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36 The Robinson Schensted correspondence

36.1 We start explaining some combinatorial aspects of representation theory by
giving a beautiful combinatorial analogue of the decomposition of tensor space V ⊗n =
⊕λ`nMλ ⊗ Vλ.

We thus start from a totally ordered set A which in combinatorics is called an alphabet,
it plays the role of an ordered basis of V .

Consider next the set of words of length n in this alphabet, i.e. sequences a1a2 . . . an, ai ∈
A. If |A| = m this is a set with mn elements in correspondence with a basis of V ⊗n.

Next we shall construct from A certain combinatorial objects called columns, tableaux.
Let us use a pictorial language and illustrate with examples, we shall use as alphabet either
the usual alphabet or the integers.

A standard column of length k consists in placing k distinct elements of A in a column
(i.e. one in top of the other) so that they decrease from top to bottom:

Example

t
g
e
b
a

s
p
g
e
d
c

10
9
6
5
1

Next a semistandard tableau will be given by a sequence of columns of non increasing
length, which we will place one next to the other, so that we shall identify the rows of the
tableau. For the rows we assume that the elements going from left to right are weakly
increasing (i.e. they can be also equal) Example
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t
g g j
e f f
b c d u
a b b f

s
p
g h p
e f g
d e f
c d e

10
9
6
5 5 5
1 1 1 1 1

The main algorithm which we need is that of

inserting a letter in a standard column

Thus we assume to have a letter x and a column c; we begin by placing x on top of the
column, if the resulting column is standard this is the result of inserting x in c, otherwise
we start going down the column attemting to replace the entry that we encounter with x
and we stop at the first step in which this produces a standard column. We thus replace
the corresponding letter y with x, obtaining a new column c′ and an expelled letter y.
Example

Insert h in

t
g
e
b
a

we obtain

t
h
e
b
a

expelling g.

It is not excluded that the entering and exiting letter be the same, for instance in the
previous case if we wanted to insert g we would also extract g. A special case is when c is
empty and then inserting x just creates a column consisting of only x.

Now the first remark is that, from the new column c′ and, if present, the expelled letter
y one can reconstruct c and x. In fact we try backwards to insert y in c′ from bottom
upwards, stopping at the first position that makes the new column standard and expelling
the relative entry, this is the reconstruction of c, x.

The second point is that we can insert now a letter x in a semistandard tableau T as
follows. T is a sequence of columns c1, c2, . . . , ci we first insert x in c1; if we get an expelled
element x1 we insert it in c2; if we get an expelled element x2 we insert it in c3 etc..

Example Insert d in

t
g g j
e f f
b c d u
a b b f

get

t
g g j
d e f
b c d u
a b b f f
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insert d in
s
p
g h p
e f g
d e f
c d e

and get
s
p
g h p
e f g
d e f
c d d e

In any case the new tableau has one extra case occupied by some letter. By the previous
remark the knowledge of this case allows recursively to reconstruct the original tableau
and the inserted letter.

All this can be made into a recursive construction. Starting from a word w = a1a2 . . . ak =
a1w1 of length k, we construct two tableau I(w), D(w) of the same shape, with k entries.
The first, called the inserted tableu is obtained recursively from the empty tableau insert-
ing a1 in the tableau T (w1) (constructed by recursion). This tableau is semistandard and
contains as entries exactly the letters appearing in w.

The tableau D(w) is a record of the way in which the tableau T (w) has been recursively
constructed. It is filled with all the numbers from 1 to k. Each number appears only once
and we will refer to this property as standard1.

D(w) is constructed from D(w1), which by inductive hypothesis has the same shape as
T (w1), by inserting in the position of the new case (occupied by the procedure of inserting
a1), the number k.

An example should illustrate the construction. We take the word standard and
construct the sequence of tableaux T (wi) associated inserting its letters staring from the
rigth, we get:

d
r
d

r
a d

d r
a d

n
d r
a d

n
d r
a a d

t
n
d r
a a d

s
n t
d r
a a d

the sequence of record tableaux is

1
2
1

2
1 3

2 4
1 3

5
2 4
1 3

5
2 4
1 3 6

7
5
2 4
1 3 6

7
5 8
2 4
1 3 6

1some authors prefer doubly standard for this restricted type and standard in place of semistandard.



36 The Robinson Schensted correspondence 189

Theorem Robinson Schensted correspondence. The map w → (D(w), T (w)) is a
bijection between the set of words of lenth k and pairs of tableaux of the same shape of
which D(w) is standard and T (w) semistandard.

Proof. The proof follows from the sequence of previous remarks about the reversibility of
the operation of inserting a case. The diagram D(w) allows stepwise to decide which case
has been filled at each step and so to reconstruct the insertion procedure and thus the
original word.

Remark that, given a semistandard tableau T we may call its content the set of elements
appearing in it with the respective multiplicity, similarly we may speak of the content of
a given word. The Robinson Schensted correspondence preserves contents.

There is a special case to be observed, assume that the record tableau D(w) is such
that, if we read it starting from left to rigth and then from the bottom to the top we find
the numbers 1,2, . . . , k in increasing order e.g.:

9
7 8
5 6
1 2 3 4

Then the word w can be very quickly read off from T (w) it is obtained by reading T (w)
from top to bottom and from left to rigth (like in usual language), e.g.2:

spuntatu =⇒

s
p u
n t
a t u

8
6 7
4 5
1 2 3

36.2 Knuth equivalence A natural construction from the R-S correspondence is the
Knuth equivalence

Definition. Two words w1, w2 are said to be Knuth equivalent if T (w1) = T (w2).

For reasons that will appear in a moment it is important to describe first words of length
3 which are Knuth equivalent.

First consider the 6 words in a, b, c with the 3 letters appearing, we have the simple
table of corresponding diagrams:

abc →
a b c

acb → c
a b

bac → b
a c

bca → b
a c

cab → c
a b

cba →
c
b
a

we deduce acb ≡ cab, bac ≡ cab. For words of length 3 with repetition of letters we
further have aba ≡ baa and bab ≡ bba.

The main result is

2I tried to find a real word, this is maybe dialect
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Theorem. Knuth equivalence is compatible with multiplication of words and it is the min-
imal compatible equivalence generated by the previous equivalence on words of length 3.

Dim. We shall prove both statements at the same time. First of all, by the construction
of the equivalence, it is clear that if w1, w2 are equivalent words and z is a word zw1 is
equivalent to zw2.

We need to prove conversely that w1z is equivalent to w2z and we prove it first when
w1, w2 are of length 3.

For instance let us do the case wuv ≡ uwv for 3 arbitrary letters u < v < w. We have
to show that inserting these letters in the 2 given orderings in a semistandard tableau T
produces the same result.

Let c be the first column of T and T ′ the tableau obtained from T removing the first
column.

Suppose first that inserting in succession uwv in c we place these letters in 3 distinct
cases expelling successively some letters f, g, e. From the analysis of the positions in which
these letters were it is easily seen that e < f < g and that, inserting wuv we expell f, e, g.
Thus in both cases the first column is obtained from c replacing e, f, g with u, v,w. The
tableau T ′ now is modified by inserting the word egf or gef thus we are in a case similar
to the one we starded but for a smaller tableau and induction applies.

Some other cases are possible and are similarly analyzed.
If the top element of c is < u the result of insertion is, in both cases, to place u, w on

top of c and insert v in T ′.
Similar analysis if w or u expels v.

37 Standard monomials

37.1 We start with a somewhat axiomatic approach. Suppose that we have a com-
mutative3 algebra R over a ring A and let us give a set S := {s1, . . . , sN} of elements of R
together with a partial ordering of S.

Definition.
(1) An ordered product si1si2 . . . sik of elements of S is said to be standard if the

elements appear in increasing order (with respect to the given partial ordering).
(2) We say that R has a standard monomial theory for S if the standard monomials

form a basis of R over A.
Suppose that R has a standard monomial theory for S; given s, t ∈ S which are

not comparable, we have a unique expression, called straigthening law:

(37.1.1) st =
∑

i

αiMi, αi ∈ A, Mi standard.

(3) We say that R has a straigthening algorithm if, given any monomial si1si2 . . . sik

of elements of S by applying in any way sequentially straightening laws, i.e. sub-
stitutions of a product of two non comparable elements with the corresponding

3this is not essential
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combination of standard monomials, we have that this process stops after finitely
many steps giving the expression of the given product in terms of standard mono-
mials.

Our prime example will be the following:

A = Z, R := Z[xij ], i = 1, . . . , n; j = 1 . . .m the polynomial ring in nm variables, S
will be the set of determinants of minors of the m × n matrix with entries the xij .

Combinatorially it is useful to describe a determinant of a k ×k minor as two sequences

(ik ik−1 . . . i1|j1 j2 . . . jk)

where the it are the indeces of the rows while the js the indeces of the columns. It is
custumary to write the is in decreasing and the js in increasing order.

The partial ordering will be defined as follows

(ih ih−1 . . . i1|j1 j2 . . . jh) ≤ (uk uk−1 . . . u1|v1 v2 . . . vk) iff h ≤ k, is ≥ us; jt ≥ vt, ∀s, t ≤ h

In other words if we display the two determinants as rows of a bitableau this is standard.

uk . . . uh uh−1 . . . u1|v1 v2 . . . vh . . . vk

ih ih−1 . . . i1 |j1 j2 . . . jh

Let us give the full partially ordered set of the 19 minors of a 3 × 3 matrix:
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38 Plücker coordinates 193

In the next sections we will show that Z[xij ] has a standard monomial theory with
respect to this partially ordered set of minors and will explicit the straightening algorithm.

38 Plücker coordinates

38.1 Combinatorial approach We start with a very simple combinatorial approach
to which we will soon give a deeper geometrical meaning.

We consider an n×m matrix X := (xij) of indeterminates (the coordinates on the space
Mn,m of matrices), assume n ≤ m. We denote by x1, x2, . . . , xm the columns of a matrix
in Mn,m. We work inside the ring A := Z[xij ] of polynomials in these variables, we may
wish to consider an element in A as a function of the columns and then we will write it
as f(x1, x2, . . . , xm). We use the following notation. Given n integers i1, i2, . . . , in chosen
between the numbers 1, 2, . . . ,m by the symbol:

(38.1.1) [i1, i2, . . . , in]

we denote the determinant of the matrix which has as columns the columns of indeces
i1, i2, . . . , in of the matrix X , we call such a polynomial a Plücker coordinate.

The first properties of these symbols are:
S1) [i1, i2, . . . , in] = 0 if and only if 2 indeces coincide.
S2) [i1, i2, . . . , in] is antisymmetric (under permutation of the indeces).
S3) [i1, i2, . . . , in] is multilinear as a function of the vector variables.
The next property is crucial for the theory. Assume m ≥ 2n and consider the product:

(38.1.2) f(x1, x2, . . . , x2n) := [1, 2, . . . , n][n + 1, n + 2, . . . , 2n].

Select now an index k ≤ n and the n +1 variables xk, xk+1, . . . , xn, xn+1, xn+2, . . . , xn+k.
Next alternate the function f in these variables:

∑

σ∈Sn+1

εσf (x1, . . . , xk−1xσ(k), xσ(k+1), . . . , xσ(n), xσ(n+1), . . . , xσ(n+k), xn+k+1, . . . , x2n)

The result is a multilinear and alternating expression in the n + 1 vector variables

xk, xk+1, . . . , xn, xn+1, xn+2, . . . , xn+k.

This is necessarily 0 since the vector variables are n dimensional.

The symmetric group S2n acts on the space of 2n-tuples of vectors xi by permuting the
indeces. Then we have an induced action on functions by

(σf)(x1, x2, . . . , x2n) := f(xσ(1), xσ(2), . . . , xσ(2n))

The function [1, 2, . . . , n][n + 1, n + 2, . . . , 2n] is alternating with respect to the subgroup
Sn × Sn acting separately on the first n and last n indeces.
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Given k ≤ n consider the symmetric group Sn+1 (subgroup of S2n), permuting only the
indeces k, k + 1, . . . , n + k.

With respect to the action of this subgroup the function [1, 2, . . . , n][n+1, n+2, . . . , 2n]
is alternating with respect to the subgroup Sn−k+1×Sk of the permutations which permute
separately the variables k, k + 1, . . . , n and n + 1, n + 2, . . . , n + k.

Thus if g ∈ Sn+1, h ∈ Sn−k+1×Sk we have ghf(x1, x2, . . . , x2n) = εhgf (x1, x2, . . . , x2n).
We deduce that, if g1, g2, . . . , gN are representatives of the left cosets g(Sn−k+1 × Sk):

(38.1.3) 0 =
N∑

i=1

εgigif(x1, x2, . . . , x2n)

The function gf (x1, x2, . . . , x2n) is obtained from f(x1, x2, . . . , x2n) by replacing the
variables xi with xg−1i. As representatives we may choose some canonical elements. Re-
mark that two elements g, k are in the same right coset with respect to Sn−k+1 × Sk if
and only if the numbers k, k + 1, . . . , n and n + 1, n + 2, . . . , n + k correspond to the same
sets of elements. Therefore we can choose as representatives for right cosets the following
permutations:

choose a number h and h elements out of k, k +1, . . . , n and another h out of n+1, n+
2, . . . , n + k then exchange in order the first set of h elements with the second, call this
perputation an exchange, its sign is (−1)h.

A better choice can be the one obtained by composing such an exchange with a re-
ordering of the indeces in each Plücker coordinate. This is a shuffle since it is exactly the
operation performed on a deck of cards by a single shuffle.

A shuffle in our case is a permutation σ such that:

σ(k) < σ(k + 1) < . . . < σ(n); and σ(n + 1) < σ(n + 2) < . . . < σ(n + k).

Thus the basic relation is:
the sum (with signs) of all exchanges, in the polynomial f(x1, x2, . . . , x2n), of the vari-

ables xk, xk+1, . . . , xn, with the variables xn+1, xn+2, . . . , xn+k equals to 0.

We can now choose any indeces i1, i2, . . . , in; j1, j2, . . . , jn and substitute in the basic
relation 33.1.3 to the vector variables xh, h = 1, . . . , n the variable xih and to xn+h, h =
1, . . . , n the variable xjh , the resulting relation will be denoted symbolycally by:

(38.1.4)
∑

ε

∣∣∣∣
i1, i2, . . . , ik, . . . , in
j1, j2, . . . , jk, . . . , jn

∣∣∣∣ ∼= 0

where the symbol should remind us that we should sum over all exchanges of the underlined
indeces with the sign of the exchange, and the 2 lines tableau represents the product of
the two corresponding Plücker coordinates.

We want to work in a formal way and consider the polynomial ring in the symbols
|i1, i2, . . . , in| as independent variables only subject to the symmetry conditions S1 and
S2.

The expressions 33.1.4 are to be thought as quadratic polynomials in this polynomial
ring.
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When we substitute to the symbol |i1, i2, . . . , in| the corresponding Plücker coordinate
[i1, i2, . . . , in] the quadratic polynomials 33.1.4 vanish, i.e. they are quadratic equations.

Remark It is possible that several terms of the quadratic relation vanish or cancel each
other.

Let us define thus a ring A as the polynomial ring Z[ |i1, i2, . . . , in| ] modulo the ideal
J generated by the quadratic polynomials 33.1.4. The previous discussion shows that we
have a homomorphism:

j : A = Z[ |i1, i2, . . . , in| ]/J → Z[ [i1, i2, . . . , in] ]

One of our goals is:

Theorem. The map j is an isomorphism.

38.2 Before we can prove Theorem 33.1 we need to draw a first consequence of the
quadratic relations. For the moment when we speak of a Plücker coordinate [i1, i2, . . . , in]
we will mean only the class of |i1, i2, . . . , in| in A. Of course with Theorem 33.1 this use
will be consistent with our previous one.

Consider a product of m Plücker coordinates

[i11, i12, . . . , i1k, . . . , i1n][i33, i34, . . . , i2k, . . . , i1n] . . . [im1, im2, . . . , imk, . . . , imn]

and display it as an m lines tableau:

(38.2.1)

∣∣∣∣∣∣∣∣∣

i11 i12 . . . i1k . . . i1n

i33 i34 . . . i2k . . . i1n

. . .

. . .
im1 im2 . . . imk . . . imn

∣∣∣∣∣∣∣∣∣

Due to the antisymmetry properties of the coordinates let us assume that the indeces in
each row are strictly increasing otherwise the product is either 0 or up to sign equals the
one in which each row has been reordered.

Definition. We say that a rectangular tableau is standard if its rows are strictly in-
creasing and its columns are non decreasing (i.e. ihk < ih k+1 and ihk ≤ ih+1 k). The
corresponding monomial is then called a standard monomial.

It is convenient, for what follows, to associate to a tableau the word obtained by reading
sequentially the numbers on each row:

(38.2.2) i11 i12 . . . i1k . . . i1n, i33 i34 . . . i2k . . . i1n . . . . . . im1 im2 . . . imk . . . imn

and order these words lexicographically. It is then clear that, if the rows of a tableaux T
are not strictly increasing, the tableaux T ′ obtained from T by reordering the rows in an
increasing way is strictly smaller than T in the lexicographic order.

The main algorithm is given by:
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Lemma. A product T of two Plücker coordinates

T :=
∣∣∣∣
i1, i2, . . . , ik, . . . , in
j1, j2, . . . , jk, . . . , jn

∣∣∣∣

can be expressed, through the quadratic relations 33.1.4 as a linear combination with integer
coefficients of standard tableaux with 2 rows, preceding T in the lexicographic order and
filled with the same indeces i1, i2, . . . , ik, . . . , in, j1, j2, . . . , jk, . . . , jn.

Proof. We may assume first that the 2 rows are strictly increasing. Next, if the tableau is
not standard, there is a position k for which ik > jk and hence:

j1 < j2 < . . . < jk < ik < . . . < in.

We call such a position a violation of the standard form. We then apply the corresponding
quadratic equation. In this equation every shuffle, different from the identity, replaces some
of the indeces ik < . . . < in with indeces from j1 < j2 < . . . < jk. It produces thus a
tableau which is strictly lower lexicographically than T . Thus, if T is not standard it can
be expressed, via the relations 33.1.4 as a linear combination of lexicographically smaller
tableaux, we say that we have applied a step of a straightening algorithm.

Take the resulting expression, if it is a linear combination of standard tableaux we stop
otherwise we can repeat the algorithm to all the non standard tableaux appearing, again
each non standard tableau is replaced with a linear combination of strictly smaller tableaux;
since the 2 lines tableaux filled with the indeces i1, i2, . . . , ik, . . . , in, j1, j2, . . . , jk, . . . , jn
are a finite set, totally ordered lexicographically, the straightening algorithm must termi-
nate after a finite number of steps, i.e. we obtain an expression with only standard 2 lines
tableaux.

We can now pass to the general case:

Theorem. Any rectangular tableau with m rows is a linear combination with integer coef-
ficients of standard tableaux. The standard form can be obtained by a repeated application
of the straightening algorithm to pairs of consecutive rows.

Proof. The proof is essentially obvious. We first reorder each row then inspect the tableau
for a possible violation in two consecutive rows. If there is no violation the tableau is
standard otherwise we replace the two given rows with strictly lower two lines tableaux,
then we repeat the algorithm. The same reasoning of the lemma shows that the algorithm
stops after a finite number of steps.

38.3 Remarks Some remarks on the previous algorithm are in order. First of all we
can express the same ideas in a slightly different way. Consider the set S of

(
m
n

)
symbols

|i1 i2 . . . in| where 1 ≤ i1 < i2 < . . . < in ≤ m. We give to S a partial ordering (the
Bruhat order) by declaring:

|i1 i2 . . . in| ≤ |j1 j2 . . . jn|, if and only if, ik ≤ jk, ∀k = 1, . . . , n.

Remark that |i1 i2 . . . in| ≤ |j1 j2 . . . jn| if and only if the tableau:
∣∣∣∣
i1 i2 . . . in
j1 j2 . . . jn

∣∣∣∣
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is standard.
In this language a standard monomial is a product

[i11, i12, . . . , i1k, . . . , i1n][i23, i24, . . . , i2k, . . . , i1n] . . . [im1, im2, . . . , imk, . . . , imn]

in which the coordinates appearing are increasing from left to right in the given order.
If a = |i1 i2 . . . in|, b = |j1 j2 . . . jn| and the product

ab =
∣∣∣∣
i1 i2 . . . in
j1 j2 . . . jn

∣∣∣∣

is not standard then we can apply a quadratic equation and obtain ab =
∑

i λiaibi with λi

coefficients and ai, bi obtained from a, b by the shuffle procedure of Lemma 33.2. The proof
of that lemma shows in fact that a < ai, b > bi. It is useful to axiomatize the setting.

Definition. 1) Given a commutative algebra R over a commutative ring A a finite set
S ⊂ R and a partial ordering in S we say that a product s1s2 . . . sm is a standard
monomial if si ∈ S and s1 ≤ s2 ≤ . . . ≤ sm in the given partial ordering.

2) We say that R is a quadratic Hodge algebra over S if:
i) The standard monomials are a basis of R over A.
ii) If a, b ∈ S are not comparable then:

(38.3.1) ab =
∑

i

λiaibi

with λi ∈ A and a < ai, b > bi.

The quadratic relations 33.3.1 give the straightening law for R.
Our main goal is a Theorem which includes Theorem 33.1:

Theorem. The standard tableaux form a Z basis of A and A is isomorphic to the ring
Z[[i1, i2, . . . , in]] ⊂ Z[xij ].

Proof. Since the standard monomials span linearly A and since by construction j is clearly
surjective, it suffices to show that the standard monomials are linearly independent in the
ring Z[[i1, i2, . . . , in]]. This point can be achieved in several different ways, we will follow
first a combinatorial and then a geometric approach through Schubert cells.

The algebraic combinatorial proof starts as follows:
Remark first that, in a standard tableau, each index i can appear only in the first i

columns.
Let us define a tableau to be k− canonical if, for each i ≤ k, the indeces i which appear

are all on the ith column. Of course a tableau (with n columns) is n canonical if and only
if the ith column is filled with i for each i, i.e. it is of type |1 2 3 . . . n − 1 n|h.

Suppose we are given a standard tableau T which is k canonical. Let p = p(T ) be the
minimum index (greater than k) which appears in T in a column j < p. Set mp(T ) be the
minimum of such column indeces.

The entries before it in the corresponding row are then the indeces 1 2 3 . . . j−1. Given
an index j let us consider the set Tp,j,h of k canonical standard tableaux for which p is the
minimum index (greater than k) which appears in T in a column j < p and mp(T ) = j
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and in this column p occurs exactly h times. The main combinatorial remark we make is
that, if we substitute p with j in all these positions we see that we have a map which to
distinct tableaux associates distinct k−canonical tableaux T ′ with, either p(T ′) > p(T ) or
p(T ′) = p(T ) and mp(T ′) > mp(T ).

To prove the injectivity it is enough to observe that, if a tableau T is transformed in a
tableau T ′, the tableau T is obtained from T ′ by substituting with p the last h occurrences
of j (which are in the jth column).

The next remark is that if we substitute the variable xi with xi + λxj , (i 6= j) in a
Plücker coordinate [i1, i2, . . . , in].

The result of the substitution is [i1, i2, . . . , in], if i does not appear among the indeces
i1, i2, . . . , in or if both indeces i, j appear.

If instead i = ik we get

[i1, i2, . . . , in] + λ[i1, i2, . . . , ik−1, j, ik+1, . . . , in].

Suppose we make the same substitution in a tableau, i.e. in a product of Plücker
coordinates; then by expanding the product of the transformed coordinates we obtain a
polynomial in λ of degree equal to the number of entries i which appear in rows of T where
j does not appear. The leading coefficient of this polynomial is the tableau obtained from
T substituting with j all the entries i which appear in rows of T where j does not appear.

After these preliminary remarks we can give a proof of the linear independence of the
standard monomials in the Plücker coordinates.

Let us assume by contradiction that:

(38.3.2) 0 = f (x1, . . . , xm) =
∑

i

ciTi

is a dependence relation among (distinct) standard tableaux.
At least one of the Ti must be different from a power |1 2 3 . . . n − 1 n|h since such a

relation is not valid.
Let then p be the minimum index which appears in one of the Ti in a column j < p

and let j be the minimum of these column indeces. Let also h be the maximum number of
such occurrences of p and assume that the tableaux Ti, i ≤ k are the ones for which this
happens. This implies that, if in the relation 33.3.1 we substitute xp with xp +λxj , where
λ is a parameter, we get a new relation which can be develeped as a polynomial in λ of
degree h. Since this is identically 0, each coefficient must be zero. Its leading coefficient
is:

(38.3.3)
k∑

i=1

ciT
′
i

where T ′
i is obtained from Ti replacing the h indeces p appearing on the j column with j.

According to our previous combinatorial remark the tableaux T ′
i are distinct and thus

33.3.3 is a new relation. We are thus in an inductive procedure which terminates with a
relation of type: ∑

k

ak|1 2 3 . . . n − 1 n|k
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which is a contradiction.

39 The Grassmann variety and its Schubert cells

39.1 Schubert cells The theory of Schubert cells has several interesting features, we
start now with an elementary treatment. Let us start with an m dimensional vector space
V over a field F and consider ∧nV for some n ≤ m.

Proposition. 1) Given n vectors v1, v2, . . . , vn ∈ V , the decomposable vector

v1 ∧ v2 ∧ . . . ∧ vn 6= 0

if and only if the vectors are linearly independent.
2) Given n linearly independent vectors v1, v2, . . . , vn ∈ V and a vector v:

v ∧ v1 ∧ v2 ∧ . . . ∧ vn = 0

if and only if v lies in the subspace spanned by the vectors vi.
3) If v1, v2, . . . , vn and w1, w2, . . . , wn are both linearly independent sets of vectors then:

w1 ∧ w2 ∧ . . . ∧ wn = αv1 ∧ v2 ∧ . . . ∧ vn

with α a non zero scalar if and only if the two sets span the same n dimensional subspace
W of V .

Proof. Clearly 2) is a consequence of 1). As for this statement, if the v′
is are linearly

independent they may be completed to a basis and then the statement follows from the
fact that v1 ∧ v2 ∧ . . . ∧ vn is one of the basis elements of ∧nV .

If conversely one of the vi is a linear combination of the others we replace this expression
in the product and have a sum of products with a repeated vector which is then 0.

3) Assume first that they span the same subspace. By hypothesis wi =
∑

j cijvj with
C = (cij) an invertible matrix hence:

w1 ∧ w2 ∧ . . . ∧ wn = det(C)v1 ∧ v2 ∧ . . . ∧ vn.

Conversely by 2) we see that

W := {v ∈ V |v ∧ w1 ∧ w2 ∧ . . . ∧ wn = 0}.

We have an immediate geometric corollary.
Given an n dimensional subspace W ⊂ V with basis v1, v2, . . . , vn, the vector w :=

v1 ∧ v2 ∧ . . . ∧ vn is non zero ans so it determines a point in the projective space P(∧n(V ))
(whose points are the lines in ∧n(V )).

Part 3) shows that this point is independent of the basis chosen but depends only on
the subspace W , thus we can indicate it by the symbol [W ].

Part 2) shows that the subspace W is recovered by the point [W ] we get:
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Corollary. The map W → [W ] is a 1-1 correspondence between the set of all n−dimensional
subspaces of V and the points in P(∧nV ) corresponding to decomposable elements.

Let us denote by Grn(V ) the set of n−dimensional subspaces of V or its image in
P(∧n(V )). In order to understand the construction we will be more explicit.

Consider the set Sn,m of n − tuples v1, v2, . . . , vn of linearly independent vectors in V .

(39.1.1) Sn,m := {(v1, v2, . . . , vn)|v1 ∧ v2 ∧ . . . ∧ vn 6= 0}.

Chosen a basis e1, . . . , em of V , associate to it the basis ei1 ∧ei2 ∧ . . .∧ein of ∧nV where
(i1 < i2 . . . < in).

Represent in coordinates an n − tuple v1, v2, . . . , vn of vectors in V as the rows of an
n × m matrix X (of rank n).

In the basis ei1 ∧ ei2 ∧ . . . ∧ ein of ∧nV the coordinates of v1 ∧ v2 ∧ . . . ∧ vn are then the
determinants of the maximal minors of X .

Explicitely let us denote by [i1i2 . . . in](X) the determinant of the maximal minor of X
extracted from the columns i1 i2 . . . in then:

(39.1.2) v1 ∧ v2 ∧ . . . ∧ vn =
∑

1≤i1<i2...<in≤m

[i1i2 . . . in](X)ei1 ∧ ei2 ∧ . . . ∧ ein .

Thus Sn,m can be identified to the open set of n × m matrices of maximal rank.
Sn,m is called the (algebraic) Stiefel manifold.4

Let us indicate by W (X) the subspace of V spanned by the rows of X . The group
Gl(n, F ) acts by left multiplication on Sn,m and if A ∈ Gl(n, F ), X ∈ Sn,m we have:

W (X) = W (Y ), if and only if, Y = AX, A ∈ Gl(n, F )

[i1i2 . . . in](X) = det(A)[i1i2 . . . in](X).
In particular:

Grn(V ) can be identified to the set of orbits of Gl(n, F ) acting by left multiplication on
Sn,m. We want to understand the nature of Grn(V ) as variety. We need:

Lemma. Given a map between two affine spaces π : F k → F k+h, of the form:

π(x1, x2, . . . , xk) = (x1, x2, . . . , xk, p1, . . . , ph)

with pi = pi(x1, x2, . . . , xk) polynomials, its image is a closed subvariety of F k+h and π is
an isomorphism of F k onto its image.
Proof. The image is the closed subvariety given by the equations:

xn+i − pi(x1, x2, . . . , xk) = 0.

The inverse of the map π is the projection

(x1, x2, . . . , xk, . . . , xk+h) → (x1, x2, . . . , xk).

We can now state and prove the main result of this section:

4The usual Stiefel manifold is, over , the set of n − tuple v1, v2, . . . , vn of orthonormal vectors in m,
it is homotopic to Sn,m .



39 The Grassmann variety and its Schubert cells 201

Theorem. 1) Grn(V ) is a smooth projective subvariety of P(∧n(V )).
2) The map X → W [X] from Sn,m to Grn(V ) is a principal Gl(n, F ) bundle (locally

trivial in the Zariski topology).

Proof. The proof will in fact show something more. Consider the affine open set U of
P(∧n(V )) where one of the projective coordinates is not 0 and intersect it with Grn(V ).
We claim that U ∩Grn(V ) is closed in U and isomorphic to an n(m−n) dimensional affine
space and that on this open set the bundle of point 2) is trivial.

To prove this let us assume for simplicity of notations that U is the open set where the
coordinate of e1 ∧ e2 ∧ . . . ∧ en is not 0. We use in this set the affine coordinates obtained
by setting the corresponding projective coordinate equal to 1.

The condition that W (X) ∈ U is clearly, [1 2 . . . n](X) 6= 0 i.e. that the submatrix A
of X formed from the first n columns is invertible.

Since we have selected this particular coordinate it is useful to display the elements of
Sn,m in block form as X = (A T ), (A, T respectively n × n, n × m − n matrices).

Consider the matrix Y = A−1X = (1n Z) with Z an n × m − n matrix and T = AZ.

It follows that the map i : Gl(n, F ) × Mn,m(F ) → Sn,m:

i(A,Z) = (A AZ)

is an isomorphism of varieties to the open set S0
n,m of n×m matrices X such that W (X) ∈

U , its inverse is j : S0
n,m → Gl(n, F ) × Mn,m(F ) given by:

j(A T ) = (A, A−1T )

Thus we have that the set of matrices of type (1n Z) is a set of representatives for the
Gl(n, F ) orbits of matrices X with W (X) ∈ U . In other words in a vector space W such
that [W ] ∈ U there is a unique basis which in matrix form is of type (1n Z). This will also
give the required trivialization of the bundle.

Let us now understand in affine coordinates the map from the space of n × m − n
matrices to U ∩Grn(V ). It is given by computing the determinants of the maximal minors
of X = (1n Z). A simple computation shows that:

[1 2 . . . i − 1 n + k i + 1 . . . n](X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 z1 k 0 0 . . . 0
0 1 . . . 0 z2 k 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 zi−1 k 0 0 . . . 0
0 0 . . . 0 zi k 0 0 . . . 0
0 0 . . . 0 zi+1 k 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 zn k 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

This determinant is zik. Thus Z maps to a point in U in which n × (m − n) of the
coordinates are, up to sign, the coordinates zik, the remaining coordinates are instead
polynomials in these variables. Now we can invoke the previous lemma and conclude.
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39.2 Let us display a matrix X ∈ Snm as a sequence (v1, v2, . . . , vm) of column
vectors. So that AX = (Av1, Av2, . . . , Avm). Therefore if i1 < i2 < . . . < ik are indeces
the property that the corresponding columns in X are linearly independent is invariant
in the Gl(n, F ) orbit and depends only on the space W (X) spanned by the rows. In
particular we will consider the sequence i1 < i2 < . . . < in where vi1 is the first non zero
column and inductively vik+1 is the first column vector which is linearly independent from
vi1 , vi2 , . . . vik . For an n−dimensional subspace W we will set s(W ) to be the sequence
thus constructed from a matrix X for which W = W (X). We finally set:

(39.2.1) Ci1,i2,... ,in = {W ∈ Grn(V )| s(W ) = i1, i2, . . . , in}.

Ci1,i2,... ,in is contained in the open set Ui1,i2,... ,in of Grn(V ) where the Plücker coordinate
[i1, i2, . . . , in] is not zero. In 34.1 we have seen that this open set can be identified to
the set of n × m − n matrices X for which the submatrix, extracted from the columns
i1 < i2 < . . . < in, is the identity matrix. We wish thus to represent our set Ci1,i2,... ,in

by these matrices. We have that the columns i1, i2, . . . , in are the columns of the identity
matrix, the columns before i1 are 0 and between ik, ik+1 are vectors in which all coordinates
greater that k are 0, we will refer to such a matrix as a canonical representative; e.g.
n = 4, m = 11, i1 = 2, i2 = 6, i3 = 9, i4 = 11:

(39.2.2)

∣∣∣∣∣∣∣

0 1 a1 a2 a3 0 b11 b12 0 c11 0
0 0 0 0 0 1 b33 b34 0 c33 0
0 0 0 0 0 0 0 0 1 c31 0
0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣

Thus Ci1,i2,... ,in is an affine subspace of Ui1,i2,... ,in given by the vanishing of certain co-
ordinates. Precisely the free parameters appearing in the columns between ik, ik+1 are
displayed in a k × (ik+1 − ik − 1) matrices, and the ones in the columns after in in an
n × (m − in) matrix. Thus:
Proposition. Ci1,i2,... ,in is a closed subspace of the open set Ui1,i2,... ,in of the Grassmann
variety called a Shubert cell. Its dimension is:

(39.2.3) dim(Ci1,i2,... ,in) =
n−1∑

k=1

k(ik+1 − ik −1−1)+n(m− in) = nm− n(n − 1)
2

−
n∑

j=1

ij .

39.3 Let us make an important remark. By definition of the indeces i1, i2, . . . , in
associated to a matrix X we have that, given a nuber j < ik, the submatrix formed
by the first j columns has rank at most k − 1. This implies immediately that, if we
give indeces j1, j2, . . . , jn for which the corresponding Plücker coordinate is non zero then
i1, i2, . . . , in ≤ j1, j2, . . . , jn, in other words:
Proposition. Ci1,i2,... ,in is the subset of the Grassmann variety where vanish all Plücker
coordinates j1, j2, . . . , jn which are not greater or equal than i1, i2, . . . , in and i1, i2, . . . , in
is non zero.

We have thus decomposed the Grassmann variety into cells indexed by the elements
i1, i2, . . . , in. We have already seen that this set of indeces has a natural total ordering
and we wish to understand this order in a geometric fashion, let us indicate by Pn,m this
partially ordered set. First let us make a simple remark based on the following:
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Definition. In a partially ordered set P we will say that 2 elements a, b are adjacent if:

a < b, and if a ≤ c ≤ b, then a = c, or c = b.

Remark. The elements adjacent to i1, i2, . . . , in are obtained by selecting any index ik
such that ik + 1 < ik+1 and replacing it by ik + 1 (if k = n the condition is ik < m).

Proof. The proof is a simple exercise left to the reader.

39.4 There is a geometric meaning of the Schubert cells related to the relative position
with respect to a standard flag.

Definition. A flag in a vector space V is an increasing sequence of subspaces:

V1 ⊂ V2 ⊂ . . . ⊂ Vk.

A complete flag in an n−dimensional space V is a flag:

(39.4.1) 0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn = V

With dim(Vi) = i, i = 1, . . . , n.

Sometimes it is better to use a projective language, so that Vi gives rise to an i − 1
dimensional linear subspace in the projective space P(V ).

A complete flag in an n dimensional projective space is a sequence: π0 ⊂ π1 ⊂ π2 . . . ⊂
πn with πi linear subspace of dimension i.

We fix the standard flag, with Fi the set of vectors with the first m− i coordinates equal
to 0 spanned by the last i vectors of the basis e1, . . . , em.

Given a space W ∈ Ci1,i2,... ,in let v1, . . . , vn be the corresponding normalized basis
as rows of an n × m matrix X for which the submatrix, extracted from the columns
i1, i2, . . . , in, is the identity matrix. A linear combination

∑n
k=1 ckvk has thus the number

ck as ik coordinate 1 ≤ k ≤ n. Thus for any i we see that

(39.4.2) W ∩ Fi = {
n∑

k=1

ckvk|ck = 0, if ik < m − i}

thus:
dim(Fi ∩ W ) = n − k, if and only if ik < m − i ≤ ik+1.

In other words, setting di := dim(Fi ∩ W ) this sequence of numbers is completely deter-
mined and determines the numbers i := i1 < i2 < . . . < in, let us denote by d[i] the
sequence thus defined, it has the properties:

dm = n, d1 ≤ 1, di ≤ di+1 ≤ di + 1.

The numbers m − ik + 1 are the ones in which the sequence jumps by 1. E.g. for the
example given in (34.2.2) we have the sequence:

1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4
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We observe that, given two sequences

i := i1 < i2 < . . . < in, j := j1 < j2 < . . . < jn

we have:
i ≤ j, iff d[i] ≤ d[j].

39.5 We pass now to a second fact:

Definition.
Si1,i2,... ,in := {W |dim(Fi ∩ W ) ≤ di}.

From the previous remarks:

Ci1,i2,... ,in := {W |dim(Fi ∩ W ) = di}, Si = ∪j≥iCj .

We need now to interpret these notions in a group theoretic way.
We define T to be the subgroup of GL(m,F ) of diagonal matrices. Let Ii1,i2,... ,in be

the n × m matrix with the identity matrix in the columns i1, i2, . . . , in and 0 otherwise.
We call this the center of the Schubert cell.

Lemma. The
(
m
n

)
decomposable vectors associated to the matrices Ii1,i2,... ,in are the vec-

tors ei1 ∧ ei2 ∧ . . . ∧ ein . These are a basis of weight vectors for the group of T acting on
∧nFm. The corresponding points in projective space P (∧nFm) are the fixed points of the
action of T , the corresponding subspaces are the only T−stable subspaces of Fm.

Proof. Given an action of a group G on a vector space the fixed points in the corresponding
projective space are the stable 1-dimensional subspaces. If the space has a basis of weight
vectors of distinct weights any G stable subspace is spanned by a subset of these vectors,
the lemma follows.

We define B to be the subgroup of GL(m,F ) which stabilizes the flag Fi. A matrix
X ∈ B if and only if Xei is a linear combination of the elements ej with j ≥ i. This means
that B is the group of lower triangular matrices. From the definitions we have clearly that
the sets Ci1,i2,... ,in, Si1,i2,... ,in are stable under the action of B in fact we have:

Theorem. Ci1,i2,... ,in is a B orbit.

Proof. Represent the elements of Ci1,i2,... ,in by their matrices whose rows are the canonical
basis. Consider for any such matrix X an associated matrix X̃ which has the ik row equal
to the kth row of X and otherwise the rows of the identity matrix, for instance for X the
matrix of 34.2.2 we have:
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(39.5.1) X̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0 0
0 1 a1 a2 a3 0 b11 b12 0 c11 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 b33 b34 0 c33 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 c31 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

We have:
X = Ii1,i2,... ,inX̃

and X̃t ∈ B. This implies the theorem.

Finally:

Proposition. Si1,i2,... ,in is the Zariski closure of Ci1,i2,... ,in .

Proof. Si1,i2,... ,in is defined by the vanishing of all Plücker coordinates not greater or equal
to i1, i2, . . . , in, hence it is closed and contains Ci1,i2,... ,in .

Since Ci1,i2,... ,in is a B orbit its closure is a union of B orbits hence a union of Schubert
cells. To prove the theorem it is enough by 34.3 to show that, if for some k we have
ik + 1 < ik+1, then Ii1,i2,... ,ik−1,ik+1,ik+1,in is in the closure of Ci1,i2,... ,in . For this consider
the matrix Ii1,i2,... ,in(b) which differs from Ii1,i2,... ,in only in the ik + 1 column which has
0 in all entries except b in the ik + 1 row. The space defined by this matrix equals the one
defined by the matrix which equals Ii1,i2,... ,ik−1,ik+1,ik+1,in except in the ik column which
has 0 in all entries except b−1 in the ik row. The limit as b → ∞ of this matrix tends to
Ii1,i2,... ,ik−1,ik+1,ik+1,in .

e.g.

W (

∣∣∣∣∣∣∣

0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 b 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣
) = W (

∣∣∣∣∣∣∣

0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 b−1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣
)

lim
b→∞

W (

∣∣∣∣∣∣∣

0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 b−1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣
) = W (

∣∣∣∣∣∣∣

0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣
)

39.6 Standard monomials We want to apply now the theory developed to standard
monomials.
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We have seen that the Schubert variety Si1,i2,... ,in = Si is the intersection of the Grass-
mann variety with the subspace where the coordinates j which are not greater or equal
than i vanish.

We say that a standard monomial is standard on Si1,i2,... ,in if it is a product of Plücker
coordinates greater or equal than i.
Theorem. The monomials standard on Si are a basis of the projective coordinate ring of
Si.

Proof. The monomials which are not standard on Si vanish on this variety hence it is
enough to show that the monomials standard on Si restricted on this variety are linearly
independent. Assume by contradiction that

∑n
k=1 ckTk vanishes on Si, by induction as-

sume that the degree of this relation is minimal.
Let us consider for each monomial Tk its minimal coordinate pk and write Tk = pkT ′

k;
then select, among the Plücker coordinates pk, a maximal coordinate pj and decompose
the sum as:

m∑

k=1

ckpkT ′
k + pj(

n∑

k=m+1

ckT ′
k).

By hypothesis i ≤ j. Restrict the relation to Sj , all the standard monomials which contain
coordinates not greater than j vanish so, by choice of j, we have that pj(

∑n
k=m+1 ckT ′

k)
vanishes on Sj . Since Sj is irreducible and pj is non zero on Sj , we must have that
(
∑n

k=m+1 ckT ′
k) vanishes on Sj . This relation has a lower degree and we reach a contra-

diction.
Of course this theorem is more precise than the standard monomial theorem for the

Grassmann variety.

39.7 The theory just developed has deep generalizations, we want to give here a
further refinement in the language of roots which is the one suitable for the general theory.

We work over the group GL(n, C) and consider its adjoint action on the space of matrices
Mn(C). Let T denote the subgroup of diagonal matrices, if t ∈ T the diagonal entries of
t will be written t1, t2, . . . , tn in order. Consider the elementary matrices ei,j , under
conjugation by diagonal matrices we have tei,jt

−1 = tit
−1
j ei,j . If i 6= j the character

t → tit
−1
j is not 1 and ei,j is (up to scalars) the unique weight vector for this weight, these

weights are called the roots of the group GL(n, C). It is conveniant to use the additive
notation and write:

tit
−1
j = tαi,j .

In this notation we consider the Lie adjoint action of the subalgebra t of diagonal matrices
(the Cartan subalgebra). If h is diagonal with entries hi then [h, ei,j ] = (hi − hj)ei,j and
we consider αi,j as the linear function on t given by αi,j : h → hi − hj . If t = exp(h)
then tit

−1
j = exp(αi,j(h)). It is important to separate the roots into positive and negative

according wether i < j or i > j we indicate these two sets by Φ+, Φ−.
Consider the group B− of lower triangular matrices and in it the subgroup U− of strictly

lower triangular matrices, i.e. triangular matrices with 1 on the diagonal. Similarly we
can consider the upper triangular matrices B+, U+.
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In U− there are
(
n
2

)
remarkable subgroups, the ones defined for any pair 1 ≤ j < i ≤ n,

by Ui,j := {exp(λei,j) = 1 + λei,j}.
Let u− := Lie(U−) denote the Lie algebra of lower triangular matrices with 0 on the

diagonal. It is the linear span of the matrices ei,j , i > j. Every matrix X ∈ u− satisfies
Xn = 0 thus the exponential map, restricted to u− ia a polynomial map:

exp : u− → U−, X →
n−1∑

i=0

1
i!

Xi.

Similarly any matrix in U− is of the form 1 − X with Xn = 0 and thus

log : U− → u−, 1 − X → −
n−1∑

i=1

Xi

n
.

The two algebraic maps, exp, log are inverse isomorphism. In this case we have:

Proposition. The exponential of a Lie subalgebra in u− is an algebraic subgroup. Con-
versely the logarithm of an algebraic subgroup of U− is a Lie subalgebra.

Proof. It is a simple application of the correspondence between Lie algebras and Lie groups.
Let M be a Lie algebra. H := exp(M ) is a subvariety of U−, a neighborhood A of 1 in
H has the property that AA ⊂ H, A−1 ⊂ H. Clearly the Zariski closure of A is H so by
continuity of the product and the inverse in the Zariski topology we get HH ⊂ H, H−1 ⊂ H
so H is an algebraic subgroup. The converse is even more trivial.

Consider the conjugation action under T , which normalizes u− and U−. We have
exp(tAt−1) = t exp(A)t−1 and so under the correspondence between subalgebras of u−

and subgroups of U− the subgroups of U− normalized by T correspond to the subalgebras
of u− with a basis a set of eα, α ∈ S, if α, β are negative roots [eα, eβ ] = eα+β if α + β is
a root, otherwise [eα, eβ] = 0. The condition that a set S of roots is such that the span of
the eα is a subalgebra is:

*) If α, β ∈ S and α + β is a root then α + β ∈ S.

Definition. A root subgroup of U− is an algebraic subgroup normalized by T .

The previous analysis shows that root subgroups are classified by the special sets of
roots S which satisfy the property *).

There is a remarkable class of root subgroups associated to permutations. Let σ
be a permutationin Sn, identified with the permutation matrix in GL(n, C). We have
σei,jσ

−1 = eσ(i),σ(j).

Consider U−∩σ−1U+σ. This is clearly a root subgroup with Lie algebra spanned by the
ei,j |i > j, and σ(i) < σ(j), it corresponds to the set of roots α ∈ Φ− such that σ(α) ∈ Φ+.

Consider now the center Ii1,i2,... ,in of a Schubert cell Ci1,i2,... ,in . Since this point is
fixed under T its stabilizer in U− is a root subgroup. To see which roots belong to the
stabilizer apply the element 1 + λei,j to it and see that Ii1,i2,... ,in is fixed if and only if
either j /∈ i1, i2, . . . , in or if i, j ∈ i1, i2, . . . , in.
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We see that the set of roots which do not belong to the stabilizer are

{αi,j |j ∈ i1, i2, . . . , in, i /∈ i1, i2, . . . , in},

it satisfies property *) and so it defines a subgroup Ui1,i2,... ,in, it is easily verified that this
is exactly the set of matrices used in theorem 34.5, of which we gave an example in 34.5.1.
We summarize:
Theorem. Given the center Ii of a Schubert cell i, the set of negative roots is partitioned
in two sets which correspond to two root subgroups U0

i , U1
i of U−. U0

i is the stabilizer of
Ii while the orbit map g → gIi establishes an algebraic isomorphism between U1

i and the
cell Ci.

Finally we want to study the tangent space to the Grassmann variety in Ii, in particular
since this point is T stable we want to study the linear action of T on this tangent space.
We consider the open set Ui represented by n × m matrices with the identity matrix in
the i position. It can can be identified to the space of n × m − n matrices and the point
Ii corresponds to 0. A matrix X ∈ T with diagonal entries xi acts on these matrices as
follows. Pick a n×m matrix Y with the identity matrix in the i position, multiply it Y Xt

obtaining a matrix which has in the in the i positions the diagonal matrix D with entries
xi1 , xi2 , . . . , xin . Thus D−1Y X id the transformed element in Ui. Having identified this
open set with a space of matrices we see that the given action is linear and so it can be
thought as the actin on the tangent space. Finally we see that this tangent space can be
thought as spanned by the elementary matrices ek,j, k = 1, . . . , n; 1 ≤ j ≤ m, j /∈ i.

On this matrix the diagonal matrix X acts as x−1
ik

xj . These are weights corresponding to
negative roots when ik < j to positive otherwise.

The subspace where the coordinates relative to the positive roots are zero is the orbit
under U− of the center Ii.

We could as well have taken the U+ orbits and see that:
The subspace where the coordinates relative to the negative roots are zero is the orbit

under U+ of the center Ii.
We have thus two decompositions of the Grassmann variety in cells, Schubert cells and

dual cells, the two opposite cells having as center a given point Ii have complementary
dimension and intersect transversally. They decompose the affine space Ui as a product of
two affine spaces. Finally there is a final general point. Fix a 1-parameter group xi = thi

with h1 > h2 > h3 > . . . > hn. The character xix
−1
j restricted to this subgroup is thi−hj .

The exponent is thus positive if and only is the weight is a positive root.

39.8 The reader can now verify by the local description of the Grassmann variety
around a point Ii that:

Theorem.
Ci = {p ∈ Grn(V )| lim

t→∞
tp = Ii}.

A similar statement holds for the opposite cells taking the limit as t → 0.
There is a general theory, the theory of Bialinicki-Birula, which gives a general decom-

position of projective varieties under torus actions which generalizes the theory we have
described here.



40 Double tableaux 209

Remark also that the symmetric group permutes the centers of the Shubert cells, and
σ(Ii1,i2,... ,in) = Iσ(i1),σ(i2),... ,σ(in) so that their stabilizers in GL(n, C) are conjugate under
the symmetric group.

40 Double tableaux

40.1 We want to consider the polynomial ring of functions Z[xi,j ], i = 1, n; j = 1,m
in the entries xij of a matrix X of variables, which we think as polynomial functions on
the space of n × m matrices (we can work on Z since the methods will be combinatorial).

In this ring we will study the relations among the special polynomials obtained as
determinants of minors of the matrix X. In order to establish notations we indicate by:

(i1, i2, . . . , ik|j1, j2, . . . , jk)

the determinat of the minor extracted from the rows i1, i2, . . . , ik and the columns j1, j2, . . . , jk.
In these notations a variable xi,j is indicated as (i|j).

e.g. (1 2|1 3) := x11x23 − x21x13.

Consider the Grassmann variety Grn(m+n) and in it the open set A where the Plücker
coordinate extracted from the last n columns is non zero. In §33 we have seen that this
open set can be identified with the space Mn,m of n × m matrices.

To a matrix X being associated the space spanned by the rows of X 1n.
Remark In more intrinsic terms, given two vector spaces V, W we identify hom(V, W )

to an open set of the Grassmannian in V ⊕ W by associating to a map f : V → W its
graph Γ(f ) ⊂ V ⊕ W .

The point 0 corresponds thus to the unique 0 dimensional Schubert cell, which is also
the only closed Schubert cell. Thus every Schubert cell has a non empty intersection with
this open set.

We use as coordinates in X the variables xij but we display them as

X :=

∣∣∣∣∣∣∣∣∣

xn1 xn2 . . . xn,m−1 xnm

xn−1,1 xn−1,2 . . . xn−1,m−1 xn−1,m

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
x11 x12 . . . x1,m−1 x1m

∣∣∣∣∣∣∣∣∣

Let us compute a Plücker coordinate [i1, i2, . . . , in] for X 1n.
We must distinguish among the indeces ik appearing, the ones ≤ m say i1, i2, . . . , ih

and the ones bigger than m, so ih+t = m + jt where t = 1, . . . , n − h; 1 ≤ jt ≤ n.

The last n−t columns of the submatrix of X 1n extracted from the columns i1, i2, . . . , ih
are thus the solumns of indeces j1, j2, . . . , jn−h of the identity matrix.

Let Y be an n × (n − 1) matrix, and ei the ith column of the identity matrix.
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The determinant det(Y ei) of the n×n matrix obtained from Y adding ei as last column,
equals (−1)n+idet(Yi), where Yi is the n − 1 × n − 1 matrix extracted from Y by deleting
the ith row.

In our case therefore we obtain that [i1, i2, . . . , ih,m + j1, . . . ,m + jn−h] equals, up
to sign, the determinant (u1, u2, . . . , uh|i1, i2, . . . , ih) where the indeces u1, u2, . . . , uh are
complementary, in 1, 2, . . . , n, to the indeces n − j1, n − j2, . . . , n − jn−h (because of our
choice of X).

We have defined a bijictive map between the set of Plücker coordinates [i1, i2, . . . , in]
in 1, 2, . . . , n + m distinct from the last coordinate and the minors of the n × m matrix.

40.2 Since the Plücker coordinates are naturally partially ordered we want to under-
stand the same ordering transported on the minors.

Suppose thus that we are given two coordinates:

(40.2.1) [i1, i2, . . . , ih,m + j1, . . . ,m + jn−h] ≤ [u1, u2, . . . , uk,m + s1, . . . ,m + sn−k]

corresponding to the minors

(40.2.2) (v1, v2, . . . , vh|i1, i2, . . . , ih), (w1, w2, . . . , wk|u1, u2, . . . , uk).

From the inequality 35.2.1 we deduce k ≤ h and jn−a ≤ sn−k+h−a.
For this one should remark that, if from the list n, n1, . . . , 2 1 we remove the numbers

in the positions j1, j2, . . . , jn−h obtaining a list u1, u2, . . . , uh and then we delete the
numbers in the positions s1, s2, . . . , sn−k, k ≤ h, with jn−a ≤ sn−k+h−a, obtaining a list
v1, v2, . . . , vk displaying the indeces as:

v1, v2, v3, v4, . . . . . . , vh−1 , vh

w1, w2, . . . , wk−1, wk

the resulting tableau has indeces strictly increasing in the rows from right to left while
they are non increasing in the columns from top to bottom.

The formal implication is that a standard product of Plücker coordinates, interpreted
(up to sign) as a product of determinants of minors, appears as a double tableau, in which
the shape of the left side is the reflection of the shape on the right. The rows are strictly
increasing and the columns are non decreasing in the right tableau and non increasing in
the left, as example. Let n = 3,m = 5, consider a tableau:

∣∣∣∣∣∣∣∣∣∣∣

1 2 3
1 2 4
1 4 7
2 4 8
2 6 8
3 7 8

∣∣∣∣∣∣∣∣∣∣∣
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to this corresponds the double tableau:

3 2 1
3 2 1

3 1
3 2

2
3

1 2 3
1 2 4
1 4
2 4
2
3

We will call such a tableau a double standard tableau.
Of course together with the notion of double standard tableau we also have that of

double tableau or bitableau, which can be either thought as a product of determinants of
minors of decreasing sizes or as a pair of tableaux, called left (or row) and right (or column)
tableau of the same size.

If one takes the second point of view, which is useful when analyzing formally the
straigthening laws, one may think that the space of 1 line tableaux of size k is a vector
space Mk with basis the symbols (v1, v2, . . . , vh|i1, i2, . . . , ih).

For a partition λ := m1 ≥ m2 ≥ · · · ≥ mt the tableaux of shape λ can be thought as
the tensor product Mm1 ⊗ Mm2 ⊗ · · · ⊗ Mmt , when we evaluate a formal tableau into a
product of determinants we have a map with non trivial kernel (the space spanned by the
straigthening laws).

We want to interpret now the theory of Tableaux in terms of representation theory. For
this we want to think of the space of n × m matrices as hom(V,W ) = W ⊗ V ∗ where V
is n−dimensional and W is m−dimensional (as Z free modules if we work over Z). The
algebra R of polynomial functions on hom(V,W ) is the symmetric algebra on W ∗ ⊗ V .

(40.2.3) R = S[V ∗ ⊗ W ]

The two linear groups GL(V ), GL(W ) act on the space of matrices and on R.
In matrix notations the action of an element (A,B) ∈ GL(n) × GL(m) on an n × m

matrix Y is BY A−1. If ei, i = 1, . . . , n is a basis of W and fj , j = 1, . . . , m one of V
under the identification R = S[W ∗ ⊗ V ] = Z[xij ], the element ei ⊗ fj corresponds to xij :

< ei ⊗ fj |X >:=< ei|Xfj >=< ei|
∑

h

xhjeh >= xij .

Geometrically we can think as follows. On the Grassmannian Gm,m+n acts the linear
group GL(m + n) the action is induced by the action on n × m + n matrices Y by Y C−1,
C ∈ GL(m + n).

The space of n×m matrices is identifyed to the cell X1n and is stable under the diagonal

subgroup GL(m) × GL(n). Thus if C =
∣∣∣∣
A 0
0 B

∣∣∣∣ we have

(40.2.4) (Y 1n)C−1 = (XA−1 B−1) ≡ (BY A−1 1n)

If now we want to understand the dual action on polynomials we can use the standard
dual form (gf )(u) = f(g−1u) for the action on a vector space as follows:
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Remark. The trasforms of the coordinate functions xij under A,B are the entries of
B−1XA where X = (xij) is the matrix having as entries the variables xij .

The action of the two linear groups on rows and columns induces in particular an action
of the two groups of diagonal matrices and a double tableau is clearly a weight vector
under both groups.

Its weight is read off from the row and column indeces appearing.
We may encode the number of appearences of each index on the row and column tableau

as two sequences
1h1 2h2 . . . nhn ; 1k1 2k2 . . . mkm

when one wants to stress the combinatorial point of view one calls these two sequences the
content of the double tableau.

According to the definition of the action of a group on functions we see that the weight
of a diagonal matrix in GL(n) acting on rows and with entries bi is

∏n
i=1 b−hi while the

weight of a diagonal matrix in GL(m) acting on columns and with entries ai is
∏m

i=1 aki .

We come now to the main theorem:
Theorem. The double standard tableaux are a Z basis of Z[xi,j ].

Proof. Since the standard monomials in the Plücker coordinates are a basis of Z[[i1, i2, . . . , in]]
we have that the double standard tableaux span the polynomial algebra Z[xi,j ] over Z.

We need to show that they are linearly independent.
One could give a proof in the same spirit as for the ordinary Plücker coordinates or one

can argue as follows.
We have identified the space of n × m matrices with the open set of the Grassmann

variety where the Plücker coordinate p = [m + 1,m + 2, . . . , m + n] is non zero.
There are several remarks to be made:
1. The coordinate p is the maximal element of the ordered set of coordinates, so that,

if T is a standard monomial so is Tp.

2. Since a Z basis of Z[[i1, i2, . . . , in]] is given by the tableaux Tpk where T is a standard
tableau not containing p, we have that these tableaux not containing p are a basis over
the polynomial ring Z[p].

3. The algebra Z[xi,j ] equals the quotient algebra Z[[i1, i2, . . . , in]]/(p − 1).

From 2) and 3) it follows that the image in Z[xi,j ] of the standard monomials which do
not end with p are a Z basis.

But the images of these monomials are the double standard tableaux and the theorem
follows.

Point 1 and 2 are clear.
Point 3 is a general fact on projective varieties, if W ⊂ P n is a projective variety and

A is its homogeneous coordinate ring, the coordinate ring of the affine part of W where a
coordinate x is not zero is A/(x − 1).

40.3
We now want to see how representation theory runs in a characteristic free fashion using

tableaux.
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First of all we need to analyze a basic quadratic relation for a two lines tableau. We
have to understand the quadratic relation 33.1.4 in terms of double tableaux. Assume thus
we have a product of two Plücker coordinates giving a double tableau with two rows of
length a ≥ b (if not we exchange these two rows). From the previous hypothesis follows
that there are two possibilities for the point where is the violation, either the two indeces
ik, jk are both column indeces or both row indeces. Let us treat the first case, the other is
similar. In this case all indeces i1, . . . , ik are row indeces while among the jk, . . . , jn there
can be also row indeces.

In each summand of 33.1.4 some top indeces are exchanged with bottom indeces so
we can separate the sum into two contributions, the first in which no row indeces are
exchanged and the second with the remaining terms. Thus in the first we have a sum of
tableaux always of type a, b while in the second the possible types are a + t, b − t, t > 0.

Summarizing
Proposition. A straightening law on the column indeces for a product

T = (ik . . . i1|j1 . . . jk)(uh . . . u1|v1 . . . vh)

of 2 determinants of sizes k ≥ h is the sum of two terms T1 + T2, where T2 is a sum of
tableaux of types a + t, b − t, t > 0 and T1 is the sum of the tableaux obtained from T by
selecting an index i such that ji > vi and performing all possible shuffles among ji . . . jk
and v1 . . . vi while leaving fixed the row indeces

∑
ε

in, in−1, . . . , im, . . . , i2, i1|j1, j2, . . . , jk, . . . , jm, . . . jn

um, . . . , u2, u1|v1, v2, . . . , vk, . . . , vm
+ T2

(similar statement for row straightening).

This, in characteristic 0, is closely connected with a special case of Pieri’s formula.

a ≥ b, ∧aV ⊗ ∧bV = ⊕b
t=0Sa+t,b−t(V ).

In fact when a = b the basic quadratic equation between Plücker coordinates is just the
fact that multiplying such coordinnates one obtains only the representation Sa,a(V ) (???
spiegare meglio).

If we write the tableau as A|B where A,B represent the two tableaux of row and column
indeces, we see that the contribution from the first part of the sum is of type:

(40.3.1)
∑

C

cB,CA|C

where the coefficients cB|C are independent of A. Then we give the following:

Definition. The dominant order for sequences of real numbers is:

(a1, . . . , am) ≥ (b1, . . . , bn), iff ,
h∑

i=1

ai ≥
h∑

i=1

bi, ∀h = 1, . . . , n.

In particular we obtain a (partial) ordering on partitions.
Remark If we take a vector (b1, . . . , bn) and construct (a1, . . . , am) by reordering the

entries in decreasing order then (a1, . . . , am) ≥ (b1, . . . , bn).
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Corollary. 1) Given a double tableau of shape λ by the straightening algorithm it is ex-
pressed as a linear combination of standard tableaux of shapes ≥ λ and of the same double
weight.

2) Let Sλ resp. Aλ denote the linear span of all tableaux of shape ≥ λ resp. of standard
tableaux of shape λ. We have

Sµ := ⊕λ≥µ, |λ|=|µ|Aλ.

Denote by S′
µ := ⊕λ>µ, |λ|=|µ|Aλ (which has as basis the double standard tableaux of shape

> λ in the dominant ordering).
3) The space Sµ/S′

µ is a representation of GL(V ) × GL(W ) equipped with a natural
basis indexed by double standard tableax A|B of shape µ. When we take an operator
X ∈ GL(V ) we have X(A|B) =

∑
C cB,CA|C where C runs over the standard tableaux

and the coefficients are independent of A, similarly for GL(W ).

Proof (sketch). The first fact follows from the analysis made for two rows and from the
previous remark.

By definition, if λ := k1, k2, . . . , ki is a partition we have that Tλ := Mk1Mk2 . . .Mki is
the span of all double tableaux of shape λ. Thus Sµ =

∑
λ≥µ, |λ|=|µ| Tλ by the first fact

proved.
Part 3 follows from the previous lemma.

Before computing explicitely we relate our work Cauchy’s formula.
Let us study the subspace Mk, of the ring of polynomials spanned by the determinants

of the k × k minors.
Given an element A ∈ hom(V, W ) it induces a map ∧kA : ∧kV → ∧kW thus we have a

map:

ik : hom(∧kV,∧kW )∗ = ∧kW ∗ ⊗ ∧kV → R = S[V ∗ ⊗ W ], ik(φ ⊗ u)(A) :=< φ|Au > .

It is clear that Mk is the image of ik.

Revert for a moment to characteristic 0. Take a Schur functor associated to a partition
λ and define:

iλ : hom(Vλ, Wλ)∗ = W ∗
λ ⊗ Vλ → R = S[V ∗ ⊗ W ], iλ(φ ⊗ u)(A) :=< φ|Au > .

Set Mλ = iλ(W ∗
λ ⊗ Vλ), since the map iλ is GL(V ) × GL(W ) equivariant we can identify

simply Mλ = W ∗
λ ⊗ Vλ since the last one is irreducible.

To connect with our present theory we shall compute the invariants

(W ∗
λ ⊗ Vλ)U−×U+

= (W ∗
λ)U−

⊗ (Vλ)U+

from the highest weigth theory of Chap. 3 we know that Vλ has a unique U+ fixed vector
of weight λ (or ωλ with the notation 28.3.1) while W ∗

λ has a unique U− fixed vector of
weight −λ, it follows that the space (W ∗

λ )U− ⊗ (Vλ)U+
is formed by the multiples of the

bicanonical tableau Kλ.
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Theorem. In characteristic 0, if λ ` p:

Sλ = ⊕|λ|≤min(m,n), µ≥λ, µ`pW ∗
λ ⊗ Vλ

Sµ/S′
µ is isomorphic to W ∗

µ ⊗ Vµ.

Proof. This comes from Cauchy’s formula and the characters of the representations W ∗
λ⊗Vλ

and the remarks on the highest weights since the U−×U+ fixed vectors in Sλ are the linear
combinations of the bicanonical tableaux Kµ for |λ| ≤ min(m, n), µ ≥ λ, µ ` p.

40.4 U invariants. We work now on the space of n×m matrices and the polynomial
ring Z[xij ], i = 1, . . . , n; j = 1 . . .m.

Consider the root subroups, which we denoted by a + λb, acting on matrices by adding
to the ath column the bth column multiplied by λ.

This is the result of the multiplication

X(1 + λeba).

A single determinant of a minor D := (i1, . . . , ik|j1, . . . , jk) is transformed according to
the following rule (cf. 33.3):

If a does not appear among the elements js or if both a, b appear among these elements
D is left invariant.

If a = js and b does not appear D is transformed into D + λD′ where D′ is obtained
from D by substitutiong a in the column indeces with b.

Of course a similar analysis is valid for row action.
This implies a combinatorial description of the group action of G = GL(m)×GL(n) on

the space of tableaux.
Let us do it for Z or a field F , so that the special linear group over F or Z is generated

by the elements a + λb. We have described the action of such an element on a single
determinant.

The space Mk generated by determinants of size k we have seen is isomorphic to W ∗⊗V ,
the combinatorial action of G on Mk extends to a combinatorial action on Mk1 ⊗ Mk2 ⊗
· · · ⊗ Mkr .

Then if λ := k1, k2, . . . , kr we can apply multiplication of determinants to obtain an
equivariant map

Mk1 ⊗ Mk2 ⊗ · · · ⊗ Mkr → Sλ

we can view the straigthening laws as a combinatorial description of a set of generators
for the kernel of this map, thus we have a combinatorial description by generators and
relations of the group action on Sλ.

An argument similar to the one performed in 33.3 shows that.
Given a linear combination C :=

∑
i ciTi of double standard tableaux, apply to it the

transformation 2 + λ1 we see that we obtain a polynomial in λ. The degree k of this
polynomial is the maximum of the number of occurrences of 2 in a tableau Ti as column
index not preceded by 1, i.e. 2 occurs on the first column.
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Its leading term is of the form
∑

ciT
′
i where the sum extends to all the indeces of

tableaux Ti where 2 appears in the first column k times and T ′
i is obtained from Ti by

replacing 2 with 1 in these positions. It is clear that to distinct tableaux Ti correspond
distinct tableaux T ′

i and thus this leading coefficient is non 0. It follows that:
The element C is invariant under 2 + λ1 if and only if in the column tableau 2 appears

only on the second column.
Let us indicate by A1,2 this ring of invariant elements under 2 + λ1.
We can now repeat the argument using 3 + λ1 on the elements of A1,2 and see that
An element C ∈ A1,2 is invariant under 3+λ1 if and only if in the column tableau each

occurrence of 3 is preceded by 1.
By induction we can define A1,k the ring of invariants under all the root subgroups

i + λ1, i ≤ k.
A1,k is spanned by the elements such that in the column tableau no element i ≤ k appears

on the first column.
We can go up to k = m and obtain tableaux with 1 on the first column of the rigth

tableau.
Next we can repeat the argument, on A1,m, using the root subgroups i+λ2, i ≤ k. We

define thus A2,k to be the ring of invariants under all the root subgroups i + λ1 and all
the root subgroups i + λ2, i ≤ k.

A2,k is spanned by the elements with 1 on the first column of the rigth tableau and no
element 2 < i ≤ k appears on the second column.

In general, given i < j ≤ m consider the subgroup Ui,j of upper triangular matrices
generated by the root subgroups

b + λa, a ≤ i − 1, b ≤ m; b + λi, b ≤ j

and denote by Ai,j the corresponding ring of invariants then:

Theorem. Ai,j is spanned by the elements in which the first i − 1 columns of the rigth
tableau are filled respectively with the numbers 1, 2, . . . , i − 1 while no number i < k ≤ j is
on the i column.

Corollary. The ring of polynomial invariants under the full group U+ of upper triangular
matrices, acting on the columns, is spanned by the double standard tableaux whose column
side has the ith column filled with i for all i. We call such a tableau canonical.

The main remark is that, given a shape λ there is a unique canonical tableau of that
given shape characterized by having 1 on the first column, 2 on the second etc. we denote
it by Cλ. e.g, m=5:

C33211 :=

1 2 3
1 2 3
1 2
1
1

,

1 2 3 4 5
1 2 3 4
1 2
1
1

One could have done a similar procedure starting from the subgroups m + λi and getting:
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Corollary. The ring of polynomial invariants under the full group U− of lower triangular
matrices, acting on the columns, is spanned by the double standard tableaux whose column
side has the property property that each index i < m appearing is followed by i + 1. We
call such a tableau anticanonical.

Again given a shape λ there is a unique anticanonical tableau of that given shape e.g,
m=5:

3 4 5
3 4 5
4 5
5
5

,

1 2 3 4 5
2 3 4 5
4 5
5
5

Remark that a tableau can be at the same time canonical and anticanonical if and only if
all its rows have length m:

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Of course we have a similar statement for the action on rows (the left action) except
that the invariants under left action by U− are left canonical and instead by U+ action
are left anticanonical.

Now we will obtain several interesting corollaries.

40.5 SL(n) invariants

Theorem. The ring generated by the Plücker coordinates [i1, . . . , in] extracted from an
n × m matrix, is the ring of invariants under the action of the special linear group on the
columns.
Proof. This is the consequence of the previous corollaries and remarks.

Classically this is used to prove the projective normality of the Grassmann variety and
the factoriality of the ring of Plücker coordinates, necessary for the definition of the Chow
variety.

The invariants under right U+ action decompose as

⊕λVλ

where Vλ is the span of all double standard tableaux of shape λ with rigth canonical
tableau.

If we act with a diagonal matrix t with entry ai in the ii position by rigth multiplication
this multiplies the ith column by ai and thus transforms a double tableau T which is rigth
canonical and of shape λ into T

∏
aki

i where ki is the length of the ith column.
Thus the decomposition ⊕λVλ is a decomposition into weigth spaces under the Borel

subgroup of upper triangular matrices.
If we consider now the left action by GL(n) it commutes with the rigth action and thus

each Vλ is a GL(n) submodule.
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Assume for instance n ≤ m. The U− × U+ invariants are spanned by those tableaux
which are canonical on the left and the rigth and will be called bicanonical. These tableax
are the polynomials in the determinants dk := (k, k − 1, . . . , 1|1, 2, . . . , k).

A monomial dh1
1 dh2

2 . . . dhn
n is a bicanonical tableau whose shape λ is determined by the

sequence hi and will be denoted by Kλ.
An argument similar to the previous analysis of U invariants shows that:

Proposition. 1) Any U− fixed vector in Vλ is multiple of the bicanonical tableau Kλ of
shape λ and every U− stable subspace of Vλ contains Kλ.

2) Vλ is an indecomposable U− or GL(n) module.
3) VλVµ = Vλ+µ (Cartan multiplication).

Proof. 1) and 2) follow from the previous analysis as for 3) we have to specify the meaning
of λ+µ. Its correct meaning is by interpreting the partitions as weights for the torus then
it is clear that a product of two weight vectors as as weight the sum of the weights. Thus
VλVµ ⊂ Vλ+µ, to show equality we observe that a standard tableau of shape λ + µ can be
written as the product of two standard tableaux of shapes λ and µ.

Remark This is basically the theory of the highest weigth vector in this case. The
reader is invited to complete the representation theory of the general linear group in
characteristic 0 by this combinatorial approach (as alternative to the one developed in
Chapter 3).

An important remark.
Suppose we take a bitableau (not necessarily standard) T = A|Cλ (with column tableau

canonical) clearly T is invariant by right U+ action and it has weight λ thus T ∈ Vλ.
We should remark that, when we apply to it the row straigthening relations the terms

appearing are all of shape λ and no higher.
We may express this fact in the following way. Let Vi denote the space of row tableaux

representing determinants of i × i minors left canonical.
If λ = k1 ≥ k2 ≥ · · · ≥ kr the tableaux of shape λ can be viewed as the natural tensor

product basis of Vk1 ⊗ Vk2 · · · ⊗ Vkr .
The straigthening laws for Vλ can be viewed as elements of this tensor product, and we

will call the subspace spanned by these elements Rλ. Then

Vλ := Vk1 ⊗ Vk2 . . . Vkr/Rλ

Similarly on the rows
W λ := W k1 ⊗ Wk2 . . . Wkr/Rλ

41Characteristic free Invariant Theory

41.1 Now the characteristic free proof of the first fundamental Theorem.
Let F be an infinite field5 we want to show the FFT of the linear group for vectors and

forms with coefficients in F .
We want now to show that:

5one could relax this by working on formal invariants
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FFT Theorem. The ring of polynomial functions on Mp,m(F ) × Mm,q(F ) which are
Gl(m, F) invariant is given by the polynomial functions on Mp,q(F ) composed with the
product map, which has as image the determinantal variety of matrices of rank at most m.

Let us first establish the correct notations. We display a matrix A in Mp,m(F ) as p
rows φi:

A :=

∣∣∣∣∣∣∣

φ1
φ2
. . .
φp

∣∣∣∣∣∣∣

while a a matrix B in Mm,q(F ) as q columns xi:

B := | x1 x2 . . . xp |

The entries of the product are the scalar products

xij :=< φi|xj >

The theory developed for the determinantal variety implies that the double standard
tableaux in these elements xij with at most m columns are a basis of the ring Am generated
by these elements.

Lemma. Assume that an element p :=
∑

ciTi ∈ Am, with Ti distinct double standard
tableaux, vanishes when we compute it on the variety Cm formed by those pairs A,B of
matrices for wich the first m columns xi of B are linearly dependent; then the column
tableau of each Ti starts with the row 1, 2, . . . ,m.

Similarly if it vanishes when we compute it on the variety Rm formed by those pairs
A,B of matrices for wich the first m rows φi of A are linearly dependent; then the row
tableau of each Ti starts with the row m,m − 1, . . . , 1.

Proof. First of all it is clear that every double standard tableau with column tableau
starting with the row 1, 2, . . . ,m vanishes on Cm and if we split p = p0 + p1 with p0 of
the previous type also p1 vanishes on Cm and we must show that p1 = 0 and can assume
p = p1.

We observe that, if 1 does not appear in some Ti then evaluating in the subvariety of
Mp,m(F ) × Mm,q(F ) where x1 = 0 we get that p vanishes as well as all the elements that
contain 1.

We deduce that a non trivial relation on the double standard tableaux in the indeces
1, . . . , p; 2, . . . , q which is a contradiction.

Next by substituting x1 → x1 + λx2 in p we have a polynomial vanishing identically on
Cm hence its leading term vanishes on Cm, this leading term is a linear combination of
double standard tableaux obtained by some of the Ti by substituting all 1 not followed by
2 with 2.

Next we perform x1+λx3, . . . , x1+λxm and in a similar fashion we deduce a new leading
term in which the 1 not followed by 2, 3, . . . , m are been replaced with larger indeces.

Formally this step does not produce immediately a standard tableau, for instance if we
have a row 1 23 7 . . . and replace 1 by 4 we get 4 2 3 7 . . . , but this can be mmediately
rearranged up to sign to 2 3 4 7 . . . .
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Since by hypothesis p does not contain any tableau with first row in the rigth side equal
to 1, 2, 3, . . . , m at the end of this procedure we must get a non trivial linear combination of
double standard tableaux in which 1 does not appear in the column indeces and vanishing
on Cm. This, we have seen, is a contradiction.

The proof for the rows is identical.

We may assume p ≥ m, q ≥ m and consider d := (m,m − 1, . . . , 1|1, 2, . . . , m).
Let A be the open set in the variety of matrices of rank ≤ m in Mp,q(F ) where d 6= 0.
Similarly let B be the open set of elements in Mp,m(F ) × Mm,q(F ) which, under multi-

pication, map to A.
The space B can be described as pairs of matrices in block form

∣∣∣∣
A
B

∣∣∣∣ , | C D |

with multiplication ∣∣∣∣
AC AD
BC BD

∣∣∣∣

and AC invertible.
The complement of B is formed by those pair of matrices (A, B) in which, either the

first m columns xi of B or the first m rows φj of A are linearly dependent, i.e. in the
notations of the Lemma it is Cm ∪ Rm.

Thus, setting B′ := {(
∣∣∣∣
1m

B

∣∣∣∣ , | C D |)} with C invertible, we get that B is isomorphic

to the product GL(m,F ) × B′.
By multiplication we get ∣∣∣∣

C D
BC BD

∣∣∣∣

this clearly implies that the matrices B′ are isomorphic to A under multiplication and that
they form a section of the quotient.

It follows that the invariant functions on B are just the coordinates of A in other words:
After inverting d the ring of invariants is the ring of polynomial functions on Mp,q(F )

composed with the product map.
We want to use the theory of standard tableaux to show that this denominator can be

eliminated.
Let then f be a polynomial invariant that by hypothesis can be multiplied by some

power of d to get a polynomial on Mp,q(F ).
Now we take a minimal such power of d and will show that it is 1.
For this we remark that fdh for h ≥ 1 vanishes on the complement of B and so on

the complement of A. Now we only have to show that a polynomial on the determinantal
variety that vanishes on the complement of A is a multiple of d.

By the previous lemma applied to columns and rows we see that each first row of each
double standard tableau Ti in the developement of fdh is (m,m − 1, . . . , 1|1, 2, . . . ,m) i.e.
d divides this polynomial as desired.
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42Representation theory

42.1 Now revert to representation theory. as for U+ acting on the right we can
analyze U− acting on the left and decompose the invariants U−

A := ⊕µW µ where Wµ

is the span of the double standard tableaux of shape µ and such that the left tableau is
canonical.

Since in Vλ resp. Wµ the right or left tableau is fixed we can describe the elements of
these spaces by just one toublau. We have remarked already that the standard basis plus
the straigthening algorithm determine combinatorially these modules as representations of
the corresponding linear groups.

Now fix a shape λ ` k and consider as before the spaces Sλ, S′
λ spanned respectively

by all double standard tableaux of shapes µ ` k, µ ≥ λ and µ ` k, µ > λ.
Both these subspaces are GL(m) × GL(n) submodules and in a natural way Sλ/S′

λ has
a basis indexed by all double standard tableaux of shape λ.

We establish a combinatorial linear isomorphism jλ between W λ ⊗ Vλ and Sλ/S′
λ by

setting
jλ(A ⊗ B) := A|B

where A is a standard row tableau, B a standard column tableau and A|B the correspond-
ing double tableau.

Theorem. jλ is an isomorphism of G := GL(m) × GL(n) modules.

Proof. Let λ = k1 . . . kr. The space of row tableaux of size i is isomorphic to W i ⊗ Vi and
the space Sλ/S′

λ is naturally a quotient, as G module, of

W k1 ⊗ Vk1 ⊗ W k2 ⊗ Vk2 · · · ⊗ Wkr ⊗ Vkr := W λ ⊗ Vλ

modulo the straigthening relations.
Thus the module structures are deduced from the straightenoing algorithms, thus it is

enough to remark that, in the straightening algorithm for a double tableau for instance
for a column vialation, the part which does not involve strictly larger tableaux does not
change the row tableau and it is independent of the row tableau, this implies that the
relations defining Sλ/S′

λ in (W k1 ⊗ W k2 ⊗ · · · ⊗ W kr ) ⊗ (Vkr ⊗ Vk1 ⊗ Vk2 · · · ⊗ Vkr ) are
exactly

Rλ ⊗ (Vkr ⊗ Vk1 ⊗ Vk2 · · · ⊗ Vkr) + (W k1 ⊗ W k2 ⊗ · · · ⊗ Wkr) ⊗ Rλ

and is exactly the statement requested.

Now we want to apply this theory to the special linear group.
So we take double tableaux for an n × n matrix X = (xij), call A := F [xij ] and

remark that d = det(X) = (n, . . . , 1|1, . . . , n) is the first coordiante so the double standard
tableaux with at most n− 1 columns are a basis of A over the polynomial ring F [d] hence,
setting d = 1 in the quotient ring A/(d − 1) the double standard tableaux with at most
n − 1 columns are a basis over F .

Moreover d is invariand under the action of SL(n) × SL(n) and thus A/(d − 1) is an
SL(n) × SL(n) module.
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We leave to the reader to verify that:
A/(d − 1) is the coordinate ring of SL(n) and its SL(n) × SL(n) module action corre-

sponds to the let and rigth group actions.
The image of the Vλ for λ with at most n−1 columns give a decomposition of A/(d−1)U+

(similarly for W µ).

We want now to analyze the map f(g) := f (g−1) which exchanges left and rigth actions
on standard tableaux.

For this remark that the inverse of a matrix X of determinant 1 is the adjugate ∧n−1X .
More generally consider the pairing ∧kF n × ∧n−kF n → ∧nFn = F under which

< ∧kXu1∧. . . uk|∧n−kXv1∧. . . nn−k >= ∧nXu1∧· · ·∧uk∧v1∧· · ·∧vn−k = u1∧· · ·∧uk∧v1∧· · ·∧vn−k

if we write everything in matrix notations the pairing between basis elements of the two
exterior powers is a diagonal

(
n
k

)
matrix of signs ±1 that we denote by Jk. We thus have:

Lemma. There is an identification between (∧kX−1)t and Jk ∧n−k X .

Proof. From the previous pairing and compatibility of the product with the operators ∧X
we have:

(∧kX)tJk ∧n−k X = 1(n
k)

thus
(∧kX−1)t = Jk ∧n−k X

this implies that under the map f → f a determinant of a k minor of indeces i1 . . . ik|j1 . . . jk

is transformed up to sign, into the n − k minor with complementary row and column in-
deces.

Corollary. f → f maps isomorphically Vλ into W µ where if λ has rows k1, k2, . . . , kr
then µ has rows n − kr , n − kr−1 < . . . , n − k1.

42.2 Symmetric group We want to recover now, in a characteristic free way, the
theory developed in Chap. 3.

There are several points to that theory.

Theorem. If V is a finite dimensional vector space over a field F with at least m + 1
elements the centralizer of G := GL(V ) acting on V ⊗m is spanned by the symmetric
group.

Proof. We have as usual the identification EndGV ⊗m with the invariants (V ∗⊗m⊗V ⊗m)G.

Now we claim that the elements of (V ∗⊗m ⊗ V ⊗m)G are invariants for any extension of
the field F and so are multilinear invariants in the sense of Theorem 36.1. Then we have
that the multilinear invariants as described by that theorem are spanned by the products∏m

i=1 < ασ(i)|xi > which corresponds to σ and the theorem is proved.

To see that the invariants u ∈ (V ∗⊗m ⊗ V ⊗m)G are invariants over any field G remark
that it is enough to show that u is invariant under the elementary transformations 1 +
λeij , λ ∈ G.
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If we write the condition of invariance u(1 + λeij) = (1 + λeij)u we see that it is a
polynomial in λ of degree ≤ m and by hypothesis vanishes on F . By the assomption that
F has at least m + 1 elements it follows that this polynomial is identically 0.

Next we have seen in corollary 34.4 that the space of double tableaux of given weigth
has as basis the standard bitableaux of the same weight, we want to apply this idea to
multilinear tableax.

Let us start with a remark on tensor calculus.
Let V be an n−dimensional vector space and consider V ∗⊗m the space of multilinear

functions on V . If ei, i = 1, . . . , n is a basis of V and ei the dual basis, then ei1 ⊗ ei2 ⊗
· · · ⊗ eim is the induced basis of V ∗⊗m.

In functional notation V ∗⊗m is the space of multilinear functions f (x1, . . . , xm) in the
arguments xi ∈ V .

Writing xi :=
∑

xjiej we have

(42.2.1) < ei1 ⊗ ei2 ⊗ · · · ⊗ eim |x1 ⊗ · · · ⊗ xm >=
m∏

h=1

xihh

thus the space V ∗⊗m is identified to the subspace of the polynomials in the variables
xij , i = 1, . . . n; j = 1, . . . ,m which are multilinear in the right indeces 1, 2, . . . ,m. From
the theory of double standard tableaux it follows immediately that:

Theorem. V ∗⊗m has as basis the double standard tableaux T of size m which are filled
with all the indeces 1, 2, . . . ,m and without repetitions, in the column tableau and with the
indeces from 1, 2, . . . , n (with possible repetitions) in the row tableau.

To these tableau we can apply the theory of 35.4. One should remark that on V ∗⊗m we
do not obviously have the full action of GL(n) × GL(m) but only of GL(n) × Sm, where
Sm ⊂ GL(m) as permutation matrices.

Corollary. 1) Given a multilinear double tableau of shape λ by the straightening algorithm
it is expressed as a linear combination of multilinear standard tableaux of shapes ≥ λ.

2) Let S0
λ resp. A0

λ denote the linear span of all multilinear tableaux of shape ≥ λ resp.
of multilinear standard tableaux of shape λ. We have

S0
µ := ⊕λ≥µ, |λ|=|µ|A

0
λ.

Denote by S1
µ := ⊕λ>µ, |λ|=|µ|A

0
λ (which has as basis the multilinear double standard

tableaux of shape > λ in the dominant ordering).
3) The space S0

µ/S1
µ is a representation of GL(n) × Sm equipped with a natural ba-

sis indexed by double standard tableax A|B of shape µ and with B doubly standard (or
multilinear).

It is isomorphic to the tensor product V λ⊗Mλ with V λ representation of GL(n) with ba-
sis the standard tableaux of shape λ and Mλ representation of Sm with basis the multilinear
standard tableaux of shape λ.

Proof. It is similar to 35.4 and so we omit it.
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In both cases the straightening laws give combinatorial rules to determine the actions
of the corresponding groups on the basis of standard diagrams.

42.3 Finally let us consider in Z[xij ], i, j = 1, . . . , n the space Σn spanned by the
monomials of degree n which are multilinear both in the right and left indeces.

These monomials have as basis the n! monomials
∏n

i=1 xσ(i)i =
∏n

j=1 xjσ−1(j), σ ∈ Sn

and also the double standard tableaux which are multilinear or doubly standard both on
left and right.

Proposition. The map φ : σ →
∏n

i=1 xσ(i)i, φ : Z[Sn] → Σn is an Sn × Sn linear
isomorphism. Where on the group algebra Z[Sn] → Σn we have the usual left and right
actions while on Σn we have the two actions on left and right indeces.

Proof. By construction it is an isomorphism of abelian groups and φ(abc−1) =
∏n

i=1 x(abc−1)(i)i =∏n
i=1 xa(b(i)) c(i).

As in the previous theory we have a filtration by the shape of double standard tableaux
(this time multilinear on both sides or bimultilinear) which is stable under the Sn × Sn

action, the factors are tensor products Mλ ⊗ Mλ. It corresponds, in a characteristic free
form, to the decomposition of the group algebra in its simple ideals.

Corollary. 1) Given a bimultilinear double tableau of shape λ by the straightening algo-
rithm it is expressed as a linear combination of bimultilinear standard tableaux of shapes
≥ λ.

2) Let S00
λ resp. A00

λ denote the linear span of all bimultilinear tableaux of shape ≥ λ
resp. of bimultilinear standard tableaux of shape λ. We have

S00
µ := ⊕λ≥µ, |λ|=|µ|A

00
λ .

Denote by S11
µ := ⊕λ>µ, |λ|=|µ|A

00
λ (which has as basis the multilinear double standard

tableaux of shape > λ in the dominant ordering).
3) The space S00

µ /S11
µ is a representation of Sn×Sn equipped with a natural basis indexed

by double doubly standard (or bimultilinear) tableax A|B of shape µ.
It is isomorphic to the tensor product Mλ ⊗ Mλ with Mλ a representation of Sn with

basis the left multilinear standard tableaux of shape λ and Mλ representation of Sn with
basis the right multilinear standard tableaux of shape λ.

Proof. It is similar to 35.4 and so we omit it.

Again one could completely reconstruct the characteristic 0 theory from this approach.

43Second fundamental theorem for GL and Sm

43.1 Consider now the more general theory of standard tableaux on a Schubert
variety. We have remarked at the beginning of 35.1 that every Schubert cell intersects the
affine set A which we have identified to the space Mn,m of n×m matrices. The intersection
of a Schubert variety with A will be called an affine Schubert variety. It is indesed by a
minor a of the matrix X and indicated by Sa. The proof given in 35.5 and the remarks on
the connection between projective and affine coordinate rings give:



43 Representation theory 225

Theorem. Given a minor a of X the ideal of the variety Sa is generated by the deter-
minants of the minors b which are not greater than equal than the minor a. Its affine
coordinate ring has a basis formed by the standard monomials in the determinants of the
remaining minors.

There is a very remarkable special case of this theorem. Choose the k × k minor whose
row and column indeces are the first indeces 1, 2, . . . , k. One easily verifies:

A minor b is not greater or equal than a if and only if it is a minor or rank > k. Thus
Sa is the determinantal variety of matrices of rank at most k. We deduce:

Theorem. The ideal Ik generated by the determinants of the k+1×k+1 minors is prime
(in the polynomial ring A[xi,j ] over any integral domain A).

The standard tableaux which contain at least a minors of rank ≥ k +1 are a basis of the
ideal Ik.

The standard tableaux formed with minors of rank at most k are a basis of the coordinate
ring A[xi,j ]/Ik.

Proof. The only thing to be remarked is that a determinant of a minor of rank s > k + 1
can be expanded, by Laplace rule as a linear combination of determinants of k +1 minors.
So these elements generate the ideal defined by the Plücker coordinates which are not
greater than a.

Over a field the variety defined is the determinantal variety of matrices of rank at most
k.

The first fundamental theorem for the general linear group over a field F has been
formulated in §15.4 and in the previous paragraph as follows.

We are given an m−dimensional vector space V .
The ring of polynomial functions on (V ∗)p ×V q which are GL(V ) invariant is generated

by the functions < αi|vj >.
Equivalently the ring of polynomial functions on Mp,m × Mm,q which are Gl(m,F )

invariant is given by the polynomial functions on Mp,q composed with the product map,
which has as image the determinantal variety of matrices of rank at most m. Thus the
theorem 35.3 can be interpreted as:

Theorem. (Second fundamental theorem for the linear group).
Every relation among the invariants < αi|vj > is in the ideal of the determinants of the

m + 1 minors of the matrix formed by the < αi|vj >.

43.2 The second fundamental theorem for the symmetric group We have
seen that the space of GL(V ) endomorphisms of V ⊗n is spanned by the symmetric group
Sn, we have a linear isomorphism between the space of operators on V ⊗n spanned by the
permutations and the space of multilinear invariant functions.

To a permutation σ corresponds fσ.

fσ(α1, α2, . . . , αn, v1, v2, . . . , vn) =
n∏

i=1

< ασi|vi > .

In more formal words fσ is obtained by evaluating the variables xhk in the invariants
< αh|vk > the monomial

∏n
i=1 xσi,i. We want to analyze the relations among these

invariants. We know that such relations are the intersection of the linear span of the given
monomials with the determinantal ideal.
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Now the span of the multilinear monomials
∏n

i=1 xσi,i is the span of the double tableaux
with n boxes in which both the right and left tableau are filled with the n distinct integers
1, . . . , n.

Theorem. The intersection of the ideal Ik with the span of multilinear monomials corre-
sponds to the two sided ideal, of the algebra of the symmetric group Sn, generated by the
antisymmetrizer

∑
σ∈Sk+1

εσσ in k + 1 elements.

Proof. By the previous paragraph it is enough to remark that this antisymmetrizer corre-
sponds to the polynomial

(k + 1, k, . . . , 2, 1|1, 2, . . . , k, k + 1)
m∏

j=k+2

(j|j)

43.3 More standard monomial theory We have seen in §the two plethysm formu-
las for S[S2(V )] and S[∧2[V ], we want to give now a combinatorial interpretation of these
formulas.

We think of the first algebra over Z as the polynomial ring Z[xij ] is a set of variables xij

subject to the symmetry condition xij = xji while the second algebra is the polynomial ring
Z[yij] is a set of variables yij , i 6= j subject to the skew symmetry condition yij = −yji.

In the first case we wil display the determinant of a k × k minor extracted from the
rows i1, i2, . . . , ik and columns j1, j2, . . . , jk as a two rows tableau

∣∣∣∣
i1, i2, . . . , ik
j1, j2, . . . , jk

∣∣∣∣

the main combinatorial identity is that:

Lemma. If we fix any index a and consider the k +1 indeces ia, ia+1, . . . , ik, j1, j2, . . . , ja

then alternating the minor in these indeces produces 0.

Proof. We prove it by decreasing induction on a. Since this is a formal identity in Z[xij ]
we can work in Q[xij].

Start from

∣∣∣∣
i1, i2, . . . , ik−1, s

j1, j2, . . . , jk

∣∣∣∣ =
k∑

p=1

∣∣∣∣
i1, i2, . . . , . . . , ik−1, jp

j1, j2, . . . , jp−1, s, jp+1, . . . , jk

∣∣∣∣
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to prove this develop the determinants appearing with respect to the last row:

k∑

p=1

∣∣∣∣
i1, i2, . . . , . . . , ik−1, jp

j1, j2, . . . , jp−1, s, jp+1, . . . , jk

∣∣∣∣ =

k∑

p=1

(
p−1∑

u=1

(−1)n+u

∣∣∣∣
jp

ju

∣∣∣∣
∣∣∣∣

i1, i2, . . . , . . . , ik−1
j1, j2, . . . , ǰu, . . . , jp−1, s, jp+1, . . . , jk

∣∣∣∣

+(−1)n+p

∣∣∣∣
jp

s

∣∣∣∣
∣∣∣∣

i1, i2, . . . , . . . , ik−1
j1, j2, . . . , jp−1, jp+1, . . . , jk

∣∣∣∣

+
k∑

u=p+1

(−1)n+u

∣∣∣∣
jp

ju

∣∣∣∣
∣∣∣∣

i1, i2, . . . , . . . , ik−1
j1, j2, . . . , jp−1, s, jp+1, . . . , ǰu, . . . , jk

∣∣∣∣)

or in other words

k∑

p=1

(
p−1∑

u=1

(−1)n+u

∣∣∣∣
jp

ju

∣∣∣∣
∣∣∣∣

i1, i2, . . . , . . . , ik−1
j1, j2, . . . , ǰu, . . . , jp−1, s, jp+1, . . . , jk

∣∣∣∣)

+
k∑

u=1

(
k∑

p=u+1

(−1)n+p

∣∣∣∣
ju

jp

∣∣∣∣
∣∣∣∣

i1, i2, . . . , . . . , ik−1
j1, j2, . . . , ju−1, s, ju+1, . . . , ǰp, . . . , jk

∣∣∣∣)

+
k∑

p=1

((−1)n+p

∣∣∣∣
jp

s

∣∣∣∣
∣∣∣∣

i1, i2, . . . , . . . , ik−1
j1, j2, . . . , jp−1, jp+1, . . . , jk

∣∣∣∣)

the first terms cancel and the last is the development of
∣∣∣∣
i1, i2, . . . , ik−1, s

j1, j2, . . . , jk

∣∣∣∣.

As a consequence let us take any product of minors displayed now as a tableau with
each type of row appearing appears an even number of times, in other words the columns
of the tableau are all even, we deduce:

Theorem. The standard tableaux with even columns form a Z basis of Z[xij ].

Proof. A product of variables xij is a tableau (with just one column), we show first that
every tableau is a linear combination of standard ones.

So we look at a violation of standardness in the tableau.
This can occur in two different ways since a tableau is a product d1d2 . . . ds of determi-

nants of minors.
The first case is when the violation appears in two indeces ia > ja of a minor dk =∣∣∣∣

i1, i2, . . . , ik
j1, j2, . . . , jk

∣∣∣∣. The previous identity implies immediately that this violation can be re-

moved replacing the tableau with lexicographically smaller ones. The second case is when
the violation occurs between a column index of some dk and the corresponding row index
of dk+1. Here we can use the fact that by symmetry in a minor we can exchange the rows
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with the column indeces and then we can apply the identity on double tableax discussed
in 35.3. The final result is to express the given tableau as a linear combination of tableaux
which are either of strictly higher shape or lexicographycally inferior to the given one.
Thus this straightening algorithm terminates.

In order to prove that the standard tableaux so obtained are linearly independent one
could procede as in the previous paragraphs but also we can remark that, since standard
tableaux of a given shape are, in characteristic 0, in correspondence with a basis of the
corresponding linear representation of the linear group, the proposed basis is in each degree
k (by the plethysm formula) of cardinality equal to the dimension of Sk[S2(V )] and so being
a set of linear generators it must be a basis.

For the symplectic case Z[yij], i, j = 1, . . . , n subject to the skew symmetry, we define,
for every sequence 1 ≤ i1 < i2 < . . . i2k ≤ n formed by an even number of indeces, the
symbol |i1, i2, . . . , i2k| to denote the Pfaffian of the principal minor of the skew matrix
Y = (yij).

A product of such Pfaffians can be displaied as a tableau with even rows.
Here the main combinatorial identity is:

Lemma. Take the product of two Pfaffians

Theorem. The standard tableaux with even rows form a Z basis of Z[yij ].

Proof. A variable yij , i < j equals the Pfaffian that we have indicated by |ij| thus a
product of variables yij is a tableau with two columns, we show again first that every
tableau is a linear combination of standard ones.

So we look at a violation of standardness in the tableau.
We need an identity between Pfaffians, next we use the straigthening algorithm and

finally the same argument with the Plethysm formula.


