinear elements One should stress the strict connection between the two
formulas, 6.3.2 and 3.1.4.

(6.3.2) Sn(U ⊗V ) =
⊕

λ`n, ht(λ)≤m

Sλ(U)⊗Sλ(V ), (3.1.4) V ⊗n =
⊕

ht(λ)≤dim(V )

Mλ⊗Sλ(V ).

This is clearly explained when we assume that U = Cn with canonical basis ei and we
consider the diagonal torus T acting by matrices Xei = xiei.

Let us go back to the formula 6.3.2, and apply it when dimV = n, W = Cn.
Consider the subspace Tn of S[Cn⊗ V ] formed by the elements

∏n
i=1 ei⊗ vi, vi ∈ V. Tn

is stable under the subgroup Sn ×GL(V ) ⊂ GL(n,C)×GL(V ), where Sn is the group of
permutation matrices. We have a mapping i : V ⊗n → Tn defined by:

(6.4.1) i : v1 ⊗ v2 ⊗ · · · ⊗ vn 7→
n∏
i=1

ei ⊗ vi.

Proposition. i) Tn is the weight space in S[Cn ⊗ V ], of weight χ(X) =
∏
i xi for the

torus T .
ii) The map i is an Sn ×GL(V ) linear isomorphism between V ⊗n and Tn.

Proof. The verification is immediate and left to the reader. �

Remark The character χ :=
∏n
i=1 xi is invariant under the symmetric group (and

generates the group of these characters) we call it the multilinear character.
As usual, when we have a representation W of a torus, we denote by Wχ the weight

space of character χ.
Now for every partition λ consider

(6.4.2) Sλ(Cn)χ := {u ∈ Sλ(Cn)|Xu =
∏
i

xiu, ∀X ∈ T},

the weight space of Sλ(Cn) formed by the elements which are formally multilinear.
Since the character

∏
i xi is left invariant by conjugation by permutation matrices it

follows that the symmetric group Sn ⊂ GL(n,C) of permutation matrices acts on Sλ(Cn)0,
we claim that:
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Proposition. Sλ(Cn)χ = 0 unless λ ` n and in this case Sλ((Cn)∗)χ is identified with
the irreducible representation Mλ of Sn.

Proof. In fact assume Xu =
∏
i xiu. Clearly u is in a polynomial representation of degree

n, on the other hand

Sn(Cn ⊗ V ) = ⊕λ`nSλ((Cn)∗)⊗ Sλ(V )

hence

(6.4.3) V ⊗n := Sn(Cn ⊗ V )χ = ⊕λ`nSλ((Cn)∗)χ ⊗ Sλ(V ) = ⊕λ`nMλ ⊗ Sλ(V )

we get the required identification. �

Therefore, given a polynomial representation P of GL(n,C), if it is homogeneous of
degree n, in order to determine its decomposition P = ⊕λ`nmλSλ(Cn) we can equivalently
restrict to the multilinear weight space M := {p ∈ P |X.p =

∏
i xip} (for X diagonal with

entries xi) and see how it decomposes as representation of Sn since:

(6.4.4) P = ⊕λ`nmλSλ(Cn) ⇐⇒ M = ⊕λ`nmλMλ.

7 Polynomial functors.

7.1 Schur functors Consider two vector spaces V,W , the space hom(V,W ) =
W ⊗ V ∗, and the ring of polynomial functions decomposed as:

(7.1.1) P[hom(V,W )] = S[W ∗ ⊗ V ] = ⊕λSλ(W ∗)⊗ Sλ(V ).

A way to explicitly identify the spaces Sλ(W ∗)⊗ Sλ(V ) as spaces of functions is obtained
by a variation of the method of matrix coefficients.

We start by stressing the fact that the construction of the representation Sλ(V ) from V
is in a sense natural, in the language of categories.

Recall that a map between vector spaces is called a polynomial map if in coordinates it
is given by polynomials.

Definition. A functor F from the category of vector spaces to itself is called a polyno-
mial functor if, given two vector spaces V,W the map A → F (A) from the vector space
hom(V,W ) to the vector space hom(F (V ), F (W )) is a polynomial map.

We say that F is homogeneous of degree k if hom(V,W ) → hom(F (V ), F (W )) is a
polynomial map homogeneous of degree k.

The functor F : V → V ⊗n is clearly a polynomial functor, homogeneous of degree n.
When A : V →W the map F (A) is A⊗n.

We can now justify the word Schur functor in the definition 3.1.3, Sλ(V ) := eTV
⊗n,

eT a Young symmetrizer , associated to a partition λ.
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As V varies V 7→ Sλ(V ) can be considered as a functor. In fact it is a subfunctor of the
tensor power, since clearly, if A : V → W is a linear map, A⊗n commutes with aT . Thus
A⊗n(eTV ⊗n) ⊂ eTW

⊗n and we define:

(7.1.2) Sλ(A) : Sλ(V ) −−−−→ V ⊗n
A⊗n

−−−−→ W⊗n eT−−−−→ Sλ(W ).

Summarizing:

Proposition 1. Given any partition µ ` n , V → Sµ(V ) is a homogeneous polynomial
functor on vector spaces of degree n, called a Schur functor.

Remark The exterior and symmetric power ∧kV, Sk(V ) are examples of Schur functors.

Since the map Sµ : hom(V,W ) → hom(Sµ(V ), Sµ(W )) defined by Sµ : X → Sµ(X) is a
homogeneous polynomial map of degree n, the dual map S∗µ : hom(Sµ(V ), Sµ(W ))∗ →
P[hom(V,W )] defined by

S∗µ(φ)(X) :=< φ|Sµ(X) >, φ ∈ hom(Sµ(V ), Sµ(W ))∗, X ∈ hom(V,W )

is a GL(V )×GL(W ) equivariant map into the homogeneous polynomials of degree n.
By the irreducibility of hom(Sµ(V ), Sµ(W ))∗ = Sµ(V )⊗Sµ(W )∗ it must be a linear iso-

morphism to an irreducible submodule of P[hom(V,W )] uniquely determined by Cauchy’s
formula. By comparing the isotypic component of type Sµ(V ) we deduce:

Proposition 2. P[hom(V,W )] = ⊕µ hom(Sµ(V ), Sµ(W ))∗ and we have the isomorphism
Sµ(W ∗) = Sµ(W )∗.

Let us apply the previous discussion to hom(∧iV,∧iW ).
Choose bases ei, i = 1, . . . , h, fj , j = 1, . . . , k for V,W respectively and identify the

space hom(V,W ) with the space of k × h matrices.
Thus the ring P[hom(V,W )] is the polynomial ring C[xij ], i = 1, . . . , h, j = 1, . . . , k

where xij are the matrix entries.
Given a matrix X the entries of ∧iX are the determinants of all the minors of order i

extracted from X, and:

Corollary. ∧iV ⊗ (∧iW )∗ can be identified to the space of polynomials spanned by the
determinants of all the minors of order i extracted from X, which is thus irreducible as
representation of GL(V )×GL(W ).

7.2 Homogeneous functors We want to prove that any polynomial functor is
equivalent to a direct sum of Schur functors. We start with:

Proposition 1. A polynomial functor is a direct sum of homogeneous functors.

Proof. The scalar multiplications by α ∈ C∗, on a space V induce, by functoriality, a
polynomial representation of C∗ on F (V ) which then decomposes as F (V ) = ⊕kFk(V ),
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with Fk(V ) the subspace of weight αk. Clearly Fk(V ) is a subfunctor and F = ⊕kFk(V ),
moreover Fk(V ) is a homogeneous functor of degree k.

We can polarize a a homogeneous functor of degree k as follows. Consider, for a
k−tuple V1, . . . , Vk of vector spaces their direct sum ⊕iVi together with the action of a
k−dimensional torus T with the scalar multiplication xi on each summand Vi. T acts in
a polynomial way on F (⊕iVi) and we can decompose by weights

F (⊕iVi) = ⊕λFλ(V1, . . . , Vk), λ = xh1
1 xh2

2 . . . xhk

k ,
∑

hi = k.

One easily verifies that the inclusion Vi → ⊕Vj induces isomorphism between F (Vi) and
Fxk

i
(V1, . . . , Vk). �

Proposition 2. Let η : F → G be a natural transformation of polynomial functors of
degree k, then η is an isomorphism if and only if ηCk : F (Ck) → G(Ck) is an isomorphism.

Proof. Since any vector space is isomorphic to Cm for some m we have to prove isomor-
phism for these spaces.

On Cm acts the diagonal torus which by functoriality acts also on F (Cm), G(Cm). By
naturality ηCm : F (Cm) → G(Cm) must preserve weight spaces with respect to the diagonal
matrices. Now each weight involves at most k indices and so it can be deduced from the
relative weight space for Ck, for these weight spaces the isomorphism is guaranteed by the
hypotheses. �

For a homogeneous polynomial functor of degree k one can factor (Chap. 5, 2.3):

F (A) = L(Ak), hom(V,W ) Ak

−−→ Sk(hom(V,W )) L−→ hom(F (V ), F (W ))

with L a linear map, which by functoriality is also GL(V )×GL(W ) linear. Now

Sk(hom(V,W )) = ⊕λhom(Sλ(V ), Sλ(W )).

Let H be a finite dimensional polynomial representation of GL(k,C) of degree k. This
means that the homomorphism ρ : GL(k,C) → GL(H) extends to a polynomial map,
homogeneus of degree k, and which we still denote by ρ : hom(Ck,Ck) → End(H).
ρ induces a linear map T : Sk(hom(Ck,Ck)) → End(H) and the map

π : Sk(hom(Ck,Ck))⊗H → H, π(fk ⊗ u) := T (fk)(u).

The homomorphism property of ρ implies that, ifA,B ∈ hom(Ck,Ck), we have T ((AB)k) =
T (Ak)T (Bk). If h, g ∈ GL(n,C), the left and right action of (h, g) on Sk(hom(Ck,Ck))
is defined so that (h, g).Bk = (hBg−1)k, thus the map π has the following equivariance
properties:

(7.2.1) π((h, g).a⊗ gu) = hπ(a⊗ u).

Identify
Sk(hom(Ck,Ck))⊗H = ⊕λ`kSλ(Ck)∗ ⊗ Sλ(Ck)⊗H.

The right action on Sk(hom(Ck,Ck)) equals on each summand the action on Sλ(Ck)∗,
while the left action is the one on Sλ(Ck).
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Lemma 1. π induces an isomorphism between ⊕λ`k(Sλ(Ck)∗ ⊗H)GL(n,C) ⊗ Sλ(Ck) and
H.

Proof. The map π is clearly surjective. From the equivariance properties it is clear that π
factors through the projection to the invariants ⊕λ`k(Sλ(Ck)∗ ⊗H)GL(n,C) ⊗ Sλ(Ck), of
GL(n,C) acting by the tensor product of the let action on Sk(hom(Ck,Ck)) and the given
action on H. By additivity we can reduce to the case that H = Sµ(Ck) for some µ ` k.

Recall that (Sλ(Ck)∗⊗Sµ(Ck))GL(n,C) = homGL(n,C)(Sλ(Ck), Sµ(Ck)) is 0, if λ 6= µ and
1-dimensional, generated by the identity, if λ = µ. Thus

⊕λ`k(Sλ(Ck)∗⊗Sµ(Ck))GL(n,C)⊗Sλ(Ck) = (Sµ(Ck)∗⊗Sµ(Ck))GL(n,C)⊗Sµ(Ck) = Sµ(Ck).

Since now π has become a surjective map between two irreducible modules, π is an
isomorphism. �

We apply this to the polynomial representation F (Ck) induced by the functor F .

Lemma 2. For any vector space V the linear map

πV : Sk(hom(Ck, V ))⊗F (Ck) → F (V ), πV (fk⊗u) := F (f)(u), f ∈ hom(Ck, V ), u ∈ F (Ck)

is GL(V ) equivariant and GL(k,C) invariant.

Proof. Given an element g ∈ GL(k,C) it acts on fk ⊗ u ∈ Sk(hom(Ck, V )) ⊗ F (Ck) by
(f ◦ g−1)k ⊗ F (g)u. We have F (f ◦ g−1) = F (f) ◦ F (g)−1 and πV ((f ◦ g−1)k ⊗ F (g)u) =
F (f ◦ g−1)(F (g)u) = F (f)u. �

Theorem. The linear map

(7.2.2) πV : [Sk(hom(Ck, V ))⊗ F (Ck)]GL(k,C) → F (V ), πV (f ⊗ u) := F (f)(u),

is a functorial isomorphism.

Proof. From Proposition 2, it is enough to prove this statement for V = Ck. This is the
content of Lemma 2. �

By the classification of polynomial representations, we have that F (Ck) = ⊕λ`kmλSλ(Ck)
for some non negative integers mi; in we deduce:

Corollary. A polynomial functor F of degree k is of the form F (V ) = ⊕λ`kmλSλ(V ).

Polynomial functors can be summed (direct sum) multiplied (tensor product) and com-
posed. All these operations can be extended to a ring whose elements are purely formal
differences of functors (a Grothendieck type of ring). In analogy to the theory of characters
an element of this ring is called a virtual functor.

Proposition 3. The ring of virtual functors is canonically isomorphic to the ring of
infinite symmetric functions.

Proof. We identify the functor Sλ with the symmetric function Sλ(x). �
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7.3 Plethysm The composition of functors becomes the Plethysm operation on sym-
metric functions. In general it is quite difficult to compute such compositions, even simple
ones as ∧i(∧hV )). There are formulas for Sk(S2(V )), Sk(∧2(V )) and some dual ones.

In general the computation F ◦G should be done according to the following:

Algorithm. Apply a polynomial functor G to the space Cm with its standard basis.
For the corresponding linear group and diagonal torus T , G(Cm) is a polynomial repre-

sentation of some dimension N . It then has a basis of T−weight vectors with characters
a list of monomials Mi, the character of T on G(Cm) is

∑N
i Mi a symmetric function

SG(x1, . . . , xm).
If G is homogeneous of degree k this symmetric function is determined as soon as m ≥ k.
When we apply F to G(Cm) we use the basis of weight vectors to see that the symmetric

function
SF◦G(x1, . . . , xm) = SF (M1, . . . ,MN ).

�

Some simple remarks are in order. First of all, given a fixed functor G the map
F → F ◦ G is clearly a ring homomorphism, therefore it is determined by the value on
a set of generators. One can choose as generators the exterior powers, in this case the
operation ∧i ◦ F as transformations in F are called λ−operations and written λi.

These operations satisfy the basic law: λi(a+ b) =
∑
h+k=i λ

h(a)λk(b).
It is also convenient to use as generators the Newton functions ψk =

∑
i x

k
i since then:

ψk(S(x1, . . . , xm)) = S(xk1 , . . . , x
k
m), ψk(ψh) = ψkh.

All of his can be formalized, giving rise to the theory of λ−rings (cf. [Kn]).

8 Representations of the linear and special linear groups.

8.1 Representations of SL(V ), GL(V ) Given an n−dimensional vector space V
we want to give the complete list of irreducible representations for the general and special
linear groups GL(n) = GL(V ), SL(n) = SL(V ).

From Chap 7, Theorem 1.4 we know that all the irreducible representations of SL(V )
appear in the tensor powers V ⊗m and all the irreducible representations of GL(V ) appear
in the tensor powers V ⊗m tensored with integer powers of the determinant ∧n(V ). For
simplicity we will denote by D := ∧n(V ) and by convention D−1 := ∧n(V )∗. From
what we have already seen the irreducible representations of GL(V ) which appear in the
tensor powers are the modules Sλ(V ), ht(λ) ≤ n. They are all distinct since they have
distinct characters. Given Sλ(V ) ⊂ V ⊗m, λ ` m consider Sλ(V ) ⊗ ∧n(V ) ⊂ V ⊗m+n.
Since ∧n(V ) is 1-dimensional clearly Sλ(V ) ⊗ ∧n(V ) is also irreducible. Its character is
Sλ+1n(x) = (x1x2 . . . xn)Sλ(x) hence (cf. Chap. 2, 6.2.1):

(8.1.1) Sλ(V )⊗ ∧n(V ) = Sλ+1n(V ).
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We need now a simple Lemma. Let Pn−1 := {k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0} be the
set of all partitions (of any integer) of height ≤ n − 1. Consider the polynomial ring
Z[x1, . . . , xn, (x1, x2 . . . xn)−1] obtained by inverting en = x1x2 . . . xn

Lemma. i) The ring of symmetric elements in Z[x1, . . . , xn, (x1x2 . . . xn)−1] is generated
by e1, e2, . . . , en−1, e

±1
n and it has as basis the elements:

Sλe
m
n , λ ∈ Pn−1, m ∈ Z.

ii) The ring Z[e1, e2, . . . , en−1, en]/(en − 1) has as basis the classes of the elements Sλ,
λ ∈ Pn−1.

Proof. i) Since en is symmetric it is clear that a fraction f
ek

n
is symmetric if and only if

f is symmetric, hence the first statement. Any element of Z[e1, e2, . . . , en−1, e
±1
n ] can be

written in a unique way in the form
∑
k∈Z ake

k
n with ak ∈ Z[e1, e2, . . . , en−1]. We know

that the Schur functions Sλ, λ ∈ Pn−1 are a basis of Z[e1, e2, . . . , en−1, en]/(en) and the
claim follows.

ii) follows from i). �

Theorem. i) The list of irreducible representations of SL(V ) is:

(8.1.2) Sλ(V ), ht(λ) ≤ n− 1.

ii) The list of irreducible representations of GL(V ) is:

(8.1.3) Sλ(V )⊗Dk, ht(λ) ≤ n− 1, k ∈ Z.

Proof. i) The group GL(V ) is generated by SL(V ) and the scalar matrices which commute
with every element. Therefore in any irreducible representation of GL(V ) the scalars in
GL(V ) also act as scalars in the representation. It follows immediately that the represen-
tation remains irreducible when restricted to SL(V ).

Thus we have to understand when two irreducible representations Sλ(V ), Sµ(V ), with
ht(λ) ≤ n, ht(µ) ≤ n are isomorphic once restricted to SL(V ).

Any λ can be uniquely written in the form (m,m,m, . . . ,m) + (k1, k2, . . . , kn−1, 0) or
λ = µ + m 1n, ht(µ) ≤ n − 1 and so Sλ(V ) = Sµ(V ) ⊗ Dm. Clearly Sλ(V ) = Sµ(V ) as
representations of SL(V ). Thus to finish we have to show that, if λ 6= µ, are two partitions
of heigth ≤ n − 1 the two SL(V ) representations Sλ(V ), Sµ(V ) are not isomorphic. This
follows from the fact that the characters of the representations Sλ(V ), λ ∈ Pn−1 are a
basis of the invariant functions on SL(V ), by the previous lemma.

ii) We have seen at the beginning of this paragraph, that all irreducible representations
of GL(V ) appear in the list 8.1.3. Now if two different elements of this list were isomorphic,
by multiplying by a high enough power of D we would obtain two isomorphic polynomial
representations belonging to two different partitions a contradiction. �

8.2 The coordinate ring of the linear group We can interpret the previous
theory in terms of the coordinate ring C[GL(V )] of the general linear group.
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Since GL(V ) is the open set of End(V ) = V ⊗ V ∗ where the determinant d 6= 0 its
coordinate ring is the localization at d of the ring S(V ∗⊗V ) which, under the two actions
of GL(V ) decomposes as ⊕ht(λ)≤nSλ(V ∗) ⊗ Sλ(V ) = ⊕ht(λ)≤n−1, k≥0d

kSλ(V ∗) ⊗ Sλ(V ).
It follows immediately then that:

(8.2.1) C[GL(V )] = ⊕ht(λ)≤n−1, k∈Zd
kSλ(V ∗)⊗ Sλ(V ).

This of course is, for the linear group, the explicit form of formula 3.1.1 of Chap. 7. From
it we deduce that:

(8.2.2) Sλ(V ∗) = Sλ(V )∗, ∀λ, ht(λ) ≤ n− 1, (d∗ = d−1).

Similarly:

(8.2.3) C[SL(V )] = ⊕ht(λ)≤n−1Sλ(V ∗)⊗ Sλ(V ).

8.3 Determinantal expressions for Schur functions In this section we want
to remark a determinant development for Schur functions which is often used.

Recall that Vλ = eT (V ⊗n) is a quotient of aT (V ⊗n) =
∧k1 V ⊗

∧k2 V . . .⊗
∧kn V where

the ki are the columns of a tableau T and is contained in sT (V ⊗n) = Sh1V ⊗ Sh2V . . .⊗
ShnV where the hi are the rows of T . Here one has to interpret both antisymmetrization
and symmetrization as occurring respectively in the columns and row indices.14 The
composition eT = 1

p(λ)sTaT can be viewed as the result of a map

k1∧
V ⊗

k2∧
V . . .⊗

kn∧
V −→ sT (V ⊗n) = Sh1V ⊗ Sh2V . . .⊗ ShnV.

As representations
∧k1 V ⊗

∧k2 V . . .⊗
∧kn V and Sh1V ⊗Sh2V . . .⊗ShnV decompose

in the direct sum of a copy of Vλ and other irreducible representations.

The character of the exterior power
∧i(V ) is the elementary symmetric function ei(x).

The one of Si(V ) is the function hi(x) sum of all monomials of degree i.

In the formal ring of symmetric functions there is a formal duality between the elements
ei and the hj . From the definition of the ei and from Molien’s formula:
∞∑
i=0

hi(x)qi =
1∏

(1− xiq)
,
∞∑
i=0

(−1)iei(x)qi =
∏

(1−xiq), 1 = (
∞∑
i=0

(−1)iei(x)qi)(
∞∑
i=0

hi(x)qi)

hence for m > 0 we have
∑
i+j=m(−1)iei(x)hj(x) = 0. These identity tell us that:

Z[e1, e2, . . . , ei, . . . ] = Z[h1, h2, . . . , hi, . . . ]

14it is awkward to denote symmetrization on non consecutive indices as we did, more correctly one

should compose with the appropriate permutation which places the indices in the correct positions.
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and also that we can present the ring of formal functions with generators ei, hj and the
previous relations:

(8.3.1) Z[e1, e2, . . . , ei, . . . ;h1, h2, . . . , hi, . . . ]/(
∑

i+j=m

(−1)ieihj).

The mapping τ : ei(x) → hi(x), hi(x) → ei(x) preserves these relations and gives an
involutory automorphism in the ring of symmetric functions. Take the Cauchy identity

(8.3.2)
∑

Sλ(x)Sλ(y) =
∏
i,j

1
1− xiyj

=
∏
j

∞∑
k=0

hk(x)ykj

and multiply it by the Vandermonde determinant V (y), getting∑
Sλ(x)Aλ+%(y) =

∏
j

∞∑
k=0

hk(x)ykj V (y).

For a given λ = a1, . . . , an we see that Sλ(x) is the coefficient of the monomial
ya1+n−1
1 ya2+n−2

2 . . . yan
n and we easily see that this is

(8.3.3)
∑
σ∈Sn

εσ

n∏
i=1

hσ(i)−i+ai

thus

Proposition. The Schur function Sλ is the determinant of the n×n matrix which in the
position i, j has the element hj−i+ai with the convention that hk = 0, ∀k < 0.

8.4 Skew Cauchy formula We want to complete this discussion with an interesting
variation of the Cauchy formula (which is used in the computation of the cohomology of
the linear group cf. [AD]).

Given two vector spaces V,W we want to describe
∧

(V ⊗ W ) as representation of
GL(V )×GL(W ).

Theorem.

(8.4.1)
∧

(V ⊗W ) =
∑
λ

Sλ(V )⊗ Sλ̃(W )

Proof. λ̃ denotes as in Chap. 1, 1.1, the dual partition.

We argue in the following way, for very k,
∧k(V ⊗W ) is a polynomial representation of

degree k of both groups hence by the general theory
∧k(V ⊗W ) = ⊕λ`kSλ(V )⊗ Pµ(W )

for some representations Pµ(W ) to be determined. To do it in the stable case where
dimW = k we use the Proposition 6.4, through formula 6.4.4 and compute the multilinear
elements of Pµ(W ) as representation of Sn.
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For this, as in 6.4, identify W = Ck with basis ei and
∧k(V ⊗W ) =

∧
(⊕ki=1V ⊗ ei) =

⊗ki=1

∧
(V ⊗ei). When we restrict to the multilinear elements we have V ⊗e1

∧
· · ·

∧
V ⊗ek

which, as representation of GL(V ) can be identified to V ⊗n except that the natural
representation of the symmetric group Sn ⊂ GL(n,C) is the canonical action on V ⊗n

tensored by the sign representation.

Thus we deduce that, if χ is the multilinear weight,

⊕λ`kSλ(V )⊗Mλ̃ = (
k∧
V ⊗ Ck)χ.

This implies Pλ(W ) = Mλ̃ hence Pλ(W ) = Sλ̃(W ) from which the claim follows. �

Remark. In terms of characters formula 8.4.1 is equivalent to the Cauchy formula (C4) of
Chap. 2, §7.1:

(8.4.2)
n, m∏

i=1, j=1

(1 + xiyj) =
∑
λ

Sλ(x)Sλ̃(y).

There is a simple determinantal formula corollary of this identity as in 8.3.

Here we remark that
∏n
i=1(1 + xiy) =

∑n
j=0 ej(x)y

j where the ej are the elementary
symmetric functions.

The same reasoning as in 8.3 then gives the formula

(8.4.3) Sλ(x) =
∑
σ∈Sn

εσ

n∏
i=1

eσ(i)−i+ki

where ki are the columns of λ̃ i.e. the rows of λ.

Proposition. The Schur function Sλ is the determinant of the n×n matrix which in the
position i, j has the element ej−i+ki , the ki are the rows of λ, with the convention that
ek = 0, ∀k < 0.

From the two determinantal formulas found we deduce:

Corollary. Under the involutive map τ : ei 7→ hi we have τ : Sλ 7→ Sλ̃.

Proof. In fact when we apply τ to the first determinantal formula for Sλ we find the second
determinantal formula for Sλ̃. �

9 Branching rules for Sn, standard diagrams

9.1 Murnhagam’s rule We wish to describe now a fairly simple recursive algorithm,
due to Murnhagam, to compute the numbers cλ(µ). It is based on the knowledge of the
multiplication of ψkSλ in the ring of symmetric functions.
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We assume the number n of variables to be more than k + |λ|, i.e. to be in a stable
range for the formula.

Let hi denote the rows of λ, we may as well compute ψk(x)Sλ(x)V (x) = ψk(x)Aλ+%(x):

(9.1.1) ψk(x)Aλ+%(x) = (
n∑
i=1

xki )(
∑
s∈Sn

εsx
h1+n−1
s1 xh1+n−2

s2 . . . xhn
sn ).

Indicate by ki = hi+n−i. We inspect the monomials appearing in the alternating function
which is at the right of 9.1.1.

Each term is a monomial with exponents obtained from the sequence ki by adding to
one of them say kj the number k.

If the resulting sequence has two numbers equal it cannot contribute a term to an
alternating sum and so it must be dropped, otherwise reorder it getting a sequence:

k1 > k2 > . . . ki > kj + k > ki+1 > . . . kj−1 > kj+1 > . . . > kn.

Then we see that the partition λ′ : h′1, . . . , h
′
i, . . . , h

′
n associated to this sequence is:

h′t = ht, if t ≤ i or t > j, h′t = ht−1 + 1 if i+ 2 ≤ t ≤ j, h′i+1 = hj + k − j + i+ 1.

The coefficient of Sλ′ in ψk(x)Sλ(x) is (−1)j−1−i by reordering the rows.

To understand the λ′ which appear let us define the rim or boundary of a diagram λ as
the set of points (i, j) ∈ λ for which there is no point (h, k) ∈ λ with i < h, j < k.

There is a simple way of visualizing the various partitions λ′ which arise in this way.

Notice that we have modified j − i consecutive rows, adding a total of k new boxes.
Each row of this set, except the bottom row, has been replaced by the row immediately
below it plus one extra box, to the bottom row we add the remaining boxes.

This property appears saying that the new diagram λ′ is thus any diagram which contains
the diagram λ and such that their difference is connected, made of k boxes of the rim of
λ′. Intuitively it is like a slinky.15 So one has to think of a slinky made of k boxes, sliding
in all possible ways down the diagram.

The sign to attribute to such a configuration si +1 if the number of rows occupied is
odd, −1 otherwise. More formally we have:

Murnhagam’s rule. ψk(x)Sλ(x) =
∑
±Sλ′ where λ′ runs over all diagrams, such that

removing a connected set of k boxes of the rim of λ′ we have λ.
The sign to attribute to λ′ is +1 if the number of rows modified from λ is odd, −1

otherwise.

15this was explained to me by A. Garsia and refers to a toy sold in novelty shops.
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For instance we can visualize ψ3S3 2 1 = S3 2 14 − S3 23 − S33 − S42 1 + S6 2 1 as:

+

◦
◦
◦
.
. .
. . .

− ◦ ◦
. ◦
. .
. . .

−
. ◦ ◦
. . ◦
. . .

−
.
. . ◦ ◦
. . . ◦

+
.
. .
. . . ◦ ◦ ◦

Formally one can define a k−slinky as a walk in the plane N2 made of k−steps, and each
step is either one step down or one step right. The sign of the slinky is −1 if it occupies
an even number of rows, +1 otherwise.

Next one defines a striped tableau of type µ := k1, k2, . . . , kt to be a tableau filled,
for each i = 1, . . . , t with exactly ki entries of the number i subject to fill a ki−slinky.
Moreover we assume that the set of boxes filled with the numbers up to i, for each i is still
a diagram. E.g. a 3,4,2,5,6,3,4,1 striped diagram:

8
4
4 4 4 5
3 3 4 5
1 2 2 5 5 7 7 7 7
1 1 2 2 5 5 6 6 6

to such a striped tableau we associate as sign the product of the signs of all its slinkies.
In our case it is the sign pattern −−+ +−+ ++ for a total − sign.

Murnagham’s rule can be formulated as:

Proposition. cλ(µ) equals the number of striped tableaux of type µ and shape λ each
counted with its sign.

Notice that, when µ = 1n, the slinky is one box. The condition is that the diagram is
filled with all the distinct numbers 1, . . . , n. The filling is increasing from left to right and
from the bottom to the top. Let us formalize:

Definition. A standard tableau of shape λ ` n is a filling of a Young diagram with
n−boxes of shape λ, with all the distinct numbers 1, . . . , n. The filling is strictly increasing
from left to right on each row and from the bottom to the top on each column.

From the previous discussion we have:

Theorem. d(λ) equals the number of standard tableaux of shape λ.
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Example Standard tableaux of shape 3, 2 (compute d(λ) = 5:

2 4
1 3 5 ,

2 5
1 3 4 ,

4 5
1 2 3 ,

3 4
1 2 5 ,

3 5
1 2 4 .

9.2 Branching rule for Sn We want to draw another important consequence of the
previous multiplication formula between Newton functions and Schur functions.

Consider a module Mλ for Sn and consider Sn−1 ⊂ Sn, we want to analyze Mλ as a
representation of the subgroup Sn−1. For this we perform a character computation.

We introduce first a simple notation, given two partitions λ ` m, µ ` n we say that
λ ⊂ µ if we have an inclusion of the corresponding Ferrer’s diagrams or equivalently if
each row of λ is less or equal of the corresponding row of µ.

If λ ⊂ µ and n = m+ 1 we will also say that λ, µ are adjacent,16 in this case clearly µ
is obtained from λ removing a box lying in a corner.

With these remarks we notice a special case of 9.1:

(9.2.1) ψ1Sλ =
∑

µ`|λ|+1,λ⊂µ

Sµ.

Consider now an element of Sn−1 to which is associated a partition ν. The same element
as permutation in Sn has associated the partition ν1. Computing characters we have:∑

λ`n

cλ(ν1)Sλ = ψν1 = ψ1ψν =
∑

τ∈`(n−1)

cτ (ν)ψ1Sτ

(9.2.2) =
∑

τ∈`(n−1)

cτ (ν)
∑

µ∈`n, τ⊂µ

Sµ.

In other words:

(9.2.3) cλ(ν1) =
∑

µ∈`(n−1), µ⊂λ

cµ(ν),

This identity between characters becomes in module notations:

Theorem Branching rule for the symmetric group. When restricting from Sn to
Sn−1 we have:

(9.2.4) Mλ = ⊕µ∈`(n−1), µ⊂λMµ.

A remarkable feature of this decomposition is that each irreducible Sn−1 module ap-
pearing in Mλ has multiplicity 1, which implies in particular that the decomposition 9.2.4
is unique.

16adjacency is a general notion in a poset, here the order is inclusion
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A convenient way to record a partition µ ` n − 1 obtained from λ ` n by removing a
box is given marking this box with n. We can repeat the branching to Sn−2 and get:

(9.2.5) Mλ =
⊕

µ2`=n−2, µ1`=n−1,µ2⊂µ1⊂λ

Mµ2 .

Again we mark a pair µ2 ∈` (n− 2), µ1 ` (n− 1), µ2 ⊂ µ1 ⊂ λ by marking the first box
removed to get µ1 with n and the second box with n− 1.

Example. From 4, 2, 1, 1, branching once and twice:

.

.

. .

. . . 8

+

.

.

. 8

. . . .

+

8
.
. .
. . . .

.

.

. .

. . 7 8

+

.

.

. 7

. . . 8

+

7
.
. .
. . . 8

+

.

.

. 8

. . . 7

+

7
.
. 8
. . . .

+

8
.
. .
. . . 7

+

8
.
. 7
. . . .

+

8
7
. .
. . . .

In general we give the following definitions:
Given µ ⊂ λ two diagrams, the complement of µ in λ is called a skew diagram indicated

by λ/µ. A standard skew tableau of shape λ/µ consists of filling the boxes of λ/µ with
distinct numbers such that each row and each column is strictly increasing.

Example of a skew tableau of shape 6,5,2,2/3,2,1:

6 7
. 2
. . 2 3 4
. . . 1 2 4

Notice that we have placed some dots in the position of the partition 3,2,1 which has been
removed.

If µ = ∅ we speak of a standard tableau. We can easily convince ourselves that, if
λ ` n, µ ` n− k and µ ⊂ λ there is a 1-1 correspondence between:

1) Sequences µ = µk ⊂ µk−1 ⊂ µk−2 . . . ⊂ µ1 ⊂ λ with µi ` n− i.
2) Standard skew diagrams of shape λ/µ filled with the numbers

n− k + 1, n− k + 2, . . . , n− 1, n.
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The correspondence is established by associating to a standard skew tableau T the
sequence of diagrams µi where µi is obtained from λ by removing the boxes occupied by
the numbers n, n− 1, . . . , n− i+ 1.

When we apply the branch rule several times, passing from Sn to Sn−k we obtain a
decomposition of Mλ into a sum of modules indexed by all possible skew standard tableaux
of shape λ/µ filled with the numbers n− k + 1, n− k + 2, . . . , n− 1, n.

In particular, for a given shape µ ` n − k the multiplicity of Mµ in Mλ equals the
number of such tableaux.

In particular we may go all the way down to S1 and obtain a canonical decomposition of
Mλ into 1-dimensional spaces indexed by all the standard tableaux of shape λ. We recover
in a more precise way what we discussed in the previous paragraph.

Proposition. The dimension of Mλ equals the number of standard tableaux of shape λ.

It is of some interest to discuss the previous decomposition in the following way.
For every k let Sk be the symmetric group on k elements contained in Sn, so that

Q[Sk] ⊂ Q[Sn] as subalgebra.
Let Zk be the center of Q[Sk]. The algebras Zk ⊂ Q[Sn] generate a commutative

subalgebra C. In fact for every k we have that the center of Q[Sk] has a basis of idempotents
uλ indexed by the partitions of k. On any irreducible representation this subalgebra, by
the analysis made has a basis of common eigenvectors given by the decomposition into 1
dimensional spaces previously described.

Exercise Prove that the common eigenvalues of the uλ are distinct and so this de-
composition is again unique.

Remark. The decomposition just obtained is almost equivalent to selecting a basis of Mλ

indexed by standard diagrams. Fixing an invariant scalar product in Mλ we immediately
see by induction that the decomposition is orthogonal (because non isomorphic representa-
tions are necessarily orthogonal). If we work over R we can select thus a vector of norm 1
in each summand. This leaves still some sign ambiguity which can be resolved by suitable
conventions. The selection of a standard basis is in fact a rather fascinating topic, it can
be done in several quite inequivalent ways suggested by very different considerations, we
will see some in the next chapters.

A possible goal is to exhibit not only an explicit basis but also explicit matrices for the
permutations of Sn or at least for a set of generating permutations (usually one chooses
the Coxeter generators (i i+ 1), i = 1, . . . , n− 1). We will discuss this question when we
will deal in a more systematic way with standard tableaux in Chap. 13.

10 Branching rules for the linear group, semistandard diagrams

10.1 Branching rule When we deal with representations of the linear group we
can use the character theory which identifies the Schur functions Sλ(x1, . . . , xn) as the
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irreducible characters of GL(n,C) = GL(V ). In general thus the strategy is to interpret
the various constructions on representations by corresponding operations on characters.
There are two main ones branching and tensor product. When we branch from GL(n,C)

to GL(n−1,C) embedded as block
∣∣∣∣A 0
0 1

∣∣∣∣ matrices, we can operate on characters by just

setting xn = 1 so the character of the restriction of Sλ(V ) to GL(n− 1,C) is:

(10.1.1) Sλ(x1, . . . , xn−1, 1) =
∑

cµSµ(x1, . . . , xn−1).

Similarly when we take two irreducible representations Sλ(V ), Sµ(V ) and form their
tensor product Sλ(V )⊗ Sµ(V ), its character is given by the symmetric function

(10.1.2) Sλ(x1, . . . , xn)Sµ(x1, . . . , xn) =
∑
ν

cνλ,µSν(x1, . . . , xn)

The coefficients in both formulas can be made explicit but, while in 10.1.1 the answer is
fairly simple, 10.1.2 has a rather complicated answer given by the Littlewood Richardson
rule (discussed in Chap. 12, 5).

The reason why 10.1.1 is rather simple is that all the µ which appear actually appear
with coefficient cµ = 1, so it is only necessary to explain which partitions appear. It is
best to describe them geometrically by the diagrams.

WARNING For the lienar group we will use the ENGLISH NOTATION, for reasons
that will be clearer in Chap. 13. Also assume that if λ = h1, h2, . . . , hr these numbers
represent the lengths of the columns17, and hence r must be at most n (we assume
hr > 0). In 10.3 we will show that, the conditions for µ to appear are the following.

1. µ = k1, . . . , ks is a diagram contained in λ i.e. s ≤ r, ki ≤ hi, ∀i ≤ s.

2. s ≤ n− 1.
3. µ is obtained from λ by removing at most one box from each row.
The last condition means that we can remove only boxes at the end of each row, which

form the rim of the diagram. It is convenient to mark with n the removed boxes.
For instance take λ = 4, 2, 2, n = 5 (we mark the rim). The possible 9 branchings are:

. . •

. . •
•
•

=⇒

. . .

. . .

.

.

. . .

. . .

.
5

. . .

. . .
5
5

. . .

. . 5

.

.

. . .

. . 5

.
5

. . .

. . 5
5
5

. . 5

. . 5

.

.

. . 5

. . 5

.
5

. . 5

. . 5
5
5

17unfortunately the notation for Young diagrams is not coherent due to the fact that in the literature

they have arisen in different context, each having its notational needs.
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If we repeat these branching, and markings, we see that a sequence of branchings produces
a semistandard tableau (cf. Chap. 12 1.1 for a formal definition ) like:

1 2 3
1 3 5
5
5

as in the case of the symmetric group we can deduce a basis of the representation indexed
by semistandard tableaux. Conversely we shall see that one can start from such a basis
and deduce a stronger branching theorem which is valid over the integers (Chap. 13, 5.4).

10.2 Pieri’s formula Although we shall discuss the general Littlewood Richardson
rule in Chap 12, we start with an example, the study of Sλ(V )⊗

∧i(V ).
By the previous analysis this can be computed by computing the product Sλ(x)ei(x),

where ei(x) = S1i(x) is the character of
∧i(V ). For this set λ = h1, h2, . . . , hr and

{λ}i := {µ |µ ⊃ λ, |µ| = |λ|+ i and each column ki of µ satisfies hi ≤ ki ≤ hi + 1}.

Theorem Pieri’s formula.

(10.2.1) Sλ(x)ei(x) =
∑

µ∈{λ}i

Sµ(x), Sλ(V )⊗
i∧

(V ) = ⊕µ∈{λ}i
Sµ(V ).

Proof. Let λ = h1, h2, . . . , hn where we take n sufficiently large and allow some hi to be
0, and multiply Sλ(x)ei(x)V (x) = Aλ+ρ(x)ei(x). We must decompose the alternating
function Aλ+ρ(x)ei(x) in terms of functions Aµ+ρ(x). Let li = hi + n− i, the only way to
obtain in Aλ+ρ(x)ei(x) a monomial xm1

1 xm2
2 . . . xmn

n with m1 > m2 > · · · > mn is possibly
by multiplying xl11 x

l2
2 . . . x

ln
n xj1xj2 . . . xji . This monomial has strictly decreasing exponents

for the variables x1, . . . , xn if and only if, the following condition is satisfied. Set ka = ha
if a does not appear in the indices j1, j2, . . . , ji and ka = ha + 1 otherwise. We must have
that k1 ≥ k2 · · · ≥ kn, in other words µ := k1 ≥ k2 · · · ≥ kn is a diagram in {λ}i. The
coefficient of such monomial is 1 hence we deduce the claim:

Aλ+ρ(x)ei(x) =
∑

µ∈{λ}i

Aµ+ρ(x).

�

We may now deduce also by duality, using the involutory map τ : ei → hi (cf. 8.3) and
the fact that hi(x) = Si(x) is the character of Si(V ), the formula for:

(10.2.2) Sλ(x)hi(x) =
∑

µ̃∈{λ̃}i

Sµ(x), Sλ(V )⊗ Si(V ) = ⊕µ̃∈{λ̃}i
Sµ(V ).

In other words when we perform Sλ(V )⊗
∧i(V ) we get a sum of Sµ(V ) where µ runs over

all diagrams obtained from λ by adding i cases and at most one case in each column, while
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when we perform Sλ(V ) ⊗ Si(V ) we get a sum of Sµ(V ) where µ runs over all diagrams
obtained from λ by adding i cases and at most one case in each row.18

10.3 Proof of the rule We can now discuss the branch rule from GL(n,C) to
GL(n− 1,C). From the point of view of characters it is clear that, if f(x1, . . . , xn) is the
character of a representation of GL(n,C), f(x1, . . . , xn−1, 1) is the character of the restric-
tion of the representation to GL(n− 1,C). We want thus to compute Sλ(x1, . . . , xn−1, 1).
For this we use Cauchy’s formula getting:∑

λ

Sλ(x1, . . . , xn−1, 1)Sλ(y1, . . . , yn−1, yn) =
n−1, n∏
i=1, j=1

1
1− xiyj

n∏
j=1

1
1− yj

=

=
∑
µ

Sµ(x1, . . . , xn−1)Sµ(y1, . . . , yn−1, yn)
∞∑
j=0

hj(y1, . . . , yn−1, yn).

Use 10.2.2 to get: ∑
λ

Sλ(x1, . . . , xn−1, 1)Sλ(y1, . . . , yn−1, yn) =

=
∑
µ

Sµ(x1, . . . , xn−1)
∞∑
j=0

∑
λ̃∈{µ̃}j

Sλ(y1, . . . , yn−1, yn).

Comparing the coefficients of Sλ(y1, . . . , yn−1, yn) we obtain:

Sλ(x1, . . . , xn−1, 1) =
∑

µ | λ̃∈{µ̃}j

Sµ(x1, . . . , xn−1).

In other words let {λ}j be the set of diagrams which are obtained from λ by removing j
cases and at most one case in each row, then the branching of Sλ(Cn) to GL(n − 1) is
⊕µ∈{λ}jSµ(Cn−1). In particular we have the property that the irreducible representations
which appear come with multiplicity 1.

Since Sλ(x1, . . . , xn−1, xn) is homogeneous of degree |λ| while µ ∈ {λ}j is homogeneous
of degree |λ| − j we must have:

Sλ(x1, . . . , xn−1, xn) =
|λ|∑
j=0

xjn
∑

µ∈{λ}j

Sµ(x1, . . . , xn−1).

�

We may iterate the branching and get at each step the branching to GL(n− i) is a direct
sum of representations Sµ(Cn−1) with indexing a sequence of diagrams µ = µi ⊂ µi−1 ⊂

18these two rules are sometimes referred to as Pieri’s rule
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· · · ⊂ µ0 = λ where each µj is obtained from µj−1 removing uj cases and at most one case
in each row, furthermore we must have ht(µj) ≤ n− j. In correspondence we develop:

Sλ(x1, . . . , xn−1, xn) =
∑

µ=µi⊂µi−1⊂···⊂µ0=λ

xu1
n x

u2
n−1 . . . x

ui
n−i+1Sµ(x1, . . . , xn−j).

If we continue the branching all the way to 1, we decompose the space Sλ(V ) into 1-
dimensional subspaces which are weight vectors for the diagonal matrices, each such weight
vector is indexed by a complete flag of subdiagrams ∅ = µn ⊂ µ1 ⊂ . . . µi ⊂ · · · ⊂ µ0 = λ
and weight

∏n
i=1 x

un−i+1
i .

A convenient way to encode such flags of subdiagram is by filling the diagram λ as
semistandard tableau, placing n − i in all the cases of µi not in µi−1. The restriction we
have placed implies that all the rows are strictly increasing, since we remove at most one
box from each row, while the columns are weakly increasing, since we may remove more
than one box at each step but we fill with a strictly decreasing sequence of numbers. Thus
we get a semistandard tableau T of (column-)shape λ filled with the numbers 1, 2, . . . , n,
conversely such a semistandard tableau corresponds to an allowed sequence of subdiagrams
∅ = µn ⊂ µ1 ⊂ . . . µi ⊂ · · · ⊂ µ0 = λ. Then the monomial

∏n
i=1 x

un−i+1
i is deduced directly

from T , since un−i+1 is the number of appearances of i in the tableau.
We set xT :=

∏n
i=1 x

un−i+1
i and call it the weight of the tableau T . Finally we have:

Theorem.

(10.3.1) Sλ(x1, . . . , xn−1, xn) =
∑

T semistandard of shape λ

xT .

Of course the set of semistandard tableaux depends on the set of numbers 1, . . . , n.
Since the rows have to be filled by strictly increasing numbers we must have a restriction
on height. The rows have at most n−elements. Example, S3,2,2(x1, x2, x3) is obtained
from the tableaux:

1 2 3
2 3
2 3

1 2 3
1 3
2 3

1 2 3
1 2
2 3

1 2 3
1 3
1 3

1 2 3
1 2
1 3

1 2 3
1 2
1 2

S3,2,2(x1, x2, x3) = x1x
3
2x

3
3 + x2

1x
2
2x

3
3 + x2

1x
3
2x

2
3 + x3

1x2x
3
3 + x3

1x
2
2x

2
3 + x3

1x
3
2x3.

Of course if we increase the number of variables also the number and types of monomials
will increase.

We may apply at the same time the branching rule for the symmetric and the linear
group. We take an n−dimensional vector space V and consider V ⊗m = ⊕λ`mMλ⊗Sλ(V ).
When we branch on both sides we decompose V ⊗m into a direct sum of 1-dimensional
weight spaces indexed by pairs T1 |T2 where T1 is a standard diagram of shape λ ` m
and T2 is a semistandard diagram of shape λ filled with 1, 2, . . . , n, we will see how this
construction of a basis reflects into a combinatorial construction, the Robinson–Schensted
correspondence, in Chap. 12, 1.
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Notice that it is not evident from 10.3.1 that the function Sλ(x1, . . . , xn−1, xn) is even
symmetric, nevertheless there is a purely combinatorial approach to Schur functions which
takes 10.3.1 as definition. In this approach the proof of the symmetry of the formula is
done by a simple marriage argument.


